首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Anadromous and nonanadromous morphs of the Pacific salmon Oncorhynchus nerka spawn in close physical proximity in tributaries to Takla Lake, British Columbia, yet differ in morphology, gill raker number, allozyme allele frequencies, and reproductive traits. Both morphs are semelparous typically maturing at age four, the anadromous morph (sockeye) at fork lengths of 38–65 cm and the nonanadromous morph (kokanee) at 17–22 cm. When reared together, pure and hybrid morphs also exhibited different growth rates and maturity schedules. Collectively, these large differences between the morphs confirm that sockeye and kokanee exist as reproductively isolated populations. Average gene flow (m) was estimated to be 0.1–0.8% between morphs, 1.7–3.7% among tributaries for kokanee, and 0.3–5.6% among tributaries for sockeye. We conclude that divergence has occurred in sympatry and examine potential isolating mechanisms.  相似文献   

2.
Understanding the mechanisms that decrease gene flow between diverging populations is critical to understanding speciation. Anadromous (sockeye) and nonanadromous (kokanee) morphs of the Pacific sockeye salmon Oncorhynchus nerka spawn sympatrically and interbreed, yet allele frequency differences at neutral loci indicate restricted gene flow. Disruptive natural selection associated with strong selective differences between anadromous and nonanadromous life histories is thought to maintain the genetic differentiation of the morphs. Recently, a putative third morph of O. nerka exhibiting green rather than red breeding colour has been found on the spawning grounds sympatric with sockeye and kokanee. We investigated the ancestry of these green fish in a 2‐year controlled breeding study by using previously documented heritable, countergradient variation in red breeding colour to distinguish pure and hybrid morphs. Stabilizing sexual selection for similar red breeding colour in sockeye and kokanee has led to adaptive differences in the efficiency of carotenoid uptake between the morphs given differences in carotenoid availability between marine and lacustrine habitats. On the same diet, offspring parented by the green fish were intermediate in colour and in the concentration of dietary carotenoid pigments in their flesh and skin to those parented by either sockeye or kokanee; they were most similar to those parented by known kokanee × sockeye hybrids. This countergradient variation in carotenoid use results in a genotype‐environment mismatch in nonanadromous hybrids that exposes them by their breeding colour on the spawning grounds. Given that red colour is important in mate choice, sexual selection will almost certainly reduce reproductive opportunities for these hybrids and promote sympatric divergence of these incipient species. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 84 , 287–305.  相似文献   

3.
In streams tributary to the North Pacific, anadromous sockeye salmon and non-anadromous kokanee, Oncorhynchus nerka (Walbaum), occasionally spawn sympatrically and male kokanee may act as 'sneaks’to spawn with the larger female sockeye. Despite this interbreeding, sockeye and kokanee exhibit persistent biochemical genetic differences at several enzyme loci. Genetic differences between forms may be maintained by selection against‘hybrids’due to the different life histories of sockeye and kokanee; sockeye make extensive smolt, oceanic, and spawning migrations while kokanee reside permanently in fresh water. We tested the sustained swimming abilities of juvenile sockeye, kokanee, and sockeye (female) × kokanee (male) hybrids to see if hybrids were inferior to sockeye in a trait that is probably under stronger selection in an anadromous life history. Sockeye had significantly greater mean critical swimming velocities (Ucrit) than kokanee of the same size raised under identical conditions (8.3 v. 7.3 body lengths s?1 respectively). When tested 1 month later the mean Ucrit of sockeye was only marginally greater than that for sockeye × kokanee hybrids (both c. 6.6 body lengths s?1). Sockeye swimming performance was also less variable than that of either kokanee or hybrids. Sockeye tended to have slimmer bodies and longer caudal regions than kokanee or sockeye × kokanee hybrids of the same size. Sockeye also had significantly more vertebrae than kokanee and hybrids, while hybrids had more vertebrae than kokanee. These morphological differences may have contributed to the differences in swimming performance. We concluded: (i) that juvenile sockeye and kokanee have diverged with respect to sustained swimming performance and that reduced performance by kokanee may be due to relaxed selection for sustained swimming performance associated with their non-anadromous life history, (ii) that sockeye × kokanee hybrids appear to have modestly lower swimming capabilities than pure sockeye, and (iii) if the variability in swimming performance is associated with differences in survival in nature, then such differences may promote divergence between sympatric sockeye and kokanee.  相似文献   

4.
The Pacific salmon Oncorhynchus nerka typically occurs as a sea-run form (sockeye salmon) or may reside permanently in lakes (kokanee) thoughout its native North Pacific. We tested whether such geographically extensive ecotypic variation resulted from parallel evolutionary divergence thoughout the North Pacific or whether the two forms are monophyletic groups by examining allelic variation between sockeye salmon and kokanee at two minisatellite DNA repeat loci and in mitochondrial DNA (mtDNA) Bgl II restriction sites. Our examination of over 750 fish from 24 populations, ranging from Kamchatka to the Columbia River, identified two major genetic groups of North Pacific O. nerka: a “northwestern” group consisting of fish from Kamchatka, western Alaska, and northwestern British Columbia, and a “southern” group consisting of sockeye salmon and kokanee populations from the Fraser and Columbia River systems. Maximum-likelihood analysis accompanied by bootstrapping provided strong support for these two genetic groups of O. nerka; the populations did not cluster by migratory form, but genetic affinities were organized more strongly by geographic proximity. The two major genetic groups resolved in our study probably stem from historical isolation and dispersal of O. nerka from two major Wisconsinan glacial refugia in the North Pacific. There were significant minisatellite DNA allele frequency differences between sockeye salmon and kokanee populations from different parts of the same watershed, between populations spawning in different tributaries of the same lake, and also between sympatric populations spawning in the same stream at the same time. MtDNA Bgl II restriction site variation was significant between sockeye salmon and kokanee spawning in different parts of the same major watershed but not between forms spawning in closer degrees of reproductive sympatry. Patterns of genetic affinity and allele sharing suggested that kokanee have arisen from sea-run sockeye salmon several times independently in the North Pacific. We conclude that sockeye salmon and kokanee are para- and polyphyletic, respectively, and that the present geographic distribution of the ecotypes results from parallel evolutionary origins of kokanee from sockeye (divergences between them) thoughout the North Pacific.  相似文献   

5.
Human‐mediated habitat fragmentation in freshwater ecosystems can negatively impact genetic diversity, demography, and life history of native biota, while disrupting the behavior of species that are dependent on spatial connectivity to complete their life cycles. In the Alouette River system (British Columbia, Canada), dam construction in 1928 impacted passage of anadromous sockeye salmon (Oncorhynchus nerka), with the last records of migrants occurring in the 1930s. Since that time, O. nerka persisted as a resident population in Alouette Reservoir until experimental water releases beginning in 2005 created conditions for migration; two years later, returning migrants were observed for the first time in ~70 years, raising important basic and applied questions regarding life‐history variation and population structure in this system. Here, we investigated the genetic distinctiveness and population history of Alouette Reservoir O. nerka using genome‐wide SNP data (n = 7,709 loci) collected for resident and migrant individuals, as well as for neighboring anadromous sockeye salmon and resident kokanee populations within the Fraser River drainage (n = 312 individuals). Bayesian clustering and principal components analyses based on neutral loci revealed five distinct clusters, largely associated with geography, and clearly demonstrated that Alouette Reservoir resident and migrant individuals are genetically distinct from other O. nerka populations in the Fraser River drainage. At a finer level, there was no clear evidence for differentiation between Alouette Reservoir residents and migrants; although we detected eight high‐confidence outlier loci, they all mapped to sex chromosomes suggesting that differences were likely due to uneven sex ratios rather than life history. Taken together, these data suggest that contemporary Alouette Reservoir O. nerka represents a landlocked sockeye salmon population, constituting the first reported instance of deep‐water spawning behavior associated with this life‐history form. This finding punctuates the need for reassessment of conservation status and supports ongoing fisheries management activities in Alouette Reservoir.  相似文献   

6.
Archival scales from 603 sockeye salmon (Oncorhynchus nerka), sampled from May to July 1924 in the lower Columbia River, were analysed for genetic variability at 12 microsatellite loci and compared to 17 present‐day O. nerka populations—exhibiting either anadromous (sockeye salmon) or nonanadromous (kokanee) life histories—from throughout the Columbia River Basin, including areas upstream of impassable dams built subsequent to 1924. Statistical analyses identified four major genetic assemblages of sockeye salmon in the 1924 samples. Two of these putative historical groupings were found to be genetically similar to extant evolutionarily significant units (ESUs) in the Okanogan and Wenatchee Rivers (pairwise FST = 0.004 and 0.002, respectively), and assignment tests were able to allocate 77% of the fish in these two historical groupings to the contemporary Okanogan River and Lake Wenatchee ESUs. A third historical genetic grouping was most closely aligned with contemporary sockeye salmon in Redfish Lake, Idaho, although the association was less robust (pairwise FST = 0.060). However, a fourth genetic grouping did not appear to be related to any contemporary sockeye salmon or kokanee population, assigned poorly to the O. nerka baseline, and had distinctive early return migration timing, suggesting that this group represents a historical ESU originating in headwater lakes in British Columbia that was probably extirpated sometime after 1924. The lack of a contemporary O. nerka population possessing the genetic legacy of this extinct ESU indicates that efforts to reestablish early‐migrating sockeye salmon to the headwater lakes region of the Columbia River will be difficult.  相似文献   

7.
Okanagan Lake, south-central interior of BC, contains two reproductive ecotypes of kokanee Oncorhynchus nerka ; individuals spawn in tributary streams ('stream-spawners') as well as on shoreline gravel areas ('beach-spawners'). We tested the hypothesis that these sympatric ecotypes comprise a single panmictic population by assaying variation in morphological traits and at allozyme, mitochondrial and minisatellite DNA loci in fish collected from three stream-spawning and two beach-spawning sites. No morphological traits consistently distinguished the reproductive ecotypes with the exception of the number of anal fin rays which was greater in stream-spawning kokanee. Four of 18 allozyme loci screened were polymorphic, but no significant allele frequency differences were detected among populations within ecotypes or between ecotypes. Similarly, allele frequencies at two minisatellite DNA loci were not significantly different among populations or between ecotypes. By contrast, significant differences in the frequencies of mitochondrial DNA restriction fragment length polymorphism (mtDNA RFLP) haplotypes were detected between stream- and beach-spawners, but not among populations within ecotypes. Further, two RFLPs that distinguished stream- and beach-spawning adults were found in juvenile kokanee sampled from the limnetic zone of Okanagan Lake. The two mtDNA RFLPs and a d-loop sequence variant appear to be unique to Okanagan Lake kokanee because we did not observe these haplotypes in sockeye salmon and kokanee sampled outside of Okanagan Lake. Our data suggest that: (i) there is restricted female-mediated gene flow between stream- and beach-spawning kokanee in Okanagan Lake, (ii) the forms have diverged within the lake basin since the retreat of the Wisconsinian glaciers (< ≊ 11 000 years ago), and (iii) distinct reproductive niches may promote divergence in north temperate freshwater fish faunas.  相似文献   

8.
Salmonids spawn in highly diverse habitats, exhibit strong genetic population structuring, and can quickly colonize newly created habitats with few founders. Spawning traits often differ among populations, but it is largely unknown if these differences are adaptive or due to genetic drift. To test if sockeye salmon (Oncorhynchus nerka) populations are adapted to glacial, beach, and tributary spawning habitats, we examined variation in heritable phenotypic traits associated with spawning in 13 populations of wild sockeye salmon in Lake Clark, Alaska. These populations were commonly founded between 100 and 400 hundred sockeye salmon generations ago and exhibit low genetic divergence at 11 microsatellite loci (F ST < 0.024) that is uncorrelated with spawning habitat type. We found that mean P ST (phenotypic divergence among populations) exceeded neutral F ST for most phenotypic traits measured, indicating that phenotypic differences among populations could not be explained by genetic drift alone. Phenotypic divergence among populations was associated with spawning habitat differences, but not with neutral genetic divergence. For example, female body color was lighter and egg color was darker in glacial than non-glacial habitats. This may be due to reduced sexual selection for red spawning color in glacial habitats and an apparent trade-off in carotenoid allocation to body and egg color in females. Phenotypic plasticity is an unlikely source of phenotypic differences because Lake Clark sockeye salmon spend nearly all their lives in a common environment. Our data suggest that Lake Clark sockeye salmon populations are adapted to spawning in glacial, beach and tributary habitats and provide the first evidence of a glacial spawning ecotype in salmonids. Glacial spawning habitats are often young (i.e., <200 years old) and ephemeral. Thus, local adaptation of sockeye salmon to glacial habitats appears to have occurred recently.  相似文献   

9.
The genetic diversity of the resident and migratory forms of sockeye salmon is investigated in 14 populations from various water bodies of Kamchatka and the Commander Islands by ten loci of microsatellite DNA. There are considerable differences in the frequencies of alleles among the populations of kokanee from Lake Kronotskoe, the residual form of sockeye salmon from Lake Kopylie, and other populations analyzed. Clustering of samples corresponds to their geographic position. No differences in the frequencies of alleles of the investigated loci are found between two forms of resident sockeye salmon from Kronotskoe Lake. In the sockeye salmon from the Commander Islands, a relatively low genetic diversity is found, as well as the greatest remoteness from the other Kamchatka group.  相似文献   

10.
Lacustrine sockeye salmon (Oncorhynchus nerka) are listed as an endangered species in Japan despite little genetic information on their population structure. In order to clarify the genetic diversity and structure of Japanese populations for evaluating on the bottleneck effect and an endangered species, we analyzed the ND5 region of mitochondrial DNA (mtDNA) and 45 single nucleotide polymorphisms (SNPs) in 640 lacustrine sockeye salmon in Japan and 80 anadromous sockeye salmon in Iliamna Lake of Alaska. The genetic diversity of the Japanese population in both mtDNA and SNPs was significantly less than that of the Iliamna Lake population. Moreover, all Japanese populations had SNP loci deviating from the HWE. In spite of low genetic diversity, the SNP analyses resulted that the Japanese population was significantly divided into three groups. These suggest that Japanese sockeye salmon populations should be protected as an endangered species and genetically disturbed by the hatchery program and transplantations.  相似文献   

11.
The evolution of locally adapted phenotypes among populations that experience divergent selective pressures is a central mechanism for generating and maintaining biodiversity. Recently, the advent of high‐throughput DNA sequencing technology has provided tools for investigating the genetic basis of this process in natural populations of nonmodel organisms. Kokanee, the freshwater form of sockeye salmon (Oncorhynchus nerka), occurs as two reproductive ecotypes, which differ in spawning habitat (tributaries vs. shorelines); however, outside of the spawning season the two ecotypes co‐occur in many lakes and lack diagnostic morphological characteristics. We used restriction site‐associated DNA (RAD) sequencing to identify 6145 SNPs and genotype kokanee from multiple spawning sites in Okanagan Lake (British Columbia, Canada). Outlier tests revealed 18 loci putatively under divergent selection between ecotypes, all of which exhibited temporally stable allele frequencies within ecotypes. Six outliers were annotated to sequences in the NCBI database, two of which matched genes associated with early development. There was no evidence for neutral genetic differentiation; however, outlier loci demonstrated significant structure with respect to ecotype and had high assignment accuracy in mixed composition simulations. The absence of neutral structure combined with a small number of highly divergent outlier loci is consistent with theoretical predictions for the early stages of ecological divergence. These outlier loci were then applied to a realistic fisheries scenario in which additional RAD sequencing was used to genotype kokanee collected by trawl in Okanagan Lake, providing preliminary evidence that this approach may be an effective tool for conservation and management.  相似文献   

12.
High densities of habitat modifiers can dramatically alter the structure of ecosystems. Whereas spawning sockeye salmon (Oncorhynchus nerka) dig nests that cover over 2 m2 and are at least 20 cm deep, and can spawn at high densities, relatively little attention has been devoted to investigating the impacts of this disturbance. We hypothesized that this temporally and spatially predictable bioturbation has large impacts on the coastal aquatic habitats used by sockeye. We experimentally investigated the impacts of disturbance caused by spawning sockeye in two streams and two lakes in Alaska by excluding salmon from 2.25 m2 plots where they traditionally spawn. We sampled exclusions and control plots before, during, and after spawning. During sockeye spawning, fine sediment accumulated in areas where sockeye were excluded from spawning. In addition, sockeye spawning significantly decreased algal biomass by 80% compared to exclusion plots. We found mixed effects of spawning on the invertebrate assemblage. Tricladida and Chironomidae densities increased by 3x in exclusion plots relative to control plots in one creek site. However, for most taxa and sites, invertebrate densities declined substantially as spawning progressed, regardless of experimental treatment. Habitat modification by spawning salmon alters both community organization and ecosystem processes.  相似文献   

13.
Pond smelt,Hypomesus nipponensis McAllister, in Lake Ogawara demonstrate alternative life history strategies, as evidenced by the coexistence of anadromous and resident fish. However, it is unknown if anadromous and resident groups interbreed. In this study, maturation and spawning processes were examined and compared between anadromous and resident groups. Histological observations indicated negligible variation in the maturational stage composition of oocytes, the frequency of oocyte diameter being unimodal for all specimens at different maturational stages. Oocytes were absent in the ovaries of spent fish. Accordingly, the species can be considered a semelparous spawner with unimodal oocyte diameter distribution. Temporal changes in the proportion of spent fish were compared between anadromous and resident groups. Spawning of both groups began in late March and peaked over April 8–12. Although both groups did not differ significantly in the period of peak spawning, anadromous fish finished spawning earlier than resident ones. Anadromous fish were not able to spawn upon migration into Lake Ogawara, and quickly matured after immigration, contrasting with resident fish.  相似文献   

14.
Kokanee are the nonanadromous (freshwater resident) form of sockeyesalmon (Oncorhynchus nerka) found in lake ecosystems throughoutthe North Pacific region. Kokanee commonly exhibit two reproductiveecotypes; `stream-spawners' that reproduce in streams tributary tolakes, and `beach-spawners' that reproduce on submerged lakeshore gravelbeaches. Okanagan Lake, in the southcentral interior of BritishColumbia, Canada, contains beach- and stream-spawning kokanee and bothecotypes have declined dramatically in abundance over the last 20 years.We examined developmental biology (developmental rate to hatching andemergence) and genetic divergence at eight microsatellite loci toinvestigate phenotypic and genetic differentiation between ecotypes tounderstand selective and demographic factors that might influence therecovery of depressed populations. Beach-spawning female kokanee weresmaller and produced smaller eggs than females from stream-spawningpopulations. There was no striking difference in time to 50%hatching between ecotypes, but beach-spawning kokanee developed fasterfrom hatching to emergence. Microsatellite loci were highly polymorphicin kokanee (between 5 and 23 alleles per locus) and showed significantdifferentiation among populations (average = 0.018). There was,however, no significant variation attributable to spawning ecotype afteraccounting for variation within ecotypes. Simulated population-mixtureanalyses indicated good potential for genetic classification of kokaneeas beach- or stream-spawners; estimated mixture proportions were within11% of actual proportions averaged over 50 replications. Our datasuggest that Okanagan Lake kokanee constitute at least two managementunits within a single watershed; the ecotypes appear adapted to distinctthermal reproductive environments and show modest moleculardifferentiation from one another. Persistence of kokanee within OkanaganLake may depend, in part, on management plans that recognize thedistinctions between the sympatric reproductive ecotypes.  相似文献   

15.
Sockeye salmon and kokanee, the anadromous and non-anadromous morphs of Oncorhynchus nerka, spawn in close physical proximity in tributaries to Takla Lake, British Columbia but are reproductively isolated and genetically distinct. Using genetic markers, we were able to investigate, for the first time, ecological interactions between the morphs as juveniles sharing the same nursery lake. Trawl and hydroacoustic surveys conducted in August of 1988 and 1991 revealed that juvenile O. nerka were distributed fairly evenly throughout Takla Lake with average densities ranging from 351–558 fish ha-1 in the north arm to 585–769 fish ha-1 in the west arm. Sockeye salmon were predominant (71–75%) in the west arm whereas kokanee were predominant (82%) in the north arm, a difference attributed to the distribution of spawners in the brood years studied. Within arms, the morphs were intermixed with no detectable difference in relative abundance by depth or among trawl catches. Both morphs were highly selective in their diet, especially in the north arm where fish densities and grazing pressure were lower. As age 0 juveniles, sockeye salmon were significantly larger than kokanee (53 vs. 39 mm on average) but their food habits were virtually identical. Thus we found no evidence of behaviour that would reduce niche overlap between these incipient species.  相似文献   

16.
Genetically distinct anadromous (sockeye) and nonanadromous (kokanee) morphs of the Pacific salmon, Oncorhynchus nerka, develop identical, brilliant red color at maturity during sympatric breeding in freshwater streams. The marine and lacustrine environments they occupy prior to maturity, however, appear to differ in the availability of dietary carotenoid pigments necessary to produce red coloration. We tested the hypothesis that kokanee, which occupy carotenoid-poor lakes, are more efficient at using the dietary pigments than are sockeye, which occupy the more productive North Pacific Ocean. In a 2-year controlled breeding study, flesh and skin color of mature and immature crosses fed a low-carotenoid diet were quantified with both a chromameter and by chemical extraction of carotenoid pigments. Results revealed striking countergradient variation in carotenoid use, with kokanee approximately three times more efficient at sequestering the pigments to the flesh musculature than similar age sockeye. This difference translated into virtually nonoverlapping differences between pure crosses in secondary sexual color at maturity, when the pigments are mobilized and transported to the skin. Kokanee crosses turned pinkish red over most of their body, whereas sockeye turned olive green. The olive green was similar to the breeding color of residuals in the wild, the progeny of anadromous sockeye that remain in fresh water and are believed to have given rise to kokanee on numerous independent occasions. Reciprocal hybrids were similar to each other and intermediate to the pure crosses, indicating additive genetic inheritance. Mate choice trials with sockeye males in the wild showed the ancestral morph strongly preferred red over green models. These results suggest a preference for red mates maintained in nonanadromous breeding populations drove the reevolution of the red phenotype in kokanee via more efficient use of dietary carotenoid pigments. This is a novel, yet hidden, mechanism by which sexual selection promotes the genetic differentiation of these sympatric populations.  相似文献   

17.
The interpopulation differentiation of the sockeye salmon Oncorhynchus nerka (Walbaum) from the Olyutorskiy and Karaginskiy districts and from the Kamchatka River basin was examined based on the allelic variation at eight microsatellite loci (Ots107, Oki1a, Oki1b, One104, One109, OtsG68, OtsG85, and Oki6). The genetic diversity of samples from the northern rivers was lower, compared to samples from the Kamchatka River basin. Significant heterogeneity was found in the allele-frequency distribution at microsatellite loci of sockeye salmon from the investigated localities. The degree of genetic similarity of populations corresponded to their geographic closeness. The differences between population groups greatly exceeded the level of interpopulation differentiation. The analyzed samples formed four relatively separate groups: Lake Azabachye, Kamchatka River basin, Karaginskiy area (including the Navyrinvayam River in the south of the Olyutorskiy district), and northern Olyutorskiy area. The identification likelihood estimates of eastern Kamchatkan sockeye salmon in mixed aggregations at the level of population groups were fairly high (67.2–81.8%), greatly exceeding the accuracy of identification of individual populations.  相似文献   

18.
Understanding reproductive patterns in endangered species is critical for supporting their recovery efforts. In this study we use a combination of paired‐parent and single‐parent assignments to examine the reproductive patterns in an endangered population of sockeye salmon (Oncorhynchus nerka) that uses Redfish Lake in central Idaho as a spawning and nursery lake. Recovery efforts include the release of maturing adults into the lake for volitional spawning. The lake is also inhabited by a population of resident O. nerka that is genetically indistinguishable, but phenotypically smaller, to the maturing adults released into the lake. The resident population is difficult to sample and the reproductive patterns between the two groups are unknown. We used results of paired‐ and single‐parentage assignments to specifically examine the reproductive patterns of male fish released into the lake under an equal sex ratio and a male‐biased sex ratio. Assignment results of offspring leaving the lake indicated a reproductive shift by males under the two scenarios. Males displayed an assortative mating pattern under an equal sex ratio and spawned almost exclusively with the released females. Under a male‐biased sex ratio most males shifted to a negative‐assortative mating pattern and spawned with smaller females from the resident population. These males were younger and smaller than males that spawned with released females suggesting they were unable to compete with larger males for spawning opportunities with the larger, released females. The results provided insights into the reproductive behavior of this endangered population and has implications for recovery efforts.  相似文献   

19.
Data on the present-day (2003–2007) state of the population of kokanee Oncorhynchus nerka introduced in Tolmachevskoe Lake more than 20 years ago are provided. Since the moment of introduction, the population of kokanee has underwent considerable changes: a decrease occurred in the specific rate of growth, average length and weight of fish in catches, and fecundity. The pattern of feeding changed from planktonic to benthic. Kokanee began to feed during spawning. Spawning shifted to later dates (from the beginning of September to the end of September and beginning of October).  相似文献   

20.
Bottlenecks can have lasting effects on genetic population structure that obscure patterns of contemporary gene flow and drift. Sockeye salmon are vulnerable to bottleneck effects because they are a highly structured species with excellent colonizing abilities and often occupy geologically young habitats. We describe genetic divergence among and genetic variation within spawning populations of sockeye salmon throughout the Lake Clark area of Alaska. Fin tissue was collected from sockeye salmon representing 15 spawning populations of Lake Clark, Six-mile Lake, and Lake Iliamna. Allele frequencies differed significantly at 11 microsatellite loci in 96 of 105 pairwise population comparisons. Pairwise estimates of FST ranged from zero to 0.089. Six-mile Lake and Lake Clark populations have historically been grouped together for management purposes and are geographically proximate. However, Six-mile Lake populations are genetically similar to Lake Iliamna populations and are divergent from Lake Clark populations. The reduced allelic diversity and strong divergence of Lake Clark populations relative to Six-mile Lake and Lake Iliamna populations suggest a bottleneck associated with the colonization of Lake Clark by sockeye salmon. Geographic distance and spawning habitat differences apparently do not contribute to isolation and divergence among populations. However, temporal isolation based on spawning time and founder effects associated with ongoing glacial retreat and colonization of new spawning habitats contribute to the genetic population structure of Lake Clark sockeye salmon. Nonequilibrium conditions and the strong influence of genetic drift caution against using estimates of divergence to estimate gene flow among populations of Lake Clark sockeye salmon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号