共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
One of challenges in the field of developmental biology is to understand how spatially and/or temporally coordinated expression of genes is controlled at the chromosomal level. It remains controversial whether genes expressed in a given tissue are randomly distributed throughout a given animal genome, or instead resolve into clusters. Here we used microarray analysis to identify more than 1,700 genes that are expressed preferentially in each of 11 organs of the chordate Ciona intestinalis adult, and determined the location of these genes on the 14 pairs of Ciona chromosomes. In spite of extensive mapped gene analysis, we only confirmed small clusters containing two or three genes. Our result indicates that organ-specific genes are distributed rather evenly all over chromosomes, suggesting that the notion of clustering of organ-specific genes in animal genomes is not generally applicable to this chordate. 相似文献
3.
The central and peripheral nervous systems (CNS and PNS) of the ascidian tadpole larva are comparatively simple, consisting of only about 350 cells. However, studies of the expression of neural patterning genes have demonstrated overall similarity between the ascidian CNS and the vertebrate CNS, suggesting that the ascidian CNS is sufficiently complex to be relevant to those of vertebrates. Recent progress in the Ciona intestinalis genome project and cDNA project together with considerable EST information has made Ciona an ideal model for investigating molecular mechanisms underlying the formation and function of the chordate nervous system. Here, we characterized 56 genes specific to the nervous system by determining their full-length cDNA sequences and confirming their spatial expression patterns. These genes included those that function in the nervous systems of other animals, especially those involved in photoreceptor-mediated signaling and neurotransmitter release. Thus, the nervous system-specific genes in Ciona larvae will provide not only probes for determining their function but also clues for exploring the complex network of nervous system-specific genes. 相似文献
4.
Housekeeping genes, widely expressed genes that are required for the basal function of most cell types, are clustered in the human and worm genomes. This arrangement suggests coordinate control of housekeeping gene expression at the chromosomal level. Here we examined whether this notion is applicable to a marine chordate, Ciona intestinalis. Using microarrays, we analyzed genes that were expressed in 11 organs of the adult, including the neural complex, branchial sac, esophagus, stomach, endostyle, intestine, body-wall muscle, heart, blood cells, ovary and testis. This analysis identified 158 genes that are expressed ubiquitously in these organs. These housekeeping genes could be classified into a range of Gene Ontology categories, in particular, ribosomal protein components. Of these 158 genes, we were able to map 141 genes onto the 14 pairs of the C. intestinalis chromosomes. They were distributed rather evenly over all the chromosomes, except for small clusters containing two or three genes. Therefore, the notion of chromosomal clustering of housekeeping genes is not applicable in this chordate. 相似文献
5.
Developmental regulation and tissue-specific localization of calmodulin mRNA in the protochordate Ciona intestinalis 总被引:1,自引:0,他引:1
Anna Di Gregorio † ‡ Maria Grazia Villani ‡ Annamaria Locascio Filomena Ristoratore Francesco Aniello Margherita Branno 《Development, growth & differentiation》1998,40(4):387-394
6.
7.
Eight nuclear polymorphic microsatellite markers were characterized from the ascidian Ciona intestinalis whole genome sequence. The behaviour of these loci was investigated against two geographically distinct populations: one from Plymouth, UK the other from the Fusaro Lagoon, Italy, both belonging to the type A Ciona cryptic species. The markers exhibited six to 29 alleles and average observed heterozygosity ranging from 0.06 to 0.73. These new microsatellite loci demonstrated to be valuable tools for both population genetic analysis at different scales and genetic identification of mutant phenotypes frequently encountered in Mediterranean populations of C. intestinalis. 相似文献
8.
Kawai N Ochiai H Sakuma T Yamada L Sawada H Yamamoto T Sasakura Y 《Development, growth & differentiation》2012,54(5):535-545
Zinc‐finger nucleases (ZFNs) are engineered nucleases that induce DNA double‐strand breaks (DSBs) at target sequences. They have been used as tools for generating targeted mutations in the genomes of multiple organisms in both animals and plants. The DSB induced by ZFNs is repaired by non‐homologous end joining (NHEJ) or by homologous recombination (HR) mechanisms. Non‐homologous end joining induces some errors because it is independent of a reference DNA sequence. Through the NHEJ mechanism, ZFNs generate insertional or deletional mutations at the target sequence. We examined the usability, specificity and toxicity of ZFNs in the basal chordate Ciona intestinalis. As the target of ZFNs, we chose an enhanced green fluorescent protein (EGFP) gene artificially inserted in the C. intestinalis genome because this locus is neutral for the development and growth of C. intestinalis, and the efficiency of mutagenesis with ZFNs can thus be determined without any bias. We introduced EGFP ‐ZFN mRNAs into the embryos of an EGFP ‐transgenic line and observed the mutation frequency in the target site of EGFP . We also examined the effects of the EGFP ‐ZFNs at off‐target sites resembling the EGFP target sequence in the C. intestinalis genome in order to examine the specificity of ZFNs. We further investigated the influence of ZFNs on embryogenesis, and showed that adequate amounts of ZFNs, which do not disrupt embryogenesis, can efficiently induce mutations on the on‐target site with less effect on the off‐target sites. This suggests that target mutagenesis with ZFNs will be a powerful technique in C. intestinalis. 相似文献
9.
Summary Calcitonin-like immunoreactivity has been found with the peroxidase-anti-peroxidase (PAP) method in cells of the epithelium of the alimentary tract as well as in nerve cells and nerve fibers in the connective tissue underlying the epithelium of the alimentary tract of Ciona intestinalis L. The nature of these cells is discussed with reference to endocrine-like cells found in the alimentary tract of other protochordates and to the possible dual role of calcitonin occurring in the gastroenteropancreatic system, on the one hand, and in the nervous system, on the other. 相似文献
10.
We report here characterization of five genes for novel components of the canonical Wnt/ β -catenin signaling pathway. These genes were identified in the ascidian Ciona intestinalis through a loss-of-function screening for genes required for embryogenesis with morpholinos, and four of them have counterparts in vertebrates. The five genes we studied are as follows: Ci-PGAP1 , a Ciona orthologue of human PGAP1 , which encodes GPI (glycosylphosphatidylinositol) inositol-deacylase, Ci-ZF278 , a gene encoding a C2H2 zinc-finger protein, Ci-C10orf11 , a Ciona orthologue of human C10orf11 that encodes a protein with leucine-rich repeats, Ci-Spatial/C4orf17 , a single counterpart for two human genes Spatial and C4orf17 , and Ci-FLJ10634 , a Ciona orthologue of human FLJ10634 that encodes a member of the J-protein family. Knockdown of each of the genes mimicked β -catenin knockdown and resulted in suppression of the expression of β -catenin downstream genes ( Ci-FoxD , Ci-Lhx3 , Ci-Otx and Ci-Fgf9/16/20 ) and subsequent endoderm formation. For every gene, defects in knockdown embryos were rescued by overexpression of a constitutively active form, but not wild-type, of Ci- β -catenin. Dosage-sensitive interactions were found between Ci-β-catenin and each of the genes. These results suggest that these five genes act upstream of or parallel to Ci- β -catenin in the Wnt/ β -catenin signaling pathway in early Ciona embryos. 相似文献
11.
12.
13.
This paper describes a study of the apical region of the spermatozoon of Ciona intestinalis before and during its binding to the vitelline coat of the egg. A combination of the techniques of thin sectioning, negative staining, and freeze fracture has revealed that in the apical-most region, where a small acrosomal vesicle lies on the flat tip of the nucleus, there is a cap-like region almost completely free of particles on the P face of the plasma membrane. The particle-free area is surrounded by two circlets of orderly arranged particles. Upon binding to the vitelline coat the particles of the distal circlet show a partial displacement, while the particles of the apical circlet remain unaltered. The relationship between the apical circlet and the binding process is discussed. The final step of the acrosome reaction, which occurs in only a few of the bound spermatozoa, consists in the fusion of the plasma membrane with the acrosomal membrane, in the dehiscence of the acrosomal contents and finally in the formation of membrane tubules. 相似文献
14.
15.
Morphological evidence that the molecularly determined Ciona intestinalis type A and type B are different species: Ciona robusta and Ciona intestinalis 下载免费PDF全文
Riccardo Brunetti Carmela Gissi Roberta Pennati Federico Caicci Fabio Gasparini Lucia Manni 《Journal of Zoological Systematics and Evolutionary Research》2015,53(3):186-193
Ciona intestinalis is considered a widespread and easily recognizable tunicate, the sister group of vertebrates. In recent years, molecular studies suggested that C. intestinalis includes at least two cryptic species, named ‘type A’ and ‘type B’, morphologically indistinguishable. It is dramatic to certify that two different species may be hidden under the name of a species widely used as a model species in biological researches. This raised the problem of identifying diagnostic morphological characters capable of distinguishing these types. We compared the morphology of specimens belonging to the two types and found that only type A specimens possess tunic tubercular prominences, allowing unambiguous discrimination. Remarkably, these structures were already described as distinctive of the Japanese species Ciona robusta, Hoshino and Tokioka, 1967; later synonymized under C. intestinalis (sensu Millar, 1953). In this study, we have confirmed that C. intestinalis type A corresponds to C. robusta. Based on the geographic distribution of C. intestinalis type B, and considering that the original C. intestinalis species was described from North European waters, we determined that C. intestinalis type B corresponds to C. intestinalis as described by Millar in 1953 and possibly to Linnaeus' Ascidia intestinalis L., 1767 for which we have deposited a neotype (from Roscoff, France) and for which we retain the name Ciona intestinalis (Linnaeus, 1767). 相似文献
16.
The sensory vesicle of ascidians is thought to be homologous to the vertebrate forebrain and midbrain (Development 125 (1998) 1113). Here we report the isolation of two sensory vesicle markers in the ascidian Ciona intestinalis, which are homologs of vertebrate otx and gsx homeobox genes. By using these markers to analyze the induction of anterior neural tissue in Ciona, we find that the restriction of anterior neural fate to the progeny of the anterior animal blastomeres is due to a combination of two factors. The vegetal blastomeres show a differential inducing activity along the anterior-posterior axis, while the competence to respond to this inducing signal is markedly higher in the anterior animal blastomeres than in the posterior animal blastomeres. This differential competence to respond is also observed in response to bFGF, a candidate neural inducer in ascidians (J. Physiol. 511.2 (1998) 347) and can be detected by the gastrula stage. Our results, however, indicate that bFGF can only induce a subset of the responses of the endogenous inducer, suggesting that additional signals in the embryo are necessary to induce a fully patterned nervous system. 相似文献
17.
The sea squirt Ciona intestinalis is a well-studied model organism in developmental biology, yet little is known about its associated bacterial community. In this study, a combination of 454 pyrosequencing of 16S ribosomal RNA genes, catalyzed reporter deposition-fluorescence in situ hybridization and bacterial culture were used to characterize the bacteria living inside and on the exterior coating, or tunic, of C. intestinalis adults. The 454 sequencing data set demonstrated that the tunic bacterial community structure is different from that of the surrounding seawater. The observed tunic bacterial consortium contained a shared community of <10 abundant bacterial phylotypes across three individuals. Culture experiments yielded four bacterial strains that were also dominant groups in the 454 sequencing data set, including novel representatives of the classes Alphaproteobacteria and Flavobacteria. The relatively simple bacterial community and availability of dominant community members in culture make C. intestinalis a promising system in which to investigate functional interactions between host-associated microbiota and the development of host innate immunity. 相似文献
18.
19.
Structural investigations of the p53/p73 homologs from the tunicate species Ciona intestinalis reveal the sequence requirements for the formation of a tetramerization domain 下载免费PDF全文
Jan Heering Hendrik R. A. Jonker Frank Löhr Harald Schwalbe Volker Dötsch 《Protein science : a publication of the Protein Society》2016,25(2):410-422
20.
Nishitsuji K Horie T Ichinose A Sasakura Y Yasuo H Kusakabe TG 《Development, growth & differentiation》2012,54(2):177-186
The tunicate Ciona intestinalis larva has a simple central nervous system (CNS), consisting of fewer than 400 cells, which is homologous to the vertebrate CNS. Recent studies have revealed neuronal types and networks in the larval CNS of C. intestinalis, yet their cell lineage and the molecular mechanism by which particular types of neurons are specified and differentiate remain poorly understood. Here, we report cell lineage origin and a cis‐regulatory module for the anterior caudal inhibitory neurons (ACINs), a putative component of the central pattern generator regulating swimming locomotion. The vesicular GABA/glycine transporter gene Ci‐VGAT, a specific marker for GABAergic/glycinergic neurons, is expressed in distinct sets of neurons, including ACINs of the tail nerve cord and others in the brain vesicle and motor ganglion. Comparative genomics analysis between C. intestinalis and Ciona savignyi and functional analysis in vivo identified the cis‐regulatory module responsible for Ci‐VGAT expression in ACINs. Our cell lineage analyses inferred that ACINs derive from A11.116 cells, which have been thought to solely give rise to glial ependymal cells of the lateral wall of the nerve cord. The present findings will provide a solid basis for future studies addressing the molecular mechanism underlying specification of ACINs, which play a critical role in controlling larval locomotion. 相似文献