首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In situ hybridization of a recombinant cDNA probe containing the human alpha 1-antitrypsin gene to metaphase chromosomes demonstrated significant hybridization to chromosomal segment 14q31-32. A high percentage of cells analyzed (31%) displayed labeling on chromosome 14. Of all labeled sites on chromosome 14, 60% were found on segment 14q31-32. These results refine the previous assignment of the human alpha 1-antitrypsin gene to segment 14q24.1-32.1.  相似文献   

2.
Chromosomal aberrations were analyzed from cultures of peripheral lymphocytes in 2 groups of chagasic children, before and after treatment with nifurtimox. The mean incidence of chromosomal aberrations increased from control values of 1.75 +/- 1.39 (8 patients) to 23.55 +/- 9.55 (6 patients) at a significance of P less than 0.0001. G-banding analysis of chromosomal aberration sites revealed that treated patients present coincidence in the chromosome regions affected: 1p11, 1q11-12, 9q11-13, 17q11-21, 2p21, 2q23, 2q31, 2q33, 6p21, 6p21, 7q32, 13q14, 13q22, 15q22. These data indicate a non-random distribution of chromosomal aberrations induced by nifurtimox therapeutic treatment.  相似文献   

3.
We analyzed a cohort of 61 follicular lymphomas (FL) with an abnormal G-banded karyotype by spectral karyotyping (SKY) to better define the chromosome instability associated with the t(14;18)(q32;q21) positive and negative subsets of FL and histologic grade. In more than 70% of the patients, SKY provided additional cytogenetic information and up to 40% of the structural abnormalities were revised. The six most frequent breakpoints in both SKY and G-banding analyses were 14q32, 18q21, 3q27, 1q11-q21, 6q11-q15 and 1p36 (15-77%). SKY detected nine additional sites (1p11-p13, 2p11-p13, 6q21, 8q24, 6q21, 9p13, 10q22-q24, 12q11-q13 and 17q11-q21) at an incidence of >10%. In addition to the known recurring translocations, t(14;18)(q32;q21) [70%], t(3;14)(q27;q32) [10%], t(1;14)(q21;q32) [5%] and t(8;14)(q24;q32) [2%] and their variants, 125 non-IG gene translocations were identified of which four were recurrent within this series. In contrast to G-banding analysis, SKY revealed a greater degree of karyotypic instability in the t(14;18) (q32;q21) negative subset compared to the t(14;18)(q32;q21) positive subset. Translocations of 3q27 and gains of chromosome 1 were significantly more frequent in the former subset. SKY also allowed a better definition of chromosomal imbalances, thus 37% of the deletions detected by G-banding were shown to be unbalanced translocations leading to gain of genetic material. The majority of recurring (>10%) imbalances were detected at a greater (2-3 fold) incidence by SKY and several regions were narrowed down, notably at gain 2p13-p21, 2q11-q21, 2q31-q37, 12q12-q15, 17q21-q25 and 18q21. Chromosomal abnormalities among the different histologic grades were consistent with an evolution from low to high grade disease and breaks at 6q11-q15 and 8q24 and gain of 7/7q and 8/8q associated significantly with histologic progression. This study also indicates that in addition to gains and losses, non-IG gene translocations involving 1p11-p13, 1p36, 1q11-q21, 8q24, 9p13, and 17q11-q21 play an important role in the histologic progression of FL with t(14;18)(q32;q21) and t(3q27).  相似文献   

4.
Aldose reductase (alditol:NAD(P)+ 1-oxidoreductase; EC 1.1.1.21) (AR) catalyzes the reduction of several aldehydes, including that of glucose, to the corresponding sugar alcohol. Using a complementary DNA clone encoding human AR, we mapped the gene sequences to human chromosomes 1, 3, 7, 9, 11, 13, 14, and 18 by somatic cell hybridization. By in situ hybridization analysis, sequences were localized to human chromosomes 1q32-q42, 3p12, 7q31-q35, 9q22, 11p14-p15, and 13q14-q21. As a putative functional AR gene has been mapped to chromosome 7 and a putative pseudogene to chromosome 3, the sequences on the other seven chromosomes may represent other active genes, non-aldose reductase homologous sequences, or pseudogenes.  相似文献   

5.
Summary Eleven folic acid sensitive fragile sites (3p14, 7p13, 7q31.1, 7q32, 9q32, 11p13, 14q23, 15q22, 16q23, Xp22.2, Xq22) were detected in one individual, eight of them previously unknown. These sites seem to bear each its specific sensitivity to folic acid deficiency. Six of the sites were observed simultaneously on both homologous chromosomes in at least one cell. Each of these 11 sites was also found in at least one among 12 individuals further examined. Some of these individuals showed six of these 11 sites. The fragile site 3p14 was detected in all individuals examined. The homologous sites 3p14 of one individual differed from each other in their frequency of lesions induced by methotrexate as well as fluorodeoxyuridine. This observation suggests that folic acid sensitivity is a property inherent in the chromatin of an individual chromosome at the site involved in fragility. This property seems to be responsible for the nonrandom fragility at that site and also for the individual sensitivity of each chromosomal site.  相似文献   

6.
Summary We describe the cytogenetic findings in a recurrent neurofibrosarcoma in a patient with nonfamilial von Recklinghausen disease. The composite karyotype was: 40,Y,-X,+dic r(X;20)(:Xp22.2q26::20p13 q13:), -1, +der(1)t(1;3) (p21;p24),-3,-4,-5,+der(5) t(5;?)(q31;?),-9,-9,+der(9)t(3;9)(q21 or q13;p24 or p22), -11,+der(11)t(11;?)(q22.2;?), -17,+der(17)t(17; 22;?)(q21;q13.1;?), -20, -21, -22, -22, +der(22)t(17; 22;?)(q21;q13.1;?),t(2;10)(q37;q22). The derivative chromosomes were demonstrated at the 500 band level. Chromosomes 17 and 22 were shown to be involved in an unbalanced three-way translocation: t(17;22;?)(q21;q13.1;?). This event was confirmed by in situ hybridization, using two probes mapped to chromosome 17. Hill H is a probe derived from the novel oncogene TRE and is located at 17q12–22. The second probe, derived from the granulocyte colony-stimulating factor (G-CSF), is located at 17q11–q21. The rearrangement between chromosomes 17 and 22 showed breakpoints similar or close to the gene loci for neurofibromatosis 1 (NF-1) and NF-2. Based on our observations we recommend that genetic studies on NF-1 tumors include both gene sites (NF-1 and NF-2) rather than focus on one gene locus.  相似文献   

7.
Mapping of the gene coding for transferrin was carried out in metaphase chromosomes from bone marrow of laboratory mice and rats as well as from PHA-stimulated human lymphocytes using direct in situ hybridization technique. Plasmid pRTf-17 carrying the insert of rat transferrin cDNA was nick-translated with [125I]dCTP and used as a specific hybridization probe. The total number of silver grains and their distribution along differentially stained chromosomes were determined in 464 metaphase plates (114, 263 and 87 from rat, mouse and man, respectively). The data obtained enable us to assign transferrin gene to chromosome 3 in human and chromosome 9 in mouse. For the first time, the rat transferrin gene was localized on chromosome 7. The most probable sites of transferrin gene localization are 7q31-34, 9F1-3 and 3q21 in rat, mouse and human chromosomes, respectively.  相似文献   

8.
Familial dysautonomia (FD) is an autosomal recessive disorder characterized by developmental arrest in the sensory and autonomic nervous systems and by Ashkenazi Jewish ancestry. We previously had mapped the defective gene (DYS) to an 11-cM segment of chromosome 9q31-33, flanked by D9S53 and D9S105. By using 11 new polymorphic loci, we now have narrowed the location of DYS to <0.5 cM between the markers 43B1GAGT and 157A3. Two markers in this interval, 164D1 and D9S1677, show no recombination with the disease. Haplotype analysis confirmed this candidate region and revealed a major haplotype shared by 435 of 441 FD chromosomes, indicating a striking founder effect. Three other haplotypes, found on the remaining 6 FD chromosomes, might represent independent mutations. The frequency of the major FD haplotype in the Ashkenazim (5 in 324 control chromosomes) was consistent with the estimated DYS carrier frequency of 1 in 32, and none of the four haplotypes associated with FD was observed on 492 non-FD chromosomes from obligatory carriers. It is now possible to provide accurate genetic testing both for families with FD and for carriers, on the basis of close flanking markers and the capacity to identify >98% of FD chromosomes by their haplotype.  相似文献   

9.
Schizophrenia is a common and complex mental disorder. Cytogenetic and molecular studies have shown that genetic factors play an important role in the etiology of schizophrenia. As a preliminary step in the search for chromosomal location of a susceptible gene predisposing to schizophrenia, cytogenetic screening patients might be useful. Therefore, this report is aimed at studying the relationship between chromosomal fragile sites (FS: gaps, breaks, triradial figures, and several rearrangements) and the etiology of schizophrenia. Because of this, we were compared the frequencies of folate-sensitive FS from schizophrenic patients and normal individuals in short-term whole blood cultures. The rate of FS expression in the patients was considerably higher than in the controls. We determined 15 common FS (cFS) (1q21, 1q32, 2q21, 2q31, 3p14, 4q31, 5q31, 6q21, 6q26, 7q22, 7q32, 10q22, 13q32, Xp22 and Xq22), 6 rare FS (rFS) (6p21, 8q22, 11q23, 12q24, 16q22, and Xq26) and 2 previously unknown FS (3p25 and 5q22). Among these expressed FS, there was a significantly higher frequency of 12 FS at 2q31, 3p25, 3p14, 5q31, 6q21, 7q22, 7q32, 10q22, 11q23, 12q24, Xq22 and Xq26 in patient group than in controls by chi2 test (P = between 0.0001 to 0.036). Sites 3p14, 5q31 and 7q22 were also the most frequently observed cFS. Males exhibited twice as many FS as females, but no age effects were observed. The potential relationship between increased FS frequency and the occurrence of schizophrenia in these patients is discussed.  相似文献   

10.
Summary Chromosomal analyses were performed on lymphocytes, fibroblasts and lymphoblastoid cell lines derived from a Saudi family with ataxia telangiectasia (AT). The three siblings of a consanguineous marriage were all affected. The lymphocytes of the AT homozygotes (probands) showed an increase of 2- to 6-fold and 4- to 8-fold respectively, in the frequency of spontaneous and X-ray-induced chromosomal aberrations compared with controls, while the parents (obligate heterozygotes) of the patients showed no notable difference. The unirradiated lymphocytes from the oldest AT sibling, an 11-year-old boy (AT1), showed specific rearrangements involving chromosomes 7 and 14 [t(7;14)(q35;q12)] and 12 and 14 [t(12;14)(q23;q12)] in two different clones. The most severely affected sibling was a 9-year-old girl (AT2) who presented with a clone showing a novel rearrangement involving chromosomes 14 and 17, namely: del(14) (q31q32) and dup(17)(q21–q24). The lymphocytes from the third sibling, a 2-year-old boy (AT3), showed a t(2;14)(p24;q12). In addition, an inv(14)(q12q32) was observed in all three AT patients, while inv(7)(p14q35) was found only in patients 2 and 3. The lymphocytes from the AT parents and controls showed normal karyotypes. The breakpoints involving chromosomes 2,12 and 17, observed in our studies, have rarely been reported in other series of AT patients. No non-random chromosomal rearrangements were observed either in the skin fibroblasts or in the lymphoblastoid cell lines derived from the AT patients, although all cell lines showed an increase in both spontaneous and radiation-induced chromosomal breaks per cell. The present study constitutes the first report on a cytogenetic analysis of a Saudi family with three AT siblings.  相似文献   

11.
Schizophrenia is a common and complex mental disorder. Cytogenetic and molecular studies have shown that genetic factors play an important role in the etiology of schizophrenia. As a preliminary step in the search for chromosomal location of a susceptible gene predisposing to schizophrenia, cytogenetic screening of patients might be useful. Therefore, this report is aimed at studying the relationship between chromosomal fragile sites (FS) (gaps, breaks, triradial figures, and several rearrangements) and the etiology of schizophrenia. Because of this, we compared the frequencies of folate-sensitive FS from schizophrenic patients and normal individuals in short-term whole-blood cultures. The rate of FS expression in the patients was considerably higher than in the controls. We determined 15 common FS (cFS) (1q21, 1q32, 2q21, 2q31, 3p14, 4q31, 5q31, 6q21, 6q26, 7q22, 7q32, 10q22, 13q32, Xp22, and Xq22), six rare FS (rFS) (6p21, 8q22, 11q23, 12q24, 16q22, and Xq26), and two previously unknown FS (3p25 and 5q22). Among these expressed FS, there was a significantly higher frequency of 12 FS at 2q31, 3p25, 3p14, 5q31, 6q21, 7q22, 7q32, 10q22, 11q23, 12q24, Xq22, and Xq26 in patient group than in controls by x 2-test (P between 0.0001 to 0.036). Sites 3p14, 5q31, and 7q22 were also the most frequently observed cFS. Males exhibited twice as many FS as females, but no age effects were observed. The potential relationship between increased FS frequency and the occurrence of schizophrenia in these patients is discussed. The text was submitted by the authors in English.  相似文献   

12.
Localization of Epstein-Barr virus (EBV) DNA was studied by in situ hybridization on chromosomes from the Namalwa Burkitt lymphoma cell line and from a lymphoblastoid cell line transformed in vitro (ATL9/g). The five chromosome bands 1p32, 1q31, 5q21, 13q21, and 16p13 showed the presence of EBV DNA in both of the lines. Grain deposition at the site on chromosome 1q of the Burkitt line was particularly intense. It was also found that EBV DNA in the lymphoblastoid cell line co-localized with a stable achromatic gap at 1p32 whose presence seems to confer a proliferative advantage on the cells.  相似文献   

13.
Recent studies have shown that lung cancer patients frequently suffer inactivation of antioncogenes such as Rb gene (13q14) and p53 gene (17p13). In a study of 48 cases of non-small cell lung cancer (28 squamous-cell carcinomas, 11 adenocarcinomas, 4 large-cell carcinomas, and 5 other types) using restriction fragment length polymorphism analysis, we found DNA sequence deletions from chromosomes 1p32-36, 3p21, 11p15.5, and 11q13. The frequencies of allele loss on chromosome 1p, 3p, 11p and 11q are 31, 57, 20 and 49% of informative cases in this patient group, respectively. Of them, 19 tumors show one allele loss and 10 patients suffer two or more allele losses from different chromosomes.  相似文献   

14.
This review summarizes the chromosomal changes detected by molecular cytogenetic approaches in esophageal squamous cell carcinoma (ESCC), the ninth most common malignancy in the world. Whole genome analyses of ESCC cell lines and tumors indicated that the most frequent genomic gains occurred at 1, 2q, 3q, 5p, 6p, 7, 8q, 9q, 11q, 12p, 14q, 15q, 16, 17, 18p, 19q, 20q, 22q and X, with focal amplifications at 1q32, 2p16-22, 3q25-28, 5p13-15.3, 7p12-22, 7q21-22, 8q23-24.2, 9q34, 10q21, 11p11.2, 11q13, 13q32, 14q13-14, 14q21, 14q31-32, 15q22-26, 17p11.2, 18p11.2-11.3 and 20p11.2. Recurrent losses involved 3p, 4, 5q, 6q, 7q, 8p, 9, 10p, 12p, 13, 14p, 15p, 18, 19p, 20, 22, Xp and Y. Gains at 5p and 7q, and deletions at 4p, 9p, and 11q were significant prognostic factors for patients with ESCC. Gains at 6p and 20p, and losses at 10p and 10q were the most significant imbalances, both in primary carcinoma and in metastases, which suggested that these regions may harbor oncogenes and tumor suppressor genes. Gains at 12p and losses at 3p may be associated with poor relapse-free survival. The clinical applicability of these changes as markers for the diagnosis and prognosis of ESCC, or as molecular targets for personalized therapy should be evaluated.  相似文献   

15.
Human papillomaviruses (HPV) 16 and 18 are closely linked with human genital cancer. In most cervical carcinomas, viral sequences are integrated into the host genome. HeLa, a cervical carcinoma cell line, has multiple copies of integrated HPV 18 DNA. In this study, in situ chromosome hybridization was used to assign the integration sites of HPV 18 DNA sequences on HeLa cell chromosomes. Four sites of hybridization were identified at 8q23----q24, 9q31----q34, p11----p13 on an abnormal chromosome 5, and q12----q13 on an abnormal 22. Three of these sites correspond with the locations of MYC, ABL, and SIS protooncogenes, and are at or in close proximity to fragile sites. The chromosomal localization of HPV 18 DNA may be useful in assessing the role of viral integration in the development of this malignancy.  相似文献   

16.
In a study of DMBA-induced rat fibrosarcomas we repeatedly found deletions and/or amplifications in the long arm of rat chromosome 1 (RNO1). Comparative genome hybridization showed that there was amplification involving RNO1q31-->q53 in one of the DMBA-induced rat fibrosarcoma tumors (LB31) and a cell culture derived from it. To identify the amplified genes we physically mapped rat genes implicated in cancer and analyzed them for signs of amplification. The genes were selected based on their locations in comparative maps between rat and man. The rat proto-oncogenes Ccnd1, Fgf4, and Fgf3 (HSA11q13.3), were mapped to RNO1q43 by fluorescence in situ hybridization (FISH). The Ems1 gene was mapped by radiation hybrid (RH) mapping to the same rat chromosome region and shown to be situated centromeric to Ccnd1 and Fgf4. In addition, the proto-oncogenes Hras (HSA11p15.5) and Igf1r (HSA15q25-->q26) were mapped to RNO1q43 and RNO1q32 by FISH and Omp (HSA11q13.5) was assigned to RNO1q34. PCR probes for the above genes together with PCR probes for the previously mapped rat genes Bax (RNO1q31) and Jak2 (RNO1q51-->q53) were analyzed for signs of amplification by Southern blot hybridization. Low copy number increases of the Omp and Jak2 genes were detected in the LB31 cell culture. Dual color FISH analysis of tumor cells confirmed that chromosome regions containing Omp and Jak2 were amplified and were situated in long marker chromosomes showing an aberrant banding pattern. The configuration of the signals in the marker chromosomes suggested that they had arisen by a break-fusion-bridge (BFB) mechanism.  相似文献   

17.
Until recently, presence of de novo marker or derivative chromosomes was quite problematic for genetic counseling especially in prenatal diagnosis, because characterization of marker and derivative chromosomes by conventional cytogenetic techniques was nearly impossible. However, recently developed molecular cytogenetic technique named Multicolor Fluorescence in Situ Hybridization (M-FISH) which paints all human chromosomes in 24 different colors allows us to characterize marker and derivative chromosomes in a single hybridization. In this study, we applied M-FISH to determine the origin of 3 marker and 3 derivative chromosomes. Marker chromosomes were found to originate from chromosome 15 in two postnatal and one prenatal case. Of these, one of the postnatal cases displayed clinical findings of inv dup (115) syndrome and the other of infertility, and the prenatal case went through amniocentesis due to the triple test results. Karyotypes of the patients with derivative chromosomes were designated as 46,XY,der (21)t(1;21)(q32;p11), 46,XX,der(8)t(8;9)(p23;p22) and 46,XX,der(18)t(18;20)(q32;p11.2) according to cytogenetic and M-FISH studies. All of the M-FISH results were confirmed with locus specific or whole chromosome painting probes. The case with der (8)t(8;9) had trisomy 9(p22-pter) and monosomy 8(p23-pter) due to this derivative chromosome. The case with der(18)t(18;20) had trisomy 20(p11.2-pter) and monosomy 18(q32-qter). Parental origins of the derivative chromosomes were analyzed using microsatellite markers located in the trisomic chromosomal segments. Patients' clinical findings were compared with the literature.  相似文献   

18.
Uveitis is a complex multifactorial autoimmune disease of the eye characterized by inflammation of the uvea and retina, degeneration of the retina, and blindness in genetically predisposed patients. Using the rat model of experimental autoimmune uveitis (EAU), we previously identified three quantitative trait loci (QTL) associated with EAU on rat chromosomes 4, 12, and 10 (Eau1, Eau2, and Eau3). The primary goal of the current study is to delineate additional non-MHC chromosomal regions that control susceptibility to EAU, and to identify any QTLs that overlap with the QTLs of other autoimmune diseases. Using a set of informative microsatellite markers and F(2) generations of resistant and susceptible MHC class II-matched rat strains (F344 and LEW), we have identified several new significant or suggestive QTLs on rat chromosomes 2, 3, 7, 10, and 19 that control susceptibility to EAU. A protective allele was identified in the susceptible LEW strain in the Eau5 locus at D7Wox18, and epistatic interactions between QTLs were found to influence the severity of disease. The newly identified regions (Eau4 through Eau9) colocalize with the genetic determinants of other autoimmune disease models, and to disease-regulating syntenic regions identified in autoimmune patients on human chromosomes 4q21-31, 5q31-33, 16q22-24, 17p11-q12, 20q11-13, and 22q12-13. Our results suggest that uveitis shares some of the pathogenic mechanisms associated with other autoimmune diseases, and lends support to the "common gene, common pathway" hypothesis for autoimmune disorders.  相似文献   

19.
To better define secondary aberrations that occur in addition to translocation t(11;14)(q13;q32) in mantle cell lymphomas (MCL) and in multiple myelomas (MM), seven t(11;14)-positive MCL cell lines and four t(11;14)-positive MM cell lines were analysed by fluorescence R-banding and spectral karyotyping (SKY). Compared with published data obtained by G-banding, most chromosome aberrations were redefined or further specified. Furthermore, several additional chromosome aberrations were identified. Thus, these cytogenetically well defined t(11;14)-positive MCL and MM cell lines may be useful tools for the identification and characterization of genes that might be involved in the pathogenesis of MCL and MM, respectively. Since MCL and MM were found to have different alterations of chromosome 1, these were investigated in more detail by fluorescence in situ hybridization (FISH) and multicolor banding (MCB) analyses. The most frequently altered and deletion-prone loci in MCL cell lines were regions 1p31 and 1p21. In contrast, breakpoints in MM cell lines most often involved the heterochromatic regions 1p12-->p11, and the subcentromeric regions 1q12 and 1q21. These data are in accordance with previously published data of primary lymphomas. Our findings may indicate that different pathways of clonal evolution are involved in these morphologically distinct lymphomas harboring an identical primary chromosome aberration, t(11;14).  相似文献   

20.
Rearrangements involving the IGH gene have been identified in about 50% of non-Hodgkin B-cell lymphomas (NHLs) and correlated to clinically relevant subgroups. However, the detection rate largely varied with the technique used. We analyzed the incidence of IGH rearrangements using several fluorescence in situ hybridization (FISH) techniques on metaphases obtained from 96 patients with nodal NHL. An IGH rearrangement was identified in 71 cases (74%). A t(14;18)(q32;q21) was found in 37 of the 42 follicular lymphomas (88.1%) studied and a t(11;14)(q13;q32) in 12 of the 14 mantle cell lymphomas (85.7%). IGH rearrangements were identified in 21 of the 40 diffuse large B-cell lymphomas (52.5%), including seven t(14;18)(q32;q21) and four t(3;14)(q27;q32). Conventional cytogenetics was uninformative in several cases. However, the complemented analysis using 24-color FISH, chromosomal whole paints, telomeric probes and locus specific identifiers enabled us to characterize complex and/or masked IGH translocations in follicular lymphomas and mantle cell lymphomas and to identify all the chromosomal partners involved in IGH rearrangements in diffuse large B-cell lymphomas. This study shows the interest of using metaphase FISH in addition to conventional cytogenetics. Following banding techniques, FISH with the IGH dual color probe can be the first approach in NHL, after which chromosome painting and 24-color FISH can be used to identify the chromosomal partners involved in IGH rearrangements. The identification of these genes is of utmost importance for a better understanding of the molecular mechanisms involved in the genesis of lymphoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号