首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rpb4, a subunit of RNA Polymerase II plays an important role in various stress responses in budding yeast, Saccharomyces cerevisiae. In response to nitrogen starvation, diploid yeast undergoes a dimorphic transition to filamentous pseudohyphal growth, which is regulated through cAMP-PKA and MAP kinase pathway. In the present study, we show that disruption of Rpb4 leads to enhanced pseudohyphal growth, which is independent of nutritional status. We observed that the rpb4Delta/rpb4Delta cells exhibit pseudohyphae even in the absence of functional MAP kinase and cAMP-PKA pathways. Genome-wide expression profiling showed that in the absence of Rpb4 several genes controlling mother daughter cell separation are down regulated. Our genetic studies also provide evidence for involvement of RNA Pol II subunit Rpb4 in the expression of genes downstream of the RAM pathway. Finally, we show that this effect on expression of RAM pathway may at least be partially responsible for the pseudohyphal phenotype of rpb4Delta/rpb4Delta cells.  相似文献   

2.
Thomas A  Rey M  Aubry L  Pelosi L 《Biochimie》2011,93(9):1415-1423
The adenine nucleotide carrier (Ancp) plays an essential role in the metabolism of cellular energy by catalyzing the transport of ADP and ATP across the inner mitochondrial membrane. Previous reports have indicated that mutations in the HANC1 gene, encoding the muscle isoform of human Ancp (HAnc1p), are directly involved in several diseases, including autosomal dominant progressive external ophthalmoplegia and cardiomyopathies. In this work, we studied three pathogenic HANC1 mutations at the biochemical level. To do so, we expressed the DdANCA gene, encoding the unique Ancp carrier of Dictyostelium discoideum (DdAncAp), in a yeast strain lacking all endogenous ANC genes. Our results indicate that DdAncAp is a good model for the human protein. It allows the carrier to be studied in yeast, and provides information on how the HANC1 mutations impair ADP/ATP transport in humans. A94D, A126D and V291M mutations, corresponding to A90D, A123D and V289M in HAnc1p, respectively, did not affect levels of DdAncAp in yeast mitochondria. However, while the wild-type DdAncAp fully restored growth of the ANC-null yeast strain on a non-fermentable carbon source, the carriers encompassing either the A94D or the A126D mutation failed to complement the null strain. The effect of the V291M mutation was not as pronounced, but led to impairment mainly of the nucleotide translocation process per se. These findings provide new insights into the mechanisms responsible for the diseases induced by HAnc1p mutations.  相似文献   

3.
4.
5.
6.
Escherichia coli and the cellular slime mold Dictyostelium discoideum form stable viscous symbiotic colonies in the laboratory. To examine changes in E. coli gene expression during establishment of this symbiotic relationship, cells of symbiotic co-cultures and monocultures at various time points were subjected to microarrays analysis. Genes changed significantly over time compared to the initial gene expression level were determined as characteristics of GO function categories. The categories that appeared significantly at the same sampling time points between the two cultures were also identified. Up-regulation of genes from several GO categories associated with polysaccharide synthesis, cell wall degradation, and iron acquisition as well as down-regulation of genes from GO categories associated with biosynthesis through starvation response were observed in co-cultures, indicating exchange of molecules between the two organisms. Up-regulation of genes from several GO categories associated with anaerobic respiration and flagella biosynthesis were also observed, indicating that the environment inside symbiotic colonies was similar to that in developed biofilms. Up-regulation of genes associated with energy-generating systems indicated that E. coli prolonged survival within the symbiotic colony. Thus, E. coli showed not only molecule exchange but also altered expression of various genes in symbiosis with D. discoideum.  相似文献   

7.
Fatty acid elongation was examined in the cellular slime mold, Dictyostelium discoideum. Profiling of the total fatty acid content of D. discoideum indicated that fatty acid elongation is active. Orthologs of the fatty acid elongase ELO family were identified in the D. discoideum genome and the cDNA for one, eloA, was cloned and functionally characterized by expression in yeast. EloA is a highly active ELO with strict substrate specificity for monounsaturated fatty acids, in particular 16:1Δ9 to produce the unusual 18:1Δ11 fatty acid. This is the first report on fatty acid elongation in a cellular slime mold.  相似文献   

8.
The Dictyostelium discoideum gene gpt1 encodes a protein XP_638036 with sequence similarity to the α/β subunits of mammalian UDP-GlcNAc:Glycoprotein N-acetylglucosamine-1-phosphotransferase. We now demonstrate that extracts of D. discoideum clones with mutations in this gene transfer GlcNAc-P from UDP-GlcNAc to mannose residues at less than 5% the wild type value. Further, the lysosomal hydrolases of these mutant clones fail to bind to a cation-independent mannose 6-phosphate receptor affinity column, indicating a lack of methylphosphomannosyl residues on the high mannose oligosaccharides of these proteins. We conclude that the gpt1 gene product catalyzes the initial step in the formation of methylphosphomannosyl residues on D. discoideum lysosomal hydrolases.  相似文献   

9.
10.
Dictyostelium discoideum possesses more EGF-like (EGFL) domains than any other sequenced eukaryote. Here we show that a synthetic EGFL peptide (DdEGFL1) based upon an amino acid sequence from a cysteine-rich Dictyostelium protein, functions extracellularly to enhance random cell motility and cAMP-mediated chemotaxis in Dictyostelium by 625% and 85%, respectively, in strain NC4 and by 620% and 80% in strain AX3. Quinacrine inhibited peptide-enhanced random motility but not chemotaxis in strain AX3 providing evidence that PLA2 is the predominant regulator of this process. While LY294002 alone had no significant effect on either event, in combination with quinacrine it dramatically inhibited both processes suggesting that both PI3K and PLA2-mediated signaling are required for EGFL peptide-enhanced cell movement. DdEGFL1 also sustained the threonine phosphorylation of a 210kDa protein that is dephosphorylated during Dictyostelium starvation. Taken together, these results suggest an important role for certain EGFL peptides in Dictyostelium cell movement.  相似文献   

11.
N-acylethanolamines (NAEs) are endogenous lipid-based signaling molecules best known for their role in the endocannabinoid system in mammals, but they are also known to play roles in signaling pathways in plants. The regulation of NAEs in vivo is partly accomplished by the enzyme fatty acid amide hydrolase (FAAH), which hydrolyses NAEs to ethanolamine and their corresponding fatty acid. Inhibition of FAAH has been shown to increase the levels of NAEs in vivo and to produce desirable phenotypes. This has led to the development of pharmaceutical-based therapies for a variety of conditions targeting FAAH. Recently, our group identified a functional FAAH homolog in Dictyostelium discoideum, leading to our hypothesis that D. discoideum also possesses NAEs. In this study, we provide a further characterization of FAAH and identify NAEs in D. discoideum for the first time. We also demonstrate the ability to modulate their levels in vivo through the use of a semispecific FAAH inhibitor and confirm that these NAEs are FAAH substrates through in vitro studies. We believe the demonstration of the in vivo modulation of NAE levels suggests that D. discoideum could be a good simple model organism in which to study NAE-mediated signaling.  相似文献   

12.

Background

The life-cycle of cellular slime molds comprises chronobiologically regulated processes. During the growth phase, the amoeboid cells proliferate at a definite rate. Upon starvation, they synthesize cAMP as both first and second messengers in signalling pathways and form aggregates, migrating slugs, and fruiting bodies, consisting of spores and stalk cells, within 24 h. In Dictyostelium discoideum, because most growth-specific events cease during development, proliferative and heterochronic mutations are not considered to be interrelated and no genetic factor governing the entire life-cycle duration has ever been identified.

Methodology/Principal Findings

Using yeast 2-hybrid library screening, we isolated a Dictyostelium discoideum RabGAP, Dd Rbg-3, as a candidate molecule by which the Dictyostelium Gα2 subunit directs its effects. Rab GTPase-activating protein, RabGAP, acts as a negative regulator of Rab small GTPases, which orchestrate the intracellular membrane trafficking involved in cell proliferation. Deletion mutants of Dd rbg-3 exhibited an increased growth rate and a shortened developmental period, while an overexpression mutant demonstrated the opposite effects. We also show that Dd Rbg-3 interacts with 2 Gα subunits in an activity-dependent manner in vitro. Furthermore, both human and Caenorhabditis elegans rbg-3 homologs complemented the Dd rbg-3–deletion phenotype in D. discoideum, indicating that similar pathways may be generally conserved in multicellular organisms.

Conclusions/Significance

Our findings suggest that Dd Rbg-3 acts as a key element regulating the duration of D. discoideum life-span potentially via trimeric G-protein cascades.  相似文献   

13.
RNA polymerase II from the fission yeast Schizosaccharomyces pombe consists of 12 species of subunits, Rpb1–Rpb12. We expressed these subunits, except Rpb4, simultaneously in cultured insect cells with baculovirus expression vectors. For the isolation of subunit complexes formed in the virus-infected cells, a glutathione S-transferase (GST) sequence was fused to the rpb3 cDNA to produce GSTRpb3 fusion protein and a decahistidine-tag sequence was inserted into the rpb1 cDNA to produce Rpb1H protein. After successive affinity chromatography on glutathione and Ni2+ columns, complexes consisting of the seven subunits, Rpb1H, Rpb2, GSTRpb3, Rpb5, Rpb7, Rpb8 and Rpb11, were identified. Omission of the GST–Rpb3 expression resulted in reduced assembly of the Rpb11 into the complex. Direct interaction between Rpb3 and the other six subunits was detected by pairwise coexpression experiments. Coexpression of various combinations of a few subunits revealed that Rpb11 enhances Rpb3–Rpb8 interaction and consequently Rpb8 enhances Rpb1–Rpb3 interaction to some extent. We propose a mechanism in which the assembly of RNA poly-merase II is stabilized through multiple subunit–subunit contacts.  相似文献   

14.
In Saccharomyces cerevisiae, the PHO pathway regulates expression of phosphate-responsive genes such as PHO5, which encodes repressible acid phosphatase (rAPase). In this pathway, Pho81p functions as an inhibitor of the cyclin-cyclin-dependent kinase (CDK) complex Pho80p-Pho85p. However, the mechanism regulating the inhibitory activity of Pho81p is poorly understood. Through use of the yeast two-hybrid system, we identified the UbL-UbA protein Ddi1p as a Pho81p-binding protein. Further, Pho81p levels were found to be low under high-phosphate condition and high during phosphate starvation, indicating that Pho81p is regulated by phosphate concentration. However, our results revealed that Ddi1p and its associated protein Rad23p are not involved in the decrease in Pho81p level under high-phosphate condition. Significantly, the Δddi1Δrad23 strain exhibited a remarkable increase in rAPase activity at an intermediate-phosphate concentration of 0.4 mM, suggesting that Ddi1p and Rad23p play a cooperative role as negative regulators in the PHO pathway.  相似文献   

15.
16.
The network of protein–protein interactions of the Dictyostelium discoideum autophagy pathway was investigated by yeast two-hybrid screening of the conserved autophagic proteins Atg1 and Atg8. These analyses confirmed expected interactions described in other organisms and also identified novel interactors that highlight the complexity of autophagy regulation. The Atg1 kinase complex, an essential regulator of autophagy, was investigated in detail here. The composition of the Atg1 complex in D. discoideum is more similar to mammalian cells than to Saccharomyces cerevisiae as, besides Atg13, it contains Atg101, a protein not conserved in this yeast. We found that Atg101 interacts with Atg13 and genetic disruption of these proteins in Dictyostelium leads to an early block in autophagy, although the severity of the developmental phenotype and the degree of autophagic block is higher in Atg13-deficient cells. We have also identified a protein containing zinc-finger B-box and FNIP motifs that interacts with Atg101. Disruption of this protein increases autophagic flux, suggesting that it functions as a negative regulator of Atg101. We also describe the interaction of Atg1 kinase with the pentose phosphate pathway enzyme transketolase (TKT). We found changes in the activity of endogenous TKT activity in strains lacking or overexpressing Atg1, suggesting the presence of an unsuspected regulatory pathway between autophagy and the pentose phosphate pathway in Dictyostelium that seems to be conserved in mammalian cells.  相似文献   

17.
In contrast to the enormous advances made regarding mechanisms of conventional protein secretion, mechanistic insights into the unconventional secretion of proteins are lacking. Acyl coenzyme A (CoA)–binding protein (ACBP; AcbA in Dictyostelium discoideum), an unconventionally secreted protein, is dependent on Golgi reassembly and stacking protein (GRASP) for its secretion. We discovered, surprisingly, that the secretion, processing, and function of an AcbA-derived peptide, SDF-2, are conserved between the yeast Pichia pastoris and D. discoideum. We show that in yeast, the secretion of SDF-2–like activity is GRASP dependent, triggered by nitrogen starvation, and requires autophagy proteins as well as medium-chain fatty acyl CoA generated by peroxisomes. Additionally, a phospholipase D implicated in soluble N-ethyl-maleimide sensitive fusion protein attachment protein receptor–mediated vesicle fusion at the plasma membrane is necessary, but neither peroxisome turnover nor fusion between autophagosomes and the vacuole is essential. Moreover, yeast Acb1 and several proteins required for its secretion are necessary for sporulation in P. pastoris. Our findings implicate currently unknown, evolutionarily conserved pathways in unconventional secretion.  相似文献   

18.
《Gene》1998,221(1):11-16
Both the rpb9 gene and its cDNA encoding the subunit 9 of RNA polymerase II were cloned from the fission yeast Schizosaccharomyces pombe. From the DNA sequences, Rpb9 was predicted to consist of 113 amino acid residues with a molecular mass of 13 175. S. pombe Rpb9 is 47, 40 and 36% identical in amino acid sequence to the corresponding subunits from Saccharomyces cerevisiae, human and Drosophila melanogaster, respectively. Previously, we failed to detect Rpb9 in the purified RNA polymerase II by amino-terminal micro-sequencing of proteolytic fragments of subunits separated by SDS-gel electrophoresis. After Western blot analysis using antibodies raised against the protein product of the newly isolated rpb9 gene, we found that the purified RNA polymerase II contains Rpb9.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号