首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ca(2+)/calmodulin-dependent protein kinases (CaM-kinases) I and IV are activated upon phosphorylation of their Thr(177) and Thr(196), respectively, by the upstream Ca(2+)/calmodulin-dependent protein kinases CaM-kinase kinase alpha and beta, and deactivated upon dephosphorylation by protein phosphatases such as CaM-kinase phosphatase. Recent studies demonstrated that the activity of CaM-kinase kinase alpha is decreased upon phosphorylation by cAMP-dependent protein kinase (PKA), and the relationship between the inhibition and phosphorylation of CaM-kinase kinase alpha by PKA has been studied. In the present study, we demonstrate that the activity of CaM-kinase kinase alpha toward PKIV peptide, which contains the sequence surrounding Thr(196) of CaM-kinase IV, is increased by incubation with PKA in the presence of Ca(2+)/calmodulin but decreased in its absence, while the activity toward CaM-kinase IV is decreased by incubation with PKA in both the presence and absence of Ca(2+)/calmodulin. Six phosphorylation sites on CaM-kinase kinase alpha, Ser(24) for autophosphorylation, and Ser(52), Ser(74), Thr(108), Ser(458), and Ser(475) for phosphorylation by PKA, were identified by amino acid sequence analysis of the phosphopeptides purified from the tryptic digest of the phosphorylated enzymes. The presence of Ca(2+)/calmodulin suppresses phosphorylation on Ser(52), Ser(74), Thr(108), and Ser(458) by PKA, but accelerates phosphorylation on Ser(475). The changes in the activity of the enzyme upon phosphorylation appear to occur as a result of conformational changes induced by phosphorylation on several sites.  相似文献   

2.
Zipper-interacting protein kinase (ZIPK) is a widely expressed serine/threonine kinase implicated in cell death and smooth muscle contractility, but its mechanism of regulation is unknown. We have identified six phosphorylation sites in ZIPK that regulate both its enzyme activity and localization, including Thr180, Thr225, Thr265, Thr299, Thr306, and Ser311. Mutational analysis showed that phosphorylation of Thr180 in the kinase activation T-loop, Thr225 in the substrate-binding groove, and Thr265 in kinase subdomain X is essential for full ZIPK autophosphorylation and activity toward exogenous substrates. Abrogation of phosphorylation of Thr299, Thr306, and Ser311 had little effect on enzyme activity, but mutation of Thr299 and Thr300 to alanine resulted in redistribution of ZIPK from the cytosol to the nucleus. Mutation of Thr299 alone to alanine caused ZIPK to assume a diffuse cellular localization, whereas T299D redistributed the enzyme to the cytoplasm. C-terminal truncations of ZIPK at amino acid 273 or 342 or mutation of the leucine zipper motif increased ZIPK activity toward exogenous substrates by severalfold, suggesting a phosphorylation-independent autoinhibitory role for the C-terminal domain. Additionally, mutation of the leucine zipper reduced the ability of ZIPK to oligomerize and also caused ZIPK to relocalize from the cytoplasm to the nucleus in vivo. Together, our findings show that ZIPK is positively regulated by phosphorylation within its kinase domain and that it contains an inhibitory C-terminal domain that controls enzyme activity, localization, and oligomerization.  相似文献   

3.
NIPP1 is a ubiquitous nuclear protein that is required for spliceosome assembly. We report here that the phosphothreonine-binding Forkhead-associated domain of NIPP1 interacts with the cell cycle-regulated protein Ser/Thr kinase MELK (maternal embryonic leucine zipper kinase). The NIPP1-MELK interaction was critically dependent on the phosphorylaton of Thr-478 of MELK and was increased in lysates from mitotically arrested cells. Recombinant MELK was a potent inhibitor of an early step of spliceosome assembly in nuclear extracts. This splicing defect was also seen with a kinase-dead mutant but was absent after mutation (T478A) of the NIPP1 binding site of MELK, indicating a mediatory role for NIPP1. Our data suggest that MELK has a role in the cell cycle-regulated control of pre-mRNA splicing.  相似文献   

4.
We previously reported that rat brain Ca(2+)/calmodulin-dependent protein kinase (CaM-kinase) IV is inactivated by cAMP-dependent protein kinase (PKA) [Kameshita, I. and Fujisawa, H. (1991) Biochem. Biophys. Res. Commun. 180, 191-196]. In the preceding paper, we demonstrated that changes in the activity of CaM-kinase IV by PKA results from the phosphorylation of CaM-kinase kinase alpha by PKA and identified six phosphorylation sites, Ser(24) for autophosphorylation, and Ser(52), Ser(74), Thr(108), Ser(458), and Ser(475) for phosphorylation by PKA. In the present study, a causal relationship between the phosphorylation and change in the activity toward PKIV peptide has been studied using mutant enzymes with amino acid substitutions at the six phosphorylation sites. The following conclusions can be drawn from the experimental results: (i) Phosphorylation of Ser74 and/or unidentified sites causes an increase in activity; (ii) phosphorylation of Thr(108) or Ser(458) causes a decrease in the activity; (iii) the inhibitory effect of the phosphorylation of Thr(108) is canceled by the stimulatory effect of the phosphorylation, but that of Ser(458) is not; and (iv) the inhibitory effects of Thr(108) and Ser(458) are synergistic. In contrast to the activity toward PKIV peptide, the activity toward CaM-kinase IV appears to be decreased by the phosphorylation of Thr(108), but not significantly affected by the phosphorylation of Ser(458).  相似文献   

5.
Overexpression of phospholemman (PLM) in normal adult rat cardiac myocytes altered contractile function and cytosolic Ca2+ concentration ([Ca2+]i) homeostasis and inhibited Na+/Ca2+ exchanger (NCX1). In addition, PLM coimmunoprecipitated and colocalized with NCX1 in cardiac myocyte lysates. In this study, we evaluated whether the cytoplasmic domain of PLM is crucial in mediating its effects on contractility, [Ca2+]i transients, and NCX1 activity. Canine PLM or its derived mutants were overexpressed in adult rat myocytes by adenovirus-mediated gene transfer. Confocal immunofluorescence images using canine-specific PLM antibodies demonstrated that the exogenous PLM or its mutants were correctly targeted to sarcolemma, t-tubules, and intercalated discs, with little to none detected in intracellular compartments. Overexpression of canine PLM or its mutants did not affect expression of NCX1, sarco(endo)plasmic reticulum Ca(2+)-ATPase, Na(+)-K(+)-ATPase, and calsequestrin in adult rat myocytes. A COOH-terminal deletion mutant in which all four potential phosphorylation sites (Ser62, Ser63, Ser68, and Thr69) were deleted, a partial COOH-terminal deletion mutant in which Ser68 and Thr69 were deleted, and a mutant in which all four potential phosphorylation sites were changed to alanine all lost wild-type PLM's ability to modulate cardiac myocyte contractility. These observations suggest the importance of Ser68 or Thr69 in mediating PLM's effect on cardiac contractility. Focusing on Ser68, the Ser68 to Glu mutant was fully effective, the Ser63 to Ala (leaving Ser68 intact) mutant was partially effective, and the Ser68 to Ala mutant was completely ineffective in modulating cardiac contractility, [Ca2+]i transients, and NCX1 currents. Both the Ser63 to Ala and Ser68 to Ala mutants, as well as PLM, were able to coimmunoprecipitate NCX1. It is known that Ser68 in PLM is phosphorylated by both protein kinases A and C. We conclude that regulation of cardiac contractility, [Ca2+]i transients, and NCX1 activity by PLM is critically dependent on Ser68. We suggest that PLM phosphorylation at Ser68 may be involved in cAMP- and/or protein kinase C-dependent regulation of cardiac contractility.  相似文献   

6.
Initial autophosphorylation of multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase) occurs at Thr286 (the "autonomy" site) and converts the kinase from a Ca(2+)-dependent to a partially Ca(2+)-independent or autonomous enzyme. After removal of Ca2+/calmodulin, the autonomous kinase undergoes a "burst" of inhibitory autophosphorylation at sites distinct from the autonomy site which may be masked in the presence of bound calmodulin. This burst of Ca(2+)-independent autophosphorylation blocks the ability of calmodulin to activate the kinase. We have used site-directed mutagenesis to replace putative inhibitory autophosphorylation sites within the calmodulin binding domain of recombinant alpha-CaM kinase with nonphosphorylatable alanines and examined the effects on autophosphorylation, kinase activity, and calmodulin binding. Although prominent Ca(2+)-independent autophosphorylation occurs within the calmodulin binding domain at Thr305, Thr306, and Ser314 in wild-type alpha-CaM kinase, the inhibitory effect on kinase activity and calmodulin binding is retained in mutants lacking any one of these three sites. However, when both Thr305 and Thr306 are converted to alanines the kinase does not display inhibition of either activity or calmodulin binding. Autophosphorylation at either Thr305 or Thr306 is therefore sufficient to block both binding and activation of the kinase by Ca2+/calmodulin. Thr306 is also slowly autophosphorylated in a basal reaction in the continuous absence of Ca2+/calmodulin. Autophosphorylation of Thr306 by the kinase in either its basal or autonomous state suggests that in the absence of bound calmodulin, the region of the autoregulatory domain surrounding Thr306, rather than the region near the autonomy site, lies nearest the peptide substrate binding site of the kinase.  相似文献   

7.
8.
3-Phosphoinositide-dependent protein kinase-1 (PDK-1)is a serine/threonine kinase that has been found to phosphorylate and activate several members of the AGC protein kinase family including protein kinase B (Akt), p70 S6 kinase, and protein kinase Czeta. However, the mechanism(s) by which PDK-1 is regulated remains unclear. Here we show that mouse PDK-1 (mPDK-1) undergoes autophosphorylation in vitro on both serine and threonine residues. In addition, we have identified Ser(399) and Thr(516) as the major mPDK-1 autophosphorylation sites in vitro. Furthermore, we have found that these two residues, as well as Ser(244) in the activation loop, are phosphorylated in cells and demonstrated that Ser(244) is a major in vivo phosphorylation site. Abolishment of phosphorylation at Ser(244), but not at Ser(399) or Thr(516), led to a significant decrease of mPDK-1 autophosphorylation and kinase activity in vitro, indicating that autophosphorylation at Ser(399) or Thr(516) is not essential for mPDK-1 autokinase activity. However, overexpression of mPDK-1(T516E), but not of mPDK-1(S244E) or mPDK-1(S399D), in Chinese hamster ovary and HEK293 cells was sufficient to induce Akt phosphorylation at Thr(308) to a level similar to that of insulin stimulation. Furthermore, this increase in phosphorylation was independent of the Pleckstrin homology domain of Akt. Taken together, our results suggest that mPDK-1 undergoes autophosphorylation at multiple sites and that this phosphorylation may be essential for PDK-1 to interact with and phosphorylate its downstream substrates in vivo.  相似文献   

9.
In this study, we examined the activation mechanism of Dictyostelium myosin light chain kinase A (MLCK-A) using constitutively active Ca2+/calmodulin-dependent protein kinase kinase as a surrogate MLCK-A kinase. MLCK-A was phosphorylated at Thr166 by constitutively active Ca2+/calmodulin-dependent protein kinase kinase, resulting in an approximately 140-fold increase in catalytic activity, using intact Dictyostelium myosin II. Recombinant Dictyostelium myosin II regulatory light chain and Kemptamide were also readily phosphorylated by activated MLCK-A. Mass spectrometry analysis revealed that MLCK-A expressed by Escherichia coli was autophosphorylated at Thr289 and that, subsequent to Thr166 phosphorylation, MLCK-A also underwent a slow rate of autophosphorylation at multiple Ser residues. Using site-directed mutagenesis, we show that autophosphorylation at Thr289 is required for efficient phosphorylation and activation by an upstream kinase. By performing enzyme kinetics analysis on a series of MLCK-A truncation mutants, we found that residues 283-288 function as an autoinhibitory domain and that autoinhibition is fully relieved by Thr166 phosphorylation. Simple removal of this region resulted in a significant increase in the kcat of MLCK-A; however, it did not generate maximum enzymatic activity. Together with the results of our kinetic analysis of the enzymes, these findings demonstrate that Thr166 phosphorylation of MLCK-A by an upstream kinase subsequent to autophosphorylation at Thr289 results in generation of maximum MLCK-A activity through both release of an autoinhibitory domain from its catalytic core and a further increase (15-19-fold) in the kcat of the enzyme.  相似文献   

10.
BACKGROUND: The cytoplasmic domain of the Alzheimer's disease amyloid precursor protein (APP) is phosphorylated in vitro at Thr654 and Ser655, and both in vitro and in intact cells at Thr668 (numbering for APP695 isoform). MATERIALS AND METHODS: We have developed phosphorylation state-specific antibodies to each of the sites, and we have used these to analyze the phosphorylation of APP in adult rat brain and in cultured cell lines. RESULTS: We demonstrate that all three sites in APP are phosphorylated in adult rat brain. Phosphorylation at Thr654, Ser655, and Thr668 was also observed in several cultured cell lines. In PC12 cells, phosphorylation at Ser655 was increased more than 10-fold by treatment with okadaic acid, a specific inhibitor of protein phosphatases 1 and 2A, but was not affected by activators of protein kinase C. In HeLa cells, phosphorylation at Thr668 was regulated in a cell cycle-dependent manner with near-stoichiometric phosphorylation being observed at the G2/M phase of the cell cycle. In general, phosphorylation at Ser655 was found to be highest in mature APP isoforms, whereas phosphorylation of Thr668 was highest in immature APP isoforms in cultured cells. CONCLUSIONS: The results demonstrate that phosphorylation of the cytoplasmic domain of APP occurs at Thr654, Ser655, and Thr668 under physiological conditions. The further characterization of APP phosphorylation using phosphorylation-specific antibodies may help in the elucidation of the biological function of APP.  相似文献   

11.
Chk1 protein kinase plays a critical role in checkpoints that restrict progression through the cell cycle if DNA replication has not been completed or DNA damage has been sustained. ATR-dependent activation of Chk1 is mediated by Claspin. Phosphorylation of Claspin at two sites (Thr916 and Ser945 in humans) in response to DNA replication arrest or DNA damage recruits Chk1 to Claspin. Chk1 is subsequently phosphorylated by ATR and fully activated to control cell cycle progression. We show that ablation of Chk1 by siRNA in human cells or its genetic deletion in chicken DT40 cells does not prevent phosphorylation of Claspin at Thr916 (Ser911 in chicken). Chk1, however, does play other roles, possibly indirect, in the phosphorylation of Claspin and its induction. These results demonstrate that phosphorylation of Claspin within the Chk1-binding domain is catalysed by an ATR-dependent kinase distinct from Chk1.  相似文献   

12.
Endothelial nitric-oxide synthase (eNOS) is regulated by signaling pathways involving multiple sites of phosphorylation. The coordinated phosphorylation of eNOS at Ser(1179) and dephosphorylation at Thr(497) activates the enzyme, whereas inhibition results when Thr(497) is phosphorylated and Ser(1179) is dephosphorylated. We have identified two further phosphorylation sites, at Ser(617) and Ser(635), by phosphopeptide mapping and matrix-assisted laser desorption ionization time of flight mass spectrometry. Purified protein kinase A (PKA) phosphorylates both sites in purified eNOS, whereas purified Akt phosphorylates only Ser(617). In bovine aortic endothelial cells, bradykinin (BK), ATP, and vascular endothelial growth factor stimulate phosphorylation of both sites. BK-stimulated phosphorylation of Ser(617) is Ca(2+)-dependent and is partially inhibited by LY294002 and wortmannin, phosphatidylinositol 3-kinase inhibitors, suggesting signaling via Akt. BK-stimulated phosphorylation of Ser(635) is Ca(2+)-independent and is completely abolished by the PKA inhibitor, KT5720, suggesting signaling via PKA. Activation of PKA with isobutylmethylxanthine also causes Ser(635), but not Ser(617), phosphorylation. Mimicking phosphorylation at Ser(635) by Ser to Asp mutation results in a greater than 2-fold increase in activity of the purified protein, whereas mimicking phosphorylation at Ser(617) does not alter maximal activity but significantly increases Ca(2+)-calmodulin sensitivity. These data show that phosphorylation of both Ser(617) and Ser(635) regulates eNOS activity and contributes to the agonist-stimulated eNOS activation process.  相似文献   

13.
It is now well established that autophosphorylation of a threonine residue located next to each calmodulin-binding domain in the subunits of type II Ca2+/calmodulin-dependent protein kinase causes the kinase to remain active, although at a reduced rate, after Ca2+ is removed from the reaction. This autophosphorylated form of the kinase is still sensitive to Ca2+/calmodulin, which is required for a maximum catalytic rate. After removal of Ca2+, new sites are autophosphorylated by the partially active kinase. Autophosphorylation of these sites abolishes sensitivity of the kinase to Ca2+/calmodulin (Hashimoto, Y., Schworer, C. M., Colbran, R. J., and Soderling, T. R. (1987) J. Biol. Chem. 262, 8051-8055). We have identified two pairs of homologous residues, Thr305 and Ser314 in the alpha subunit and Thr306 and Ser315 in the beta subunit, that are autophosphorylated only after removal of Ca2+ from an autophosphorylation reaction. The sites were identified by direct sequencing of labeled tryptic phosphopeptides isolated by reverse-phase high pressure liquid chromatography. Thr305-306 is rapidly dephosphorylated by purified protein phosphatases 1 and 2A, whereas Ser314-315 is resistant to dephosphorylation. We have shown by selective dephosphorylation that the presence of phosphate on Thr305-306 blocks sensitivity of the kinase to Ca2+/calmodulin. In contrast, the presence of phosphate on Ser314-315 is associated with an increase in the Kact for Ca2+/calmodulin of only about 2-fold, producing a relatively small decrease in sensitivity to Ca2+/calmodulin.  相似文献   

14.
PLC-isozymes are central elements of cellular signaling downstream of numerous receptors. PLCγ2 is a pivotal component of B cell receptor (BCR) signaling. The regulation of PLCγ2-dependent signaling functions by Tyr-phosphorylation is well characterized, however, the potential role of Ser/Thr phosphorylation events remains undefined. TRPM7 is the fusion of a Ser/Thr kinase with an ion channel, and an essential component of Mg(2+)-homeostasis regulation. Although the interaction between the C2 domain of several PLC-isozymes and TRPM7 is well established, previous studies have focused on the effect of PLC-activity on TRPM7. Here, we investigated whether Ser/Thr phosphorylation sites in the C2 domain of PLCγ2 could be identified using TRPM7-kinase. We show that TRPM7-kinase phosphorylates PLCγ2 in its C2-domain at position Ser1164 and in the linker region preceding the C2-domain at position Thr1045. Using a complementation approach in PLCγ2(-/-) DT40 cells, we found that the PLCγ2-S1164A mutant fully restores BCR mediated Ca(2+)-responses under standard growth conditions. However, under hypomagnesic conditions, PLCγ2-S1164A fails to reach Ca(2+)-levels seen in cells expressing PLCγ2 wildtype. These results suggest that Mg(2+)-sensitivity of the BCR signaling pathway may be regulated by Ser/Thr phosphorylation of PLCγ2.  相似文献   

15.
Eukaryotic type Ser/Thr protein kinases have recently been shown to regulate a variety of cellular functions in bacteria. PknA, a transmembrane Ser/Thr protein kinase from Mycobacterium tuberculosis, when constitutively expressed in Escherichia coli resulted in cell elongation and therefore has been thought to be regulating morphological changes associated with cell division. Bioinformatic analysis revealed that PknA has N-terminal catalytic, juxtamembrane, transmembrane, and C-terminal extracellular domains, like known eukaryotic type Ser/Thr protein kinases from other bacteria. To identify the minimum region capable of exhibiting phosphorylation activity of PknA, we created several deletion mutants. Surprisingly, we found that the catalytic domain itself was not sufficient for exhibiting phosphorylation ability of PknA. However, the juxtamembrane region together with the kinase domain was necessary for the enzymatic activity and thus constitutes the catalytic core of PknA. Utilizing this core, we deduce that the autophosphorylation of PknA is an intermolecular event. Interestingly, the core itself was unable to restore the cell elongation phenotype as manifested by the full-length protein in E. coli; however, its co-expression along with the C-terminal region of PknA can associate them in trans to reconstitute a functional protein in vivo. Therefore, these findings argue that the transmembrane and extracellular domains of PknA, although dispensable for phosphorylation activities, are crucial in responding to signals. Thus, our results for the first time establish the significance of different domains in a bacterial eukaryotic type Ser/Thr kinase for reconstitution of its functionality.  相似文献   

16.
PICK1 (protein interacting with C kinase 1) contains an N-terminal protein binding PDZ domain and a C-terminal lipid binding BAR domain. PICK1 plays a key role in several physiological processes, including synaptic plasticity. However, little is known about the cellular mechanisms governing the activity of PICK1 itself. Here we show that PICK1 is a substrate in vitro both for PKCα (protein kinase Cα), as previously shown, and for CaMKIIα (Ca(2+)-calmodulin-dependent protein kinase IIα). By mutation of predicted phosphorylation sites, we identify Ser77 in the PDZ domain as a major phosphorylation site for PKCα. Mutation of Ser77 reduced the level of PKCα-mediated phosphorylation ~50%, whereas no reduction was observed upon mutation of seven other predicted sites. Addition of lipid vesicles increased the level of phosphorylation of Ser77 10-fold, indicating that lipid binding is critical for optimal phosphorylation. Binding of PKCα to the PICK1 PDZ domain was not required for phosphorylation, but a PDZ domain peptide ligand reduced the overall level of phosphorylation ~30%. The phosphomimic S77D reduced the extent of cytosolic clustering of eYFP-PICK1 in COS7 cells and thereby conceivably its lipid binding and/or polymerization capacity. We propose that PICK1 is phosphorylated at Ser77 by PKCα preferentially when bound to membrane vesicles and that this phosphorylation in turn modulates its cellular distribution.  相似文献   

17.
A critical step in S6 kinase 1 (S6K1) activation is Thr(229) phosphorylation in the activation loop by the phosphoinositide-dependent protein kinase (PDK1). Thr(229) phosphorylation requires prior phosphorylation of the Ser/Thr-Pro sites in the autoinhibitory domain and Thr(389) in the linker domain, consistent with PDK1 more effectively catalyzing Thr(229) phosphorylation in a variant harboring acidic residues in these positions (S6K1-E389D(3)E). S6K1-E389D(3)E has high basal activity and exhibits partial resistance to rapamycin and wortmannin, and its activity can be further augmented by mitogens, effects presumably mediated by Thr(229) phosphorylation. However, PDK1-induced Thr(229) phosphorylation is reported to be constitutive rather than phosphatidylinositide 3,4,5-trisphosphate-dependent, suggesting that S6K1-E389D(3)E activity is mediated through a distinct site. Here we use phosphospecific antibodies to show that Thr(229) is fully phosphorylated in S6K1-E389D(3)E in the absence of mitogens and that regulation of S6K1-E389D(3)E activity by mitogens, rapamycin, or wortmannin parallels Ser(371) phosphorylation. Consistent with this observation, a dominant interfering allele of the mammalian target of rapamycin, mTOR, inhibits mitogen-induced Ser(371) phosphorylation and activation of S6K1-E389D(3)E, whereas wild type mTOR stimulates both responses. Moreover, in vitro mTOR directly phosphorylates Ser(371), and this event modulates Thr(389) phosphorylation by mTOR, compatible with earlier in vivo findings.  相似文献   

18.
NDR protein kinases are involved in the regulation of cell cycle progression and morphology. NDR1/NDR2 protein kinase is activated by phosphorylation on the activation loop phosphorylation site Ser281/Ser282 and the hydrophobic motif phosphorylation site Thr444/Thr442. Autophosphorylation of NDR is responsible for phosphorylation on Ser281/Ser282, whereas Thr444/Thr442 is targeted by an upstream kinase. Here we show that MST3, a mammalian Ste20-like protein kinase, is able to phosphorylate NDR protein kinase at Thr444/Thr442. In vitro, MST3 selectively phosphorylated Thr442 of NDR2, resulting in a 10-fold stimulation of NDR activity. MOB1A (Mps one binder 1A) protein further increased the activity, leading to a fully active kinase. In vivo, Thr442 phosphorylation after okadaic acid stimulation was potently inhibited by MST3KR, a kinase-dead mutant of MST3. Knockdown of MST3 using short hairpin constructs abolished Thr442 hydrophobic motif phosphorylation of NDR in HEK293F cells. We conclude that activation of NDR is a multistep process involving phosphorylation of the hydrophobic motif site Thr444/2 by MST3, autophosphorylation of Ser281/2, and binding of MOB1A.  相似文献   

19.
Calmodulin is phosphorylated in vivo and in vitro by protein kinase CK2 in a manner that is unique among CK2 substrates for being inhibited by the regulatory beta-subunit of the kinase and dramatically enhanced by polybasic peptides. Using synthetic fragments of calmodulin variably encompassing the CK2 phosphorylation sites here we show that individual phosphorylation of Thr79, Ser81, Ser101, and Thr117 is critically influenced by the size and composition of the peptides and that the C-terminal domain of calmodulin is implicated both in down-regulation of calmodulin phosphorylation by the beta-subunit and in its abnormal responsiveness to polylysine. A far-Western blot analysis discloses polylysine-dependent interaction between calmodulin and the N-terminal domain of the beta-subunit. We also show that phosphorylation of Ser81 hampers subsequent phosphorylation of Thr79 and by itself promotes the unfolding of the central helix, whose flexibility is instrumental to the interaction with calmodulin-dependent enzymes. Collectively taken, our data are consistent with a multifaceted regulation of calmodulin phosphorylation through the concerted action of distinct CaM domains, the catalytic and regulatory subunits of CK2, and polycationic effectors mimicking in vivo the effect of polylysine.  相似文献   

20.
Cardiac Troponin T (cTnT) is one prominent substrate through which protein kinase C (PKC) exerts its effect on cardiomyocyte function. To determine the specific functional effects of the cTnT PKC-dependent phosphorylation sites (Thr197, Ser201, Thr206, and Thr287) we first mutated these residues to glutamate (E) or alanine (A). cTnT was selectively mutated to generate single, double, triple, and quadruple mutants. Bacterially expressed mutants were evaluated in detergent-treated mouse left ventricular papillary muscle fiber bundles where the endogenous troponin was replaced with a recombinant troponin complex containing either cTnT phosphorylated by PKC-alpha or a mutant cTnT. We simultaneously determined isometric tension development and actomyosin Mg-ATPase activity of the exchanged fiber bundles as a function of Ca2+ concentration. Our systematic analysis of the functional role of the multiple PKC phosphorylation sites on cTnT identified a localized region that controls maximum tension, ATPase activity, and Ca2+ sensitivity of the myofilaments. An important and novel finding of our study was that Thr206 is a functionally critical cTnT PKC phosphorylation residue. Its exclusive phosphorylation by PKC-alpha or replacement by Glu (mimicking phosphorylation) significantly decreased maximum tension, actomyosin Mg-ATPase activity, myofilament Ca2+ sensitivity, and cooperativity. On the other hand the charge modification of the other three residues together (T197/S201/T287-E) had no functional effect. Fibers bundles containing phosphorylated cTnT-wt (but not the T197/S201/T206/T287-E) exhibited a significant decrease of tension cost as compared with cTnT-wt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号