首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Resveratrol (RSV), a plant origin polyphenol, has shown beneficial cardiovascular effects. In this study, isolated hearts from male Wistar rats were studied using the Langendorff technique. Following 30 min stabilization, the hearts underwent 30 min global ischemia and 120 min reperfusion. The perfusion solution in the test group contained RSV (10 μM). Hemodynamics of the hearts, the markers of myocardial damage including creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), and troponin I were studied during the study. Furthermore, the infarct size and the markers of oxidative stress including catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GPX) were assayed in the homogenates of the hearts. The release of nitrite from the hearts and the occurrence of ventricular arrhythmias were also monitored throughout the experiment. Resveratrol caused a significant improvement in the restoration of the mechanical performance of the hearts following myocardial ischemia and reperfusion (MIR). Besides, the infarct size, CK-MB, LDH, and troponin I declined in the test group. Besides, the cardiac release of nitrite increased, and the redox status of the heart was improved as indicated by the levels of CAT, SOD, GPX, and MDA. Finally, the treatment caused significant decreases in the occurrences of single and salvo arrhythmias, ventricular tachycardia, and ventricular fibrillation. The current study suggests strong cardioprotective and antiarrhythmic effects for RSV following MIR.

  相似文献   

3.
The present study provides evidences of left ventricular diastolic alterations following reperfusion in a model of global ischemia. Isolated perfused rabbit and rat hearts, were subjected to ischemia for 15 and 20 min respectively, followed by 30 min of reperfusion. In rabbit heart at the end of the reperfusion period, isovolumic left ventricular developed pressure (LVDP) and +dP/dtmax stabilized at 55 ± 3% and 60 ± 2% of preischemic values respectively and, in rat heart LVDP = 61 ± 8% and +dP/dtmax = 57 ± 9% of preischemic values. Stunned heart was then obtained from both species. Left ventricular end diastolic pressure (LVEDP) values stabilized at the end of reperfusion period at values higher than preischemic conditions in both species (38.9 ± 4.4 mmHg and 30.3 ± 3.1 mmHg in rabbit and rat respectively). The time constant of relaxation (T) increased early in reperfusion in both species, but then decreased and stabilized at the end of reperfusion period at values lower than preischemic values. The ratio between both maximal velocities (+P/-P), also showed a transitory impairment in relaxation, followed by normalization and stabilization at values lower than preischemic values. This biphasic pattern in relaxation was detected in both species. The changes in relaxation were dissociated from the diastolic compliance and could be the result of a transitory calcium overload and/or sarcoplasmic reticulum dysfunction. The faster myocardial relaxation at the end of reperfusion period is consistent with the decreased myofilament sensitivity, which characterizes the stunned myocardium.  相似文献   

4.
Kim SJ  Kuklov A  Crystal GJ 《Life sciences》2011,88(13-14):572-577
AimsWe tested the hypothesis that an in vivo gene delivery of the pro-survival protein XIAP (X-chromosome linked inhibitor of apoptosis protein) protects against myocardial apoptosis and infarction following ischemia/reperfusion.Main methodsNineteen rabbits were chronically instrumented with a hydraulic occluder placed around the circumflex coronary artery. Adenovirus harboring XIAP (Ad.XIAP; 1 × 1010 pfu/ml) or β-galactosidase (5 × 109 pfu/ml), as a control, was constructed and transfected into the heart using a catheter placed into the left ventricle accompanied by cross-clamping. 1–2 weeks after gene delivery, myocardial ischemia was induced by a 30-min occlusion followed by reperfusion for four days. Protein expression was determined by Western blot and apoptosis (% of myocytes) was quantified by TUNEL staining.Key findingsMyocardial infarct size, expressed as a fraction of the area at risk, was reduced in Ad.XIAP (n = 5) compared to control (n = 7) rabbits (21 ± 3% vs. 30 ± 2%, p < 0.05). Apoptosis was reduced in Ad.XIAP rabbits compared to control rabbits (2.96 ± 0.68% vs. 8.98 ± 1.84%, p < 0.01). This was associated with an approximate 60% decrease in the cleaved caspase-3 level in Ad.XIAP rabbits compared to control rabbits.SignificanceThe current findings demonstrate that overexpression of XIAP via in vivo delivery in an adenovirus can reduce both myocardial apoptosis and infarction following ischemia/reperfusion, at least in part, due to the ability of XIAP to inhibit caspase-3. These findings confirm previous work suggesting a link between myocardial apoptosis and infarction i.e., anti-apoptotic therapy was effective in reducing myocardial infarct size.  相似文献   

5.
目的:观察骨骼肌缺血后处理(RPostC)、心肌的缺血后处理(MPostC)对缺血/再灌注心肌保护作用是否存在差异以及两者联合后作用是否叠加。方法:健康新西兰大白兔3O只,随机分为5组(n=6):缺血对照组(Con)、假手术组(sham)、心肌缺血后处理组(MPostC)和肢体缺血后处理组(RPostC)及心肌缺血后处理联合肢体缺血后处理组(MPostC+RPostC)。采用开胸结扎冠状动脉左室支45 min,再灌注120min方法制作缺血/再灌注模型,采用短暂结扎双侧髂外动脉固定部位5 min造成骨骼肌短暂缺血。以Evans蓝标记心肌缺血区范围,以TTC法检测梗死心肌范围,并分别于缺血前、后及再灌注1、2 h测定血浆磷酸肌酸激酶(CPK)活性和乳酸脱氢酶(LDH)含量。结果:和Con组相比,MPostC和RPostC组心肌梗死范围均明显降低(P<0.05);MPostC联合RPostC组心肌梗死范围与MPostC或RPostC组相比,均进一步降低(均P<0.05)。但MPostC组及RPostC组之间心肌坏死范围未见统计学差异。再灌注120 min末血浆CPK活性及LDH含量也显示相似趋势。结论:骨骼肌缺血后处理及心肌后处理对缺血/再灌注心肌均具有明显保护作用;且两者作用可以叠加;但骨骼肌和心肌后处理之间保护作用未显示统计学差异。  相似文献   

6.
目的:探讨缺血后适应的不同干预时间对兔局部短期缺血再灌注心肌细胞凋亡及Bcl-2、Bax蛋白表达的影响.方法:实验于2008-06/2010-06在石河子大学医学院中心实验室完成.36只新西兰大白兔随机分成6组(n=6);假手术对照组(S组)、缺血/再灌注对照组(IR组)、缺血后适应组(Post1-4组).除S组外,其余5组均接受左冠脉前降支15min阻断和30min再灌注,Post1-4组在15min缺血后分别接受连续3次缺血/再灌注10s、15s、30s及45s的后适应.TUNEL分析检测兔短期缺血再灌注心肌组织的细胞凋亡情况,免疫组织化学方法检测Bcl-2、Bax蛋白的表达.结果:缺血后适应各组心肌细胞凋亡指数显著低于缺血再灌注组(P<0.01).Bcl-2基因的蛋白表达量Post1-4组高于IR组[(6.83±1.17),(7.33±1.37),(8.50±1.05),(6.83±1.47),(3.67±1.37),P<0.05];Bax基因的蛋白表达量Post1-4组低于IR组[(7.33±1.21),(6.50±1.05),(4.33±0.82),(6.50±1.05),(8.83±1.17),P<0.05].缺血后适应Post3组与Post1、Post2、Post4组两两比较差异有统计学意义(P<0.05),而Post1、Post2、Post4组两两比较差异无统计学意义.结论:短暂缺血/复灌的持续时间10s、15s、30s及45s均可减少家兔缺血再灌注心肌损伤,而30s是最佳的短暂缺血/复灌的干预时间.  相似文献   

7.
8.
Summary

The effect of myocardial ischemia and reperfusion on left ventricular interstitial 8-hydroxydeoxyguanosine (8-OH-dG), a possible biomarker for in vivo oxidative deoxyribonucleic acid damage, in anesthetized rats was investigated. A microdialysis probe was implanted. Levels of 8-OH-dG in microdialysates were analyzed via an on-line high performance liquid chromatography system equipped with an electrochemical detector. Myocardial ischemia for 10 or 20 min, induced by clamping of the left anterior descending coronary artery, did not affect 8-OH-dG levels. However, reperfusion following either 10-min or 20-min ischemia significantly increased 8-OH-dG levels in collected microdialysates. Reperfusion-induced increases in 8-OH-dG levels were more prominent in the 20 min ischemia group (as high as 3.5 fold relative to basal levels) than in the 10 min ischemia group as high as 2.0 fold relative to basal levels). In conclusion, we observed that left ventricular interstitial 8-OH-dG concentration increased following myocardial ischemia and reperfusion in anesthetized rats. These results suggest that 8-OH-dG might be a useful biomarker for oxidative damage following myocardial ischemia and reperfusion.  相似文献   

9.
10.
OBJECTIVE: To study the effects of glucose-insulin-potassium (GIK) cocktail on cardiac myocyte apoptosis and cardiac functional recovery following myocardial ischemia/reperfusion (MI/R), and to further determine the role of insulin in the GIK-induced cardioprotective effect in vivo . METHODS: Forty eight male rabbits were subjected to 40 min MI followed by R for 3 h and were randomly received one of the following treatments: saline, GIK (glucose: 150 g/L, insulin: 60 U/L and KCl: 80 mmol/L), or insulin (n = 16 in each group) at 1 ml x kg(-1) x h(-1), beginning 30 min before MI and continuing throughout the 3 h-reperfusion. Blood glucose, electrolytes, arterial blood pressure and left ventricular pressure (LVP) were monitored throughout the experiment. Plasma creatine kinase (CK) and lactate dehydrogenase (LDH) activity were measured spectrophotometrically. Myocardial infarction and myocardial apoptosis (both DNA laddering and TUNEL analysis) were determined in a blinded manner. RESULTS: MI/R caused significant cardiac dysfunction and myocardial apoptosis (both strong DNA ladder formation and TUNEL-positive staining). Compared with vehicle, GIK-treated rabbits showed protection against MI/R as evidenced by reduced myocardial infarction (19.7% +/- 2.6% vs . 26.8% +/- 3.3% of vehicle, n = 10, P < 0.05), marked decrease in DNA fragmentation and apoptotic index (11.0% +/- 2.1% vs . 20.1% +/- 3.1% of vehicle, n = 6, P < 0.01), significant decrease of plasma CK and LDH and improved recovery of cardiac systolic/diastolic function at the end of R. Treatment with insulin alone decreased blood glucose significantly but still exerted cardioprotective effects comparable with that of GIK. CONCLUSIONS: GIK exerts cardioprotective effects against postischemic myocardial injury and improves cardiac functional recovery in vivo . Insulin, mainly through the anti-apoptotic effect, plays a key role in the GIK-elicited myocardial protection in MI/R.  相似文献   

11.
Despite major progress in interventional and medical treatments, myocardial infarction (MI) and subsequent development of heart failure (HF) are still associated with high mortality. Both during ischemia reperfusion (IR) in the acute setting of MI, as well as in the chronic remodeling process following MI, oxidative stress substantially contributes to cardiac damage. Reactive oxygen species (ROS) generated within mitochondria are particular drivers of mechanisms contributing to IR injury, including induction of mitochondrial permeability transition or oxidative damage of intramitochondrial structures and molecules. But even beyond the acute setting, mechanisms like inflammatory signaling, extracellular remodeling, or pro-apoptotic signaling that contribute to post-infarction remodeling are regulated by mitochondrial ROS. In the current review, we discuss both sources and consequences of mitochondrial ROS during IR and in the chronic setting following MI, thereby emphasizing the potential therapeutic value of attenuating mitochondrial ROS to improve outcome and prognosis for patients suffering MI.  相似文献   

12.

Aims

To examine the effects of cariporide, a Na+/H+ exchanger-1 inhibitor, on cardiac norepinephrine (NE) and myoglobin release during myocardial ischemia/reperfusion by applying a microdialysis technique to the rabbit heart.

Main methods

In anesthetized rabbits, two dialysis probes were implanted into the left ventricular myocardium and were perfused with Ringer's solution. Cariporide (0.3 mg/kg) was injected intravenously, followed by occlusion of the left circumflex coronary artery. During 30-min coronary occlusion followed by 30-min reperfusion, four consecutive 15-min dialysate samples (two during ischemia and two during reperfusion) were collected in vehicle and cariporide-treated groups. Dialysate myoglobin and NE concentrations were measured by immunochemistry and high-performance liquid chromatography, respectively.

Key findings

Dialysate myoglobin and NE concentrations increased significantly during myocardial ischemia/reperfusion in both vehicle and cariporide-treated groups (P < 0.01 vs. baseline). In cariporide-treated group, dialysate myoglobin concentrations were significantly lower than those in vehicle group throughout ischemia/reperfusion (P < 0.01 at 0–15 min of ischemia, P < 0.05 at 15–30 min of ischemia, P < 0.01 at 0–15 min of reperfusion, and P < 0.01 at 15–30 min of reperfusion). However, dialysate NE concentrations in cariporide-treated group were lower than those in vehicle group only during ischemia (P < 0.01 at 0–15 min of ischemia, and P < 0.05 at 15–30 min of ischemia).

Significance

When administered before ischemia, cariporide reduces myoglobin release during ischemia/reperfusion and decreases NE release during ischemia.  相似文献   

13.
Zhelong Xu  Juan Zhou 《Biometals》2013,26(6):863-878
As an important trace element, zinc is required for the normal cellular structure and function, and impairment of zinc homeostasis is associated with a variety of health problems including cardiovascular disease. Zinc homeostasis is regulated through zinc transporters, zinc binding molecules, and zinc sensors. Zinc also plays a critical role in cellular signaling. Studies have documented that zinc homeostasis is impaired by ischemia/reperfusion in the heart and zinc dyshomeostasis may play a role in the pathogenesis of myocardial ischemia/reperfusion injury. Both exogenous and endogenously released zinc may play an important role in cardioprotection against ischemia/reperfusion injury. The goal of this review is to summarize the current understanding of the roles of zinc homeostasis and zinc signaling in myocardial ischemia/reperfusion injury.  相似文献   

14.
In acute experiments in anesthetized rabbits, changes of the pulmonary hemodynamics following myocardial ischemia in the region of the descendent left coronary artery were studied as well as in control animals and after the blockade of beta-adrenoreceptors. The myocardial ischemia decreased the left ventricular myocardial contractility, cardiac output and arterial pressure, decreased the pulmonary artery pressure and flow. Following myocardial ischemia, the pulmonary artery pressure decreased less than pulmonary artery blood flow as the result of elevating of the left atrial pressure, meanwhile pulmonary vascular resistance was not changed. Following myocardial ischemia in animals after the blockade of the beta-adrenoreceptors, the pulmonary flow decreased the same as in control animals. However, the pulmonary artery pressure was decreased twofold more significantly than in control animals, and its diminishing was in the same degree as the pulmonary artery flow. Following myocardial ischemia after the blockade of the beta-adrenoreceptors, the pulmonary vascular resistance decreased whereas the left atrial pressure did not change significantly because the myocardial contractility decreased less than in control animals.  相似文献   

15.
A recent study showed that cardiac adaptation could potentiate translocation of thioredoxin-1 (Trx-1) into the nucleus, which then interacted with Ref-1, resulting in a survival signal. Here, we present evidence that such adaptation also causes nuclear translocation of Ref-1, which is almost completely inhibited when the hearts were pretreated with antisense Ref-1 that also abolished the cardioprotective adaptive response. Significant amounts of NFkappaB and Nrf2 were found to be associated with Ref-1 when the nuclear extract obtained from the left ventricle was immunoprecipitated with Ref-1. Such Ref-1-NFkappaB and Ref-1-Nrf2 interactions were significantly inhibited with antisense Ref-1. However, immunoprecipitation of nuclear extract with NFkappaB showed that the association of Trx-1 with NFkappaB is increased in the adapted heart, which was again significantly blocked by antisense Ref-1. Nrf2 was also associated with NFkappaB; however, such association appeared to be independent of Ref-1. In contrast, myocardial adaptation to ischemia inhibited the ischemia reperfusion-induced loss of Nrf2 from the nucleus, which was inhibited by antisense Ref-1. The nuclear translocation and activation of Ref-1 appeared to generate a survival signal as evidenced by the increased phosphorylation of Akt that was inhibited with antisense Ref-1. Finally, confocal microscopy confirmed the results of immunoblotting, clearly showing the nuclear translocation of Ref-1 and nuclear 3D colocalization of Ref-1 with NFkappaB in the adapted heart and its inhibition with antisense Ref-1. Our results show that PC potentiates a survival signal through the phosphorylation of Akt by causing nuclear translocation and activation of Ref-1, where significant interaction among NFkappaB and Ref-1, Trx-1, and Nrf2 appears to regulate Ref-1-induced survival signal.  相似文献   

16.
Plasma endothelin levels during myocardial ischemia and reperfusion   总被引:6,自引:0,他引:6  
Endothelin, an endothelium-derived vasoconstrictive peptide, has a strong potency of coronary artery constriction. However, the role of endogeneous endothelin under pathophysiological conditions has not yet been known. In this study, we examined plasma endothelin concentration in dogs with myocardial ischemia and reperfusion. Anesthetized open-chest dogs underwent either 45 minutes occlusion of the left anterior descending coronary artery followed by 3 hours reperfusion, or 4-10 hours of continuous occlusion. Plasma concentration of endothelin from the central vein was measured by the highly sensitive enzyme-immunoassay. Plasma endothelin concentration increased 2.2-fold with the peak level at 60 minutes after release of the ligated artery, but occlusion per se caused no remarkable change. These data suggest that reperfusion of the occluded artery might be needed to increase the plasma concentration of endothelin in case of myocardial infarction.  相似文献   

17.
The accumulation of oxygen free radicals and activation of neutrophils are strongly implicated as pathophysiological mechanisms mediating myocardial ischemia/reperfusion injury. Heme oxygenase-1 (HO-1) has been reported to play a protective role in oxidative tissue injuries. In this study, the cardioprotective activity of tetramethylpyrazine (TMP), an active ingredient of Chinese medicinal herb Ligusticum wallichii Franchat, was evaluated in an open-chest anesthetized rat model of myocardial ischemia/reperfusion injury. Pretreatment with TMP (5 and 10 mg/kg, i.v.) before left coronary artery occlusion significantly suppressed the occurrence of ventricular fibrillation. After 45 min of ischemia and 1 h of reperfusion, TMP (5 and 10 mg/kg) caused a significant reduction in infarct size and induced HO-1 expression in ischemic myocardium. The HO inhibitor ZnPP (50 μg/rat) markedly reversed the anti-infarct action of TMP. Superoxide anion production in ischemic myocardium after 10 min reperfusion was inhibited by TMP. Furthermore, TMP (200 and 500 μM) significantly suppressed fMLP (800 nM)-activated human neutrophil migration and respiratory burst. In conclusion, TMP suppresses ischemia-induced ventricular arrhythmias and reduces the infarct size resulting from ischemia/reperfusion injury in vivo. This cardioprotective activity of TMP may be associated with its antioxidant activity via induction of HO-1 and with its capacity for neutrophil inhibition.  相似文献   

18.
In acute experiments in anesthetized rabbits, changes of the pulmonary hemodynamics following myocardial ischemia in the region of the descendent left coronary artery were studied in control animals and after the infusion of adrenaline and phenylephrine. The pulmonary artery pressure was increased following infusion of these drugs; however, it decreased to normal level in the condition of myocardial ischemia. Meanwhile the pulmonary vascular resistance was elevated to the same level in both cases. Following adrenaline infusion, the pulmonary artery blood flow and venous return increased and, in the condition of myocardial ischemia, they decreased to normal level, but the left atrial pressure was decreased. Following phenylephrine infusion, the pulmonary artery blood flow and venous return did not change and, in the condition of myocardial ischemia, these parameters decreased lower than normal level but the left atrial pressure was elevated. Thus we concluded that equal values of the pulmonary artery pressure in both cases were caused by changes of different character in the left atrial pressure. The differences of the changes character and values of the pulmonary artery flow under experimental myocardial ischemia following the infusion of adrenaline and phenylephrine were caused by different shifts of the venous return.  相似文献   

19.
膜磷脂代谢与心肌缺血再灌注损伤   总被引:4,自引:0,他引:4  
膜磷脂是维持细胞结构与功能的重要成份。心肌缺血—再灌注后导致膜磷脂降解,其含量明显减少,这是再灌注损伤的重要发病环节。用药物阻止膜磷脂降解可预防缺血心肌的再灌注损伤。  相似文献   

20.
目的:观察红花注射液对兔肠缺血/再灌注损伤超微结构的影响,探讨其机制。方法:复制在体兔肠缺血/再灌注损伤模型。30只日本大耳兔,随机均分为3组(n=10):假手术组(S组),缺A/再灌注组(I/R组)和缺血/再灌注+红花注射液组(SI组)。使用电镜观察各组肠组织标本超微结构的改变,作对比分析。结果:L/R组多数肠粘膜上皮细胞肿胀,胞质内液泡增多,大多数线粒体呈不同程度的肿胀,严重者可见嵴减少或消失,内质网扩张较明显,细胞表面微绒毛数量明显减少且排列较乱,部分微绒毛有肿胀、融合现象,上皮细胞间隙扩大,连接较疏松。粘膜下间质可见少量的浆细胞浸润现象,部分毛细血管周围可见水肿现象。SI组在上述部位的病理改变均明显减轻。结论:红花能有效减少炎性渗出,抑制微循环通透性的增加,阻断肠缺血/再灌注损伤进展的病理生理过程,对肠组织超微结构有良好保护作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号