首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In the present study we have explored the sensitivity of ovarian cancer cells to TRAIL and proteasome inhibitors. Particularly, we have explored the capacity of proteasome inhibitors to bypass TRAIL resistance of ovarian cancer cells. For these studies we have used the A2780 ovarian cancer cell line and its chemoresistant derivatives A2780/DDP and A2780/ADR, providing evidence that: (i) the three cell lines are either scarcely sensitive (A2780 and A2780/ADR) or moderately sensitive (A2780/DDP) to the cytotoxic effects of TRAIL; (ii) the elevated c-FLIP expression observed in ovarian cancer cells is a major determinant of TRAIL resistance of these cells; (iii) proteasome inhibitors (PS-341 or MG132) are able to exert a significant pro-apoptotic effect and to greatly enhance the sensitivity of both chemosensitive and chemoresistant A2780 cells to TRAIL; (iv) proteasome inhibitors damage mitochondria through stabilization of BH3-only proteins, Bax and caspase activation and significantly enhance TRAIL-R2 expression; (v) TRAIL-R2, but not TRAIL-R1, mediates the apoptotic effects of TRAIL on ovarian cancer cells. Importantly, studies on primary ovarian cancer cells have shown that these cells are completely resistant to TRAIL and proteasome inhibitors markedly enhance the sensitivity of these cells to TRAIL. Given the high susceptibility of ovarian cancer cells to proteasome inhibitors, our results further support the experimental use of these compounds in the treatment of ovarian cancer.  相似文献   

3.
4.
The development of cancer drugs is slow and costly. One approach to accelerate the availability of new drugs is to reposition drugs approved for other indications as anti-cancer agents. HIV protease inhibitors (HIV PIs) are useful in treating HIV infection and cause toxicities in humans that are similar to those observed when the kinase Akt, a target for cancer therapy, is inhibited. To test whether HIV PIs inhibited Akt and cancer cell proliferation, we screened 6 HIV PIs and found that three, ritonavir, saquinavir and nelfinavir, inhibit the growth of over 60 cancer cell lines derived from 9 different tumor types; Nelfinavir is the most potent. Nelfinavir causes caspase-dependent apoptosis and non-apoptotic death, as well as endoplasmic reticulum (ER) stress and autophagy. Nelfinavir blocks growth factor receptor activation and decreases growth factor-induced and endogenous Akt signaling. In vivo, nelfinavir inhibits tumor growth and upregulates markers of ER stress, autophagy and apoptosis. Nelfinavir is currently being tested in cancer patients in Phase I clinical trials where biomarkers will be assessed. Current studies are focused on measuring autophagy in clinical specimens and identifying combination strategies that will exploit the induction of autophagy and increase the effectiveness of nelfinavir.  相似文献   

5.
Antiretroviral protease inhibitors are crucial components of the antiretroviral combination therapy that is successfully used for the treatment of patients with HIV infection. To test whether such protease inhibitors affect the glutathione (GSH) metabolism of neurons, cultured cerebellar granule neurons were exposed to indinavir, nelfinavir, lopinavir or ritonavir. In low micromolar concentrations these antiretroviral protease inhibitors did not acutely compromise the cell viability, but caused a time- and concentration-dependent increase in the accumulation of extracellular GSH which was accompanied by a matching loss in cellular GSH. The stimulating effect by indinavir, lopinavir and ritonavir on GSH export was immediately terminated upon removal of the protease inhibitors, while the nelfinavir-induced stimulated GSH export persisted after washing the cells. The stimulation of neuronal GSH export by protease inhibitors was completely prevented by MK571, an inhibitor of the multidrug resistance protein 1, suggesting that this transporter mediates the accelerated GSH export during exposure of neurons to protease inhibitors. These data suggest that alterations in brain GSH metabolism should be considered as potential side-effects of a treatment with antiretroviral protease inhibitors.  相似文献   

6.
《Autophagy》2013,9(1):107-109
The development of cancer drugs is slow and costly. One approach to accelerate the availability of new drugs is to reposition drugs approved for other indications as anti-cancer agents. HIV protease inhibitors (HIV PIs) are useful in treating HIV infection and cause toxicities in humans that are similar to those observed when the kinase Akt, a target for cancer therapy, is inhibited. To test whether HIV PIs inhibited Akt and cancer cell proliferation, we screened 6 HIV PIs and found that three, ritonavir, saquinavir and nelfinavir, inhibit the growth of over 60 cancer cell lines derived from 9 different tumor types; Nelfinavir is the most potent. Nelfinavir causes caspase-dependent apoptosis and non-apoptotic death, as well as endoplasmic reticulum (ER) stress and autophagy. Nelfinavir blocks growth factor receptor activation and decreases growth factor-induced and endogenous Akt signaling. In vivo, nelfinavir inhibits tumor growth and upregulates markers of ER stress, autophagy and apoptosis. Nelfinavir is currently being tested in cancer patients in Phase I clinical trials where biomarkers will be assessed. Current studies are focused on measuring autophagy in clinical specimens and identifying combination strategies that will exploit the induction of autophagy and increase the effectiveness of nelfinavir.  相似文献   

7.
8.
9.
Activation of the elongation factor 2 kinase (eEF2K) leads to the phosphorylation and inhibition of the elongation factor eEF2, reducing mRNA translation rates. Emerging evidence indicates that the regulation of factors involved in protein synthesis may be critical for controlling diverse biological processes including cancer progression. Here we show that inhibitors of the HIV aspartyl protease (HIV‐PIs), nelfinavir in particular, trigger a robust activation of eEF2K leading to the phosphorylation of eEF2. Beyond its anti‐viral effects, nelfinavir has antitumoral activity and promotes cell death. We show that nelfinavir‐resistant cells specifically evade eEF2 inhibition. Decreased cell viability induced by nelfinavir is impaired in cells lacking eEF2K. Moreover, nelfinavir‐mediated anti‐tumoral activity is severely compromised in eEF2K‐deficient engrafted tumors in vivo. Our findings imply that exacerbated activation of eEF2K is detrimental for tumor survival and describe a mechanism explaining the anti‐tumoral properties of HIV‐PIs.  相似文献   

10.
Antiretroviral protease inhibitors are a class of important drugs that are used for the treatment of human immunodeficiency virus infections. Among those compounds, ritonavir is applied frequently in combination with other antiretroviral protease inhibitors, as it has been reported to boost their therapeutic efficiency. To test whether ritonavir affects the viability and the glutathione (GSH) metabolism of brain cells, we have exposed primary astrocyte cultures to this protease inhibitor. Application of ritonavir in low micromolar concentrations did not compromise cell viability, but caused a time- and concentration-dependent loss of GSH from the cells which was accompanied by a matching increase in the extracellular GSH content. Half-maximal effects were observed for ritonavir in a concentration of 3 μM. The ritonavir-induced stimulated GSH export from astrocytes was completely prevented by MK571, an inhibitor of the multidrug resistance protein 1. In addition, continuous presence of ritonavir was essential to maintain the stimulated GSH export, since removal of ritonavir terminated the stimulated GSH export. Ritonavir was more potent to stimulate GSH export from astrocytes than the antiretroviral protease inhibitors indinavir and nelfinavir, but combinations of ritonavir with indinavir or nelfinavir did not further stimulate astrocytic GSH export compared to a treatment with ritonavir alone. The strong effects of ritonavir and other antiretroviral protease inhibitors on the GSH metabolism of astrocytes suggest that a chronic treatment of patients with such compounds may affect their brain GSH metabolism.  相似文献   

11.
Subtype F wild type HIV protease has been kinetically characterized using six commercial inhibitors (amprenavir, indinavir, lopinavir, nelfinavir, ritonavir and saquinavir) commonly used for HIV/AIDS treatment, as well as inhibitor TL-3 and acetyl-pepstatin. We also obtained kinetic parameters for two multi-resistant proteases (one of subtype B and one of subtype F) harboring primary and secondary mutations selected by intensive treatment with ritonavir/nelfinavir. This newly obtained biochemical data shows that all six studied commercially available protease inhibitors are significantly less effective against subtype F HIV proteases than against HIV proteases of subtype B, as judged by increased Ki and biochemical fitness (vitality) values. Comparison with previously reported kinetic values for subtype A and C HIV proteases show that subtype F wild type proteases are significantly less susceptible to inhibition. These results demonstrate that the accumulation of natural polymorphisms in subtype F proteases yields catalytically more active enzymes with a large degree of cross-resistance, which thus results in strong virus viability.  相似文献   

12.
Subtype F wild type HIV protease has been kinetically characterized using six commercial inhibitors (amprenavir, indinavir, lopinavir, nelfinavir, ritonavir and saquinavir) commonly used for HIV/AIDS treatment, as well as inhibitor TL-3 and acetyl-pepstatin. We also obtained kinetic parameters for two multi-resistant proteases (one of subtype B and one of subtype F) harboring primary and secondary mutations selected by intensive treatment with ritonavir/nelfinavir. This newly obtained biochemical data shows that all six studied commercially available protease inhibitors are significantly less effective against subtype F HIV proteases than against HIV proteases of subtype B, as judged by increased K(i) and biochemical fitness (vitality) values. Comparison with previously reported kinetic values for subtype A and C HIV proteases show that subtype F wild type proteases are significantly less susceptible to inhibition. These results demonstrate that the accumulation of natural polymorphisms in subtype F proteases yields catalytically more active enzymes with a large degree of cross-resistance, which thus results in strong virus viability.  相似文献   

13.
Dysregulation of apoptosis may support tumorigenesis by allowing cells to live beyond their normally intended life span. The various receptors for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) are located on chromosome 8p21.2, a region frequently deleted in ovarian cancer. Lack of expression of TRAIL receptor 1 (death receptor 4, DR4) correlates with resistance to TRAIL-induced apoptosis in ovarian cancer cells. Reconstitution of DR4 in the TRAIL-resistant A2780 ovarian cancer cell line was investigated with the demethylating agent 5-aza-2'-deoxycytidine and transient gene transfer. Regulation of other genes in the TRAIL pathway by 5-aza-2'-deoxycytidine was assessed in DNA GeneChip experiments. Primary ovarian cancers were analyzed by methylation-specific PCR and immunohistochemical analysis of a tissue microarray. Regulation of DR4 expression by demethylation or transient transfection is of functional relevance for TRAIL resistance in an ovarian cancer cell line. Hypermethylation of the DR4 promoter could be found in 10 of 36 (27.7%) DNAs isolated from ovarian cancer tissue. In an independent set of 68 ovarian cancer cases, a complete loss or down-regulation of DR4 protein expression was observed 10.3% and 8.8% patients, respectively. A significant (P = 0.019) majority of these patients was below 50 years of age. Our findings show a functional relevance of the level of DR4 expression in ovarian cancer and suggest a substantial contribution of DR4 hypermethylation and consequent loss of DR4 expression to ovarian cancer pathogenesis, particularly in premenopausal patients.  相似文献   

14.
Introduction: TRAIL (TNF-Related Apoptosis Inducing Ligand) is a member of the TNF superfamily of cell death inducing ligands. Interestingly, while malignant cells are responsive to TRAIL-induced cell death when used alone or in combination with other agents, normal cells do not appear to be sensitive to this ligand, making it a desirable therapeutic compound against many cancers, including many ovarian carcinomas. Interleukin-8 (IL-8), a member of the C-X-C chemokine family, has been found to be at significantly higher level in the ascites from patients with ovarian cancer. We have previously demonstrated a role for IL-8 in blocking TRAIL's ability to induce apoptosis in the ovarian cancer cell line, OVCAR3, possibly by repressing the DR4 TRAIL receptor expression and blocking caspase-8 cleavage. In addition, we showed a member of the mitogen-activated protein kinase (MAPK) superfamily, p38γ, is among the genes regulated in OVCAR3 cells by TRAIL and IL-8. The present study further investigates involvement of the p38 MAPK pathway in IL-8's ability to block TRAIL-induced apoptosis in the ovarian surface epithelial cancer cell line, OVCAR3. Results: In this study we demonstrate that p38γ as well as p38α play a significant role in IL-8's ability to block TRAIL-induced apoptosis. Through array analysis, as well as confirmation with other methods, we detected regulation of p38γ and p38α following treatment of the cancer cell line with IL-8 or TRAIL. We also tested two other isoforms of p38 MAPK, p38β and p38δ, but did not find significant regulation by IL-8 or TRAIL. We also examined activation of the p38 MAPK pathway, up-stream as well as down-stream, and noticed activation of the pathway following treatment with TRAIL and decreased activity when IL-8 was introduced. With the use of specific inhibitors, we were able to further confirm the role of this pathway in TRAIL-induced apoptosis, and IL-8's ability to block this apoptosis, in ovarian cancer cell lines. Conclusion: Taken together, these results further solidify the role of IL-8 in blocking the TRAIL-induced apoptosis in these ovarian carcinoma cells and provide new molecular insight into this potentially important therapeutic target.  相似文献   

15.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in various cancer cells. Hsp90 is known to be involved in cell survival and growth in tumor cells. Nevertheless, Hsp90 inhibitors exhibit a variable effect on the cytotoxicity of anticancer drugs. Furthermore, the combined effect of Hsp90 inhibitors on TRAIL-induced apoptosis in epithelial ovarian cancer cells has not been determined. To assess the ability of an inhibitor of Hsp90 inhibitor radicicol to promote apoptosis, we investigated the effect of radicicol on TRAIL-induced apoptosis in the human epithelial ovarian carcinoma cell lines OVCAR-3 and SK-OV-3. TRAIL induced a decrease in Bid, Bcl-2, Bcl-xL, and survivin protein levels, increase in Bax levels, loss of the mitochondrial transmembrane potential, cytochrome c release, activation of caspases (-8, -9, and -3), cleavage of PARP-1 and an increase in the tumor suppressor p53 levels. Radicicol enhanced TRAIL-induced apoptosis-related protein activation, nuclear damage and cell death. These results suggest that radicicol may potentiate the apoptotic effect of TRAIL on ovarian carcinoma cell lines by increasing the activation of the caspase-8- and Bid-dependent pathway and the mitochondria-mediated apoptotic pathway, leading to caspase activation. Radicicol may confer a benefit in the TRAIL treatment of epithelial ovarian adenocarcinoma.  相似文献   

16.
Gliomas are the most common brain tumors in adults and account for more than half of all brain tumors. Despite intensive clinical investigations, average survival for the patients harboring the malignancy has not been significantly improved. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), shown to have potent and cancer-selective killing activity, has drawn considerable attention as a promising anti-cancer therapy. In an attempt to develop TRAIL as an anti-cancer therapy for gliomas, tumor suppressor activity of TRAIL was assessed using human glioma cell lines such as U373MG, U343MG, U87MG and LN18. U343MG, U87MG and LN18 cells were susceptible to TRAIL; however, U373MG cells were completely refractory to TRAIL. Resistance to the applied therapies is a key issue in cancer treatment; thus, various combination treatments were evaluated using U373MG cells to identify a better regimen. Unlike Doxorubicin, Etoposide, Actinomycin D and Wortmannin, a proteasome inhibitor MG132 significantly enhanced TRAIL-induced apoptosis. Similarly, other proteasome inhibitors, including Lactacystin, Proteasome inhibitor I and Velcade (Bortezomib), also enhanced apoptotic activity of TRAIL. Among these proteasome inhibitors, Velcade, the only approved drug, was as effective as MG132 in enhancing TRAIL-induced apoptosis. Both Velcade and MG132 increased the protein levels of DR5, a TRAIL receptor known to be up-regulated by p53, in U373MG cells where p53 is mutated. Our data indicate that proteasome inhibitors up-regulate DR5 in a p53-independent manner and a combination therapy comprising TRAIL and Velcade become a better treatment regimen for gliomas.  相似文献   

17.
In this study, we investigated the role of c-Myc in overcoming multidrug resistance (MDR) in human ovarian and breast cancer cells by TRAIL. We showed that P-gp expressing MDR variants (Hey A8-MDR and MCF7-MDR cells) with high level of c-Myc were highly susceptible to TRAIL treatment when compared to their drug-sensitive parental human ovarian cancer Hey A8 and breast MCF-7 cells, respectively. Up-regulation of DR5 TRAIL receptor and down-regulation of c-FLIP and the promotion of caspase-dependent cell death, which contribute to TRAIL sensitization of MDR cells, were regulated by the over-expressed c-Myc in the MDR cells. After targeted inhibition of c-Myc with specific siRNA, these responses to TRAIL disappeared and TRAIL-induced apoptosis was also suppressed in MCF7-MDR cells. Treatment with TRAIL significantly reduced P-glycoprotein (P-gp)-mediated efflux of rhodamine123 in both Hey A8-MDR and MCF7-MDR cells. Furthermore, TRAIL significantly potentiated the cytotoxicity of vinblastine, vincristine, doxorubicin and VP-16 that are P-gp substrate anticancer drugs in both MDR cells, which resulted in the reversal effect of TRAIL on the MDR phenotype. The present study shows for the first time that elevated c-Myc expression in the MDR cells plays a critical role in overcoming MDR by TRAIL that can act as a specific sensitizer for P-gp substrate anticancer drug.  相似文献   

18.
The majority of ovarian cancer cells are resistant to apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Subtoxic concentrations of the semisynthetic retinoid N-(4-hydroxyphenyl)retinamide (4HPR) enhanced TRAIL-mediated apoptosis in ovarian cancer cell lines but not in immortalized nontumorigenic ovarian epithelial cells. The enhancement of TRAIL-mediated apoptosis by 4HPR was not due to changes in the levels of proteins known to modulate TRAIL sensitivity. The combination of 4HPR and TRAIL enhanced cleavage of multiple caspases in the death receptor pathway (including the two initiator caspases, caspase-8 and caspase-9). The 4HPR and TRAIL combination leads to mitochondrial permeability transition, significant increase in cytochrome c release, and increased caspase-9 activation. Caspase-9 may further activate caspase-8, generating an amplification loop. Stable overexpression of Bcl-xL abrogates the interaction between 4HPR and TRAIL at the mitochondrial level by blocking cytochrome c release. As a consequence, a decrease in activation of caspase-9, caspase-8, and TRAIL-mediated apoptosis occurs. These results indicate that the enhancement in TRAIL-mediated apoptosis induced by 4HPR is due to the increase in activation of multiple caspases involving an amplification loop via the mitochondrial-death pathway. These findings offer a promising and novel strategy for the treatment of ovarian cancer.  相似文献   

19.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is one of the most promising candidates for cancer therapeutics. However, some tumor cells are resistant to TRAIL-induced apoptosis. Our previous studies have shown that luteolin, a naturally occurring flavonoid, induces the up-regulation of death receptor 5 (DR5), which is a receptor for TRAIL. Here, we show for the first time that luteolin synergistically acts with exogenous soluble recombinant human TRAIL to induce apoptosis in HeLa cells, but not in normal human peripheral blood mononuclear cells. The combined use of luteolin and TRAIL induced Bid cleavage and the activation of caspase-8. Also, human recombinant DR5/Fc chimera protein, caspase inhibitors, and DR5 siRNA efficiently reduced apoptosis induced by co-treatment with luteolin and TRAIL. These results raise the possibility that this combined treatment with luteolin and TRAIL might be promising as a new therapy against cancer.  相似文献   

20.
The antiretroviral chemotherapy helps to reduce the mortality of HIVs infected patients. However, RNA dependant virus replication has a high mutation rate. Human immunodeficiency virus Type 1 protease plays an essential role in viral replication cycle. This protein is an important target for therapy with viral protein inhibitors. There are few works using normal mode analysis to investigate this problem from the structural changes viewpoint. The investigation of protein flexibility may be important for the study of processes associated with conformational changes and state transitions. The normal mode analysis allowed us to investigate structural changes in the protease (such as flexibility) in a straightforward way and try to associate these changes with the increase of fitness for each positively selected HIV‐1 mutant protease of patients treated with several protease inhibitors (saquinavir, indinavir, ritonavir, nelfinavir, lopinavir, fosamprenavir, atazanavir, darunavir, and tripanavir) in combination or separately. These positively selected mutations introduce significant flexibility in important regions such as the active site cavity and flaps. These mutations were also able to cause changes in accessible solvent area. This study showed that the majority of HIV‐1 protease mutants can be grouped into two main classes of protein flexibility behavior. We presented a new approach to study structural changes caused by positively selected mutations in a pathogen protein, for instance the HIV‐1 protease and their relationship with their resistance mechanism against known inhibitors. The method can be applied to any pharmaceutically relevant pathogen proteins and could be very useful to understand the effects of positively selected mutations in the context of structural changes. Proteins 2012; © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号