首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We studied the inhibitory effects of isorhamnetin on mushroom tyrosinase by inhibition kinetics and computational simulation. Isorhamnetin reversibly inhibited tyrosinase in a mixed-type manner at Ki=0.235±0.013 mM. Measurements of intrinsic and 1-anilinonaphthalene-8-sulfonate(ANS)-binding fluorescence showed that isorhamnetin did not induce significant changes in the tertiary structure of tyrosinase. To gain insight into the inactivation process, the kinetics were computed via time-interval measurements and continuous substrate reactions. The results indicated that inactivation induced by isorhamnetin was a first-order reaction with biphasic processes. To gain further insight, we simulated docking between tyrosinase and isorhamnetin. Simulation was successful (binding energies for Dock6.3: -32.58 kcal/mol, for AutoDock4.2: -5.66 kcal/mol, and for Fred2.2: -48.86 kcal/mol), suggesting that isorhamnetin interacts with several residues, such as HIS244 and MET280. This strategy of predicting tyrosinase interaction in combination with kinetics based on a flavanone compound might prove useful in screening for potential natural tyrosinase inhibitors.  相似文献   

2.
Using inhibition kinetics and computational simulation, we studied the reversible inhibition of tyrosinase by isophthalic acid (IPA). IPA inhibited tyrosinase in a complex manner with K(i)=17.8 ± 1.8mM. Measurements of intrinsic and ANS-binding fluorescence showed that IPA induced no changes in tertiary protein structure. For further insight, we predicted the 3D structure of tyrosinase and used a docking algorithm to simulate binding between tyrosinase and IPA. Simulation was successful (binding energies for Dock6.3: -25.19 kcal/mol and for AutoDock4.2: -4.28 kcal/mol), suggesting that IPA interacts with PRO175 or VAL190. This strategy of predicting tyrosinase inhibition based on hydroxyl group number and orientation may prove useful for the screening of potential tyrosinase inhibitors.  相似文献   

3.
Yin SJ  Si YX  Chen YF  Qian GY  Lü ZR  Oh S  Lee J  Lee S  Yang JM  Lee DY  Park YD 《The protein journal》2011,30(4):273-280
Tyrosinase inhibition studies are needed due to the agricultural and medicinal applications. For probing effective inhibitors of tyrosinase, a combination of computational prediction and enzymatic assay via kinetics were important. We predicted the 3D structure of tyrosinase from Agaricus bisporus, used a docking algorithm to simulate binding between tyrosinase and terephthalic acid (TPA) and studied the reversible inhibition of tyrosinase by TPA. Simulation was successful (binding energies for Autodock4 = -1.54 and Fred2.0 = -3.19 kcal/mol), suggesting that TPA interacts with histidine residues that are known to bind with copper ions at the active site. TPA inhibited tyrosinase in a mixed-type manner with a K ( i ) = 11.01 ± 2.12 mM. Measurements of intrinsic and ANS-binding fluorescences showed that TPA induced no changes in tertiary structure. The present study suggested that the strategy of predicting tyrosinase inhibition based on hydroxyl groups and orientation may prove useful for screening of potential tyrosinase inhibitors.  相似文献   

4.
We studied the inhibitory effects of isorhamnetin on mushroom tyrosinase by inhibition kinetics and computational simulation. Isorhamnetin reversibly inhibited tyrosinase in a mixed-type manner at K i=0.235 ± 0.013 mM. Measurements of intrinsic and 1-anilinonaphthalene-8-sulfonate(ANS)-binding fluorescence showed that isorhamnetin did not induce significant changes in the tertiary structure of tyrosinase. To gain insight into the inactivation process, the kinetics were computed via time-interval measurements and continuous substrate reactions. The results indicated that inactivation induced by isorhamnetin was a first-order reaction with biphasic processes. To gain further insight, we simulated docking between tyrosinase and isorhamnetin. Simulation was successful (binding energies for Dock6.3: ?32.58 kcal/mol, for AutoDock4.2: ?5.66 kcal/mol, and for Fred2.2: ?48.86 kcal/mol), suggesting that isorhamnetin interacts with several residues, such as HIS244 and MET280. This strategy of predicting tyrosinase interaction in combination with kinetics based on a flavanone compound might prove useful in screening for potential natural tyrosinase inhibitors.  相似文献   

5.
Tyrosinase inhibitors have potential applications in medicine, cosmetics and agriculture to prevent hyperpigmentation or browning effects. Some of the flavonoids mostly found in herbal plants and fruits are revealed as tyrosinase inhibitors. We studied the inhibitory effects of one such flavonoid, hesperetin, on mushroom tyrosinase using inhibition kinetics and computational simulation. Hesperetin reversibly inhibited tyrosinase in a competitive manner with Ki = 4.03 ± 0.26 mM. Measurements of ANS-binding fluorescence showed that hesperetin induced the hydrophobic disruption of tyrosinase. For further insight, we used the docking algorithms to simulate binding between tyrosinase and hesperetin. Simulation was successful (binding energies for Dock6.3: −34.41 kcal/mol and for AutoDock4.2: −5.67 kcal/mol) and showed that a copper ion coordinating with 3 histidine residues (HIS61, HIS85, and HIS259) within the active site pocket was chelated via hesperetin binding. Our study provides insight into the inhibition of tyrosinase in response to flavonoids. A combination of inhibition kinetics and computational prediction may facilitate the identification of potential natural tyrosinase inhibitors such as flavonoids and the prediction of their inhibitory mechanisms.  相似文献   

6.
Tyrosinase plays a central role in biological pigment formation, and hence knowledge of tyrosinase catalytic mechanisms and regulation may have medical, cosmetic, and agricultural applications. We found in this study that arabinose significantly inhibited tyrosinase, and this was accompanied by conformational changes in enzyme structure. Kinetic analysis showed that arabinose-mediated inactivation followed first-order kinetics, and single and multiple classes of rate constants were measured. Arabinose displayed a mixed-type inhibitory mechanism with K(i)=0.22±0.07 mM. Measurements of intrinsic and ANS-binding fluorescence showed that arabinose induced tyrosinase to unfold and expose inner hydrophobic regions. We simulated the docking between tyrosinase and arabinose (binding energies were -26.28 kcal/mol for Dock6.3 and -2.02 kcal/mol for AutoDock4.2) and results suggested that arabinose interacts mostly with His61, Asn260, and Met280. The present strategy of predicting tyrosinase inhibition by simulation of docking by hydroxyl groups may prove useful in screening for potential tyrosinase inhibitors, as shown here for arabinose.  相似文献   

7.
Tyrosinase inhibition studies have recently gained the attention of researchers due to their potential application values. We simulated docking (binding energies for AutoDock Vina: -9.1 kcal/mol) and performed a molecular dynamics simulation to verify docking results between tyrosinase and rutin. The docking results suggest that rutin mostly interacts with histidine residues located in the active site. A 10 ns molecular dynamics simulation showed that one copper ion at the tyrosinase active site was responsible for the interaction with rutin. Kinetic analyses showed that rutin-mediated inactivation followed a first-order reaction and mono- and biphasic rate constants occurred with rutin. The inhibition was a typical competitive type with K(i) = 1.10±0.25 mM. Measurements of intrinsic and ANS-binding fluorescences showed that rutin showed a relatively strong binding affinity for tyrosinase and one possible binding site that could be a copper was detected accompanying with a hydrophobic exposure of tyrosinase. Cell viability testing with rutin in HaCaT keratinocytes showed that no toxic effects were produced. Taken together, rutin has the potential to be a potent anti-pigment agent. The strategy of predicting tyrosinase inhibition based on hydroxyl group number and computational simulation may prove useful for the screening of potential tyrosinase inhibitors.  相似文献   

8.
Abstract

Tyrosinase inhibition studies have recently gained the attention of researchers due to their potential application values. We simulated docking (binding energies for AutoDock Vina: ?9.1 kcal/mol) and performed a molecular dynamics simulation to verify docking results between tyrosinase and rutin. The docking results suggest that rutin mostly interacts with histidine residues located in the active site. A 10 ns molecular dynamics simulation showed that one copper ion at the tyrosinase active site was responsible for the interaction with rutin. Kinetic analyses showed that rutin-mediated inactivation followed a first-order reaction and mono- and biphasic rate constants occurred with rutin. The inhibition was a typical competitive type with Ki = 1.10 ± 0.25 mM. Measurements of intrinsic and ANS-binding fluorescences showed that rutin showed a relatively strong binding affinity for tyrosinase and one possible binding site that could be a copper was detected accompanying with a hydrophobic exposure of tyrosinase. Cell viability testing with rutin in HaCaT keratinocytes showed that no toxic effects were produced. Taken together, rutin has the potential to be a potent antipigment agent. The strategy of predicting tyrosinase inhibition based on hydroxyl group number and computational simulation may prove useful for the screening of potential tyrosinase inhibitors.  相似文献   

9.
Fucoidan is a complex sulfated polysaccharide extracted from brown seaweed and has a wide variety of biological activities. In this study, we investigated the inhibitory effect of fucoidan on tyrosinase via a combination of inhibition kinetics and computational simulations. Fucoidan reversibly inhibited tyrosinase in a mixed-type manner. Time-interval kinetics showed that the inhibition was processed as first order with biphasic processes. For further insight, we simulated dockings with various sizes of molecular models (monomer to decamer) of fucoidan and showed that the best binding energy change results were obtained from the pentamer (-1.89?kcal/mol) and the hexamer (-1.97?kcal/mol) models of AutoDock Vina. The molecular dynamics simulation confirmed the binding mechanisms between tyrosinase and fucoidan and suggested that fucoidan mostly interacts with several residues including copper ions located in the active site. Our study suggests that fucoidan might be a potential natural antipigment agent.  相似文献   

10.
Fucoidan is a complex sulfated polysaccharide extracted from brown seaweed and has a wide variety of biological activities. In this study, we investigated the inhibitory effect of fucoidan on tyrosinase via a combination of inhibition kinetics and computational simulations. Fucoidan reversibly inhibited tyrosinase in a mixed-type manner. Time-interval kinetics showed that the inhibition was processed as first order with biphasic processes. For further insight, we simulated dockings with various sizes of molecular models (monomer to decamer) of fucoidan and showed that the best binding energy change results were obtained from the pentamer (?1.89?kcal/mol) and the hexamer (?1.97?kcal/mol) models of AutoDock Vina. The molecular dynamics simulation confirmed the binding mechanisms between tyrosinase and fucoidan and suggested that fucoidan mostly interacts with several residues including copper ions located in the active site. Our study suggests that fucoidan might be a potential natural antipigment agent.  相似文献   

11.
Sohn J  Rudolph J 《Biophysical chemistry》2007,125(2-3):549-555
Using a combination of steady-state and single-turnover kinetics, we probe the temperature dependence of substrate association and chemistry for the reaction of Cdc25B phosphatase with its Cdk2-pTpY/CycA protein substrate. The transition state for substrate association is dominated by an enthalpic barrier (DeltaH(++) of 13 kcal/mol) and has a favorable entropic contribution of 4 kcal/mol at 298 K. Phosphate transfer from Cdk2-pTpY/CycA to enzyme (DeltaH(++) of 12 kcal/mol) is enthalpically more favorable than for the small molecule substrate p-nitrophenyl phosphate (DeltaH(++) of 18 kcal/mol), yet entropically less favorable (TDeltaS(++) of 2 vs. -6 kcal/mol at 298 K, respectively). By measuring the temperature dependence of binding and catalysis for several hotspot mutants involved in binding of protein substrate, we determine the enthalpy-entropy compensations for changes in rates of association and phosphate transfer compared to the wild type system. We conclude that the transition state for enzyme-substrate association involves tight and specific contacts at the remote docking site and that phospho-transfer from Cdk2-pTpY/CycA to the pre-organized active site of the enzyme is accompanied by unfavorable entropic rearrangements that promote rapid product dissociation.  相似文献   

12.
We studied the inhibitory effect of gastrodin on tyrosinase using inhibition kinetics and computational simulation. Gastrodin reversibly inhibited tyrosinase in a mixed-type manner with Ki = 123.8 ± 20.2 mM. Time-interval kinetics revealed the inhibition to be a first-order process with mono- and bi-phasic components. Using AutoDock Vina, we calculated a binding energy of ?6.3 kcal/mol for gastrodin and tyrosinase, and we performed a molecular dynamics simulation of the tyrosinase–gastrodin interaction. The simulation results suggested that gastrodin interacts primarily with histidine residues in the active site. A 10-ns molecular dynamics simulation showed that one copper ion in the tyrosinase active site was responsible for the interaction with gastrodin. Our study provides insight into the inhibition of tyrosinase by the hydroxyl groups of gastrodin. A combination of inhibition kinetics and computational calculations may help to confirm the inhibitory action of gastrodin on tyrosinase and define the mechanisms of inhibition.  相似文献   

13.
Tyrosinase plays various roles in organisms and much research has focused on the regulation of tyrosinase activity. We studied the inhibitory effect of thiobarbituric acid (TBA) on tyrosinase. Our kinetic study showed that TBA inhibited tyrosinase in a reversible noncompetitive manner (K(i) 5 14.0 ± 8.5 mM and IC?? 5 8.0 ± 1.0 mM). Intrinsic and ANS-binding fluorescences studies were also performed to gain more information regarding the binding mechanism. The results showed that no tertiary structural changes were obviously observed. For further insight, we predicted the 3D structure of tyrosinase and simulated the docking between tyrosinase and TBA. The docking simulation was successful with significant scores (binding energy for AutoDock4: -5.52 kcal/mol) and suggested that TBA was located in the active site. The 11 ns molecular dynamics simulation convinced that the four HIS residues (residue numbers: 57, 90, 250, and 282) were commonly responsible for the interaction with TBA. Our results provide a new inhibition strategy that works using an antioxidant rather than targeting the copper ions within the tyrosinase active site.  相似文献   

14.
A multi-step synthesis of novel bi-heterocyclic N-arylated butanamides was consummated through a convergent strategy and the structures of these medicinal scaffolds, 7a–h , were corroborated using spectral techniques. The in vitro analysis of these hybrid molecules revealed their potent tyrosinase inhibition as compared to the standard used. The kinetics mechanism was investigated through Lineweaver-Burk plots which exposed that, 7f , inhibited tyrosinase enzyme non-competitively by forming the enzyme-inhibitor complex. The inhibition constants Ki calculated from Dixon plots for this compound was 0.025 μM. Their binding conformations were ascertained by in silico computational studies whereby these molecules disclosed good binding energy values (kcal/mol). So, it was anticipated from the current research that these bi-heterocyclic butanamides might be probed as imperative therapeutic agents for melanogenesis.  相似文献   

15.
Zhou X  Wang Y  Or PM  Wan DC  Kwan YW  Yeung JH 《Phytomedicine》2012,19(7):648-657
The effects of Danshen and its active components (tanshinone I, tanshinone IIA, dihydrotanshinone and cryptotanshinone) on CYP2D6 activity was investigated by measuring the metabolism of a model CYP2D6 probe substrate, dextromethorphan to dextrorphan in human pooled liver microsomes. The ethanolic extract of crude Danshen (6.25-100 μg/ml) decreased dextromethorphan O-demethylation in vitro (IC(50)=23.3 μg/ml) and the water extract of crude Danshen (0.0625-1 mg/ml) showed no inhibition. A commercially available Danshen pill (31.25-500 μg/ml) also decreased CYP2D6 activity (IC(50)=265.8 μg/ml). Among the tanshinones, only dihydrotanshinone significantly inhibited CYP2D6 activity (IC(50)=35.4 μM), compared to quinidine, a specific CYP2D6 inhibitor (IC(50)=0.9 μM). Crytotanshinone, tanshinone I and tanshinone IIA produced weak inhibition, with IC(20) of 40.8 μM, 16.5 μM and 61.4 μM, respectively. Water soluble components such as salvianolic acid B and danshensu did not affect CYP2D6-mediated metabolism. Enzyme kinetics studies showed that inhibition of CYP2D6 activity by the ethanolic extract of crude Danshen and dihydrotanshinone was concentration-dependent, with K(i) values of 4.23 μg/ml and 2.53 μM, respectively, compared to quinidine, K(i)=0.41 μM. Molecular docking study confirmed that dihydrotanshinone and tanshinone I interacted with the Phe120 amino acid residue in the active cavity of CYP2D6 through Pi-Pi interaction, but did not interact with Glu216 and Asp301, the key residues for substrate binding. The logarithm of free binding energy of dihydrotanshinone (-7.6 kcal/mol) to Phe120 was comparable to quinidine (-7.0 kcal/mol) but greater than tanshinone I (-5.4 kcal/mol), indicating dihydrotanshinone has similar affinity to quinidine in binding to the catalytic site on CYP2D6.  相似文献   

16.
Snider MJ  Wolfenden R 《Biochemistry》2001,40(38):11364-11371
Kinetic measurements have shown that substantial enthalpy changes accompany substrate binding by cytidine deaminase, increasing markedly as the reaction proceeds from the ground state (1/K(m), DeltaH = -13 kcal/mol) to the transition state (1/K(tx), DeltaH = -20 kcal/mol) [Snider, M. J., et al. (2000) Biochemistry 39, 9746-9753]. In the present work, we determined the thermodynamic changes associated with the equilibrium binding of inhibitors by cytidine deaminase by isothermal titration calorimetry and van't Hoff analysis of the temperature dependence of their inhibition constants. The results indicate that the binding of the transition state analogue 3,4-dihydrouridine DeltaH = -21 kcal/mol), like that of the transition state itself (DeltaH = -20 kcal/mol), is associated with a large favorable change in enthalpy. The significantly smaller enthalpy change that accompanies the binding of 3,4-dihydrozebularine (DeltaH = -10 kcal/mol), an analogue of 3,4-dihydrouridine in which a hydrogen atom replaces this inhibitor's 4-OH group, is consistent with the view that polar interactions with the substrate at the site of its chemical transformation play a critical role in reducing the enthalpy of activation for substrate hydrolysis. The entropic shortcomings of 3,4-dihydrouridine, in capturing all of the free energy involved in binding the actual transition state, may arise from its inability to displace a water molecule that occupies the binding site normally occupied by product ammonia.  相似文献   

17.
In this study, the phlorotannin dieckol, which was isolated from the brown alga Ecklonia cava, was examined for its inhibitory effects on melanin synthesis. Tyrosinase inhibitors are important agents for cosmetic products. We therefore examined the inhibitory effects of dieckol on mushroom tyrosinase and melanin synthesis, and analyzed its binding modes using the crystal structure of Bacillus megaterium tyrosinase (PDB ID: 3NM8). Dieckol inhibited mushroom tyrosinase with an IC(50) of 20μM and was more effective as a cellular tyrosinase having melanin reducing activities than the commercial inhibitor, arbutin, in B16F10 melanoma cells, and without apparent cytotoxicity. It was found that dieckol behaved as a non-competitive inhibitor with l-tyrosine substrates. For further insight, we predicted the 3D structure of tyrosinase and used a docking algorithm to simulate binding between tyrosinase and dieckol. These molecular modeling studies were successful (calculated binding energy value: -126.12kcal/mol), and indicated that dieckol interacts with His208, Met215, and Gly46. These results suggest that dieckol has great potential to be further developed as a pharmaceutical or cosmetic agent for use in dermatological disorders associated with melanin.  相似文献   

18.
Targeting of tyrosinase has proven to be the best means of identifying safe, efficacious, and potent tyrosinase inhibitors for whitening skin. We designed and synthesized ten NAB (N-(acryloyl)benzamide) derivatives (1a–1j) using the Horner-Wadsworth-Emmons olefination of diethyl (2-benzamido-2-oxoethyl)phosphonate and appropriate benzaldehydes. A mushroom tyrosinase inhibitory assay showed compounds 1a (36.71 ± 2.14% inhibition) and 1j (25.99 ± 2.77% inhibition) inhibited tyrosinase more than the other eight NAB derivatives and kojic acid (21.56 ± 2.93% inhibition), and docking studies indicated 1a (−6.9 kcal/mole) and 1j (−7.5 kcal/mole) had stronger binding affinities for tyrosinase than kojic acid (−5.7 kcal/mole). At a concentration of 25 μM, 1a and 1j were nontoxic in B16F10 melanoma cells and exhibited stronger tyrosinase inhibition (59.70% and 76.77%, respectively) than kojic acid (50.30% inhibition) or arbutin (41.78% inhibition at 400 μM). Similarly, in B16F10 melanoma cells, compounds 1a and 1j at 25 μM decreased total melanin content by 47.97% and 61.77%, respectively (kojic acid; 38.98%). Similarities between inhibitions of tyrosinase activity and melanin contents suggested the anti-melanogenic effects of 1a and 1j were due to tyrosinase inhibition. The excellent DPPH scavenging activity of 1j suggests it might enhance in vivo effect on melanin contents. The study suggests compound 1j offers a potential starting point for the development of safe, potent tyrosinase inhibitors.  相似文献   

19.
Piperonylic acid is a natural molecule with a benzoic acid group and high antioxidant capacity. Based on its aromatic acid structure and antioxidant properties, we studied the effects of piperonylic acid on tyrosinase by the analysis of its inhibitory kinetics and computational simulations. Piperonylic acid reversibly inhibited tyrosinase through a mixed-type inhibitory mechanism. The time courses of the tyrosinase inhibition showed that piperonylic acid binds to tyrosinase very quickly and the inactivation processes follow first-order kinetics. The continuous substrate reactions indicated that piperonylic acid induced a tight-binding inhibition and the substrate can promote the inactivation process. The ANS-binding fluorescence of tyrosinase suggested that piperonylic acid did not detectably disrupt the tertiary structure of the enzyme. The results of the computational docking and molecular dynamics simulations showed that piperonylic acid closely interacts with three residues and it might block the active site of tyrosinase.  相似文献   

20.
A series of 16 oxadiazole and triazolothiadiazole derivatives were designed, synthesized and evaluated as mushroom tyrosinase inhibitors. Five derivatives were found to display high inhibition on the tyrosinase activity ranging from 0.87 to 1.49 μM. Compound 5 exhibited highest tyrosinase inhibitory activity with an IC50 value of 0.87 ± 0.16 μM. The in silico protein–ligand docking using autodock 4.1 was successfully performed on compound 5 with significant binding energy value of ?5.58 kcal/mol. The docking results also showed that the tyrosinase inhibition might be due to the metal chelating effect by the presence of thione functionality in compounds 15. Further studies revealed that the presence of hydrophobic group such as cycloamine derivatives played a major role in the inhibition. Piperazine moiety in compound 5 appeared to be involved in an extensive hydrophobic contact and a 2.9 Å hydrogen bonding with residue Glu 182 in the active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号