首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Three microsatellite loci were used to examine genetic variation among 16 coho salmon ( Oncorhynchus kisutch ) populations within the Fraser River drainage system, in British Columbia, Canada. Each locus was highly polymorphic with 30 alleles at the Ots 101 locus, 15 alleles at the Ots 3 locus and 38 alleles at the Ots 103 locus. Average observed heterozygosities were 86.1%, 70%, and 56.1%, respectively. With the exception of the Dunn and Lemieux River populations, Chi-square tests and F ST values indicated that all populations had significantly different allele frequencies. Two distinct population groups within the Fraser River drainage were observed. Lower Fraser River populations were strongly differentiated from populations spawning in the upper Fraser River, which includes the Thompson River (a tributary flowing into the upper Fraser) and the portion of the Fraser River beyond the precipitous Fraser River canyon. This regional population structure may have resulted from colonization of the upper and lower Fraser River regions by different founder populations following Pleistocene glaciation, and be maintained by adaptive differences between the two groups of coho salmon. Coho salmon populations in the upper Fraser and Thompson River drainages form an evolutionarily significant unit (ESU) of importance for conservation of biodiversity in coho salmon. Microsatellite DNA loci show promise as technically simple and highly informative genetic markers for coho salmon population management.  相似文献   

2.
The levels of gene diversity for 17 polymorphic loci in natural populations of wild rats were examined for three separate locations in North and South America. The level of gene diversity in the total sample for the RT1.A locus, the dominant class I histocompatibility locus in the major histocompatibility (RT1) complex of the rat, was 0.807. The degree of gene diversity for nonalloantigenic loci scattered throughout the rat genome was 0.215, a level comparable to, if not slightly higher than, that for other mammalian species. The large and consistent levels of diversity for individuals within each population suggest that significant deviations from random mating have occurred within each group. Conclusions from analyzing genetic distance and the index of genetic differentiation between the three populations are consistent with these populations' geographic isolation and small effective population size. Assuming that the separation of the North and South American groups has existed for approximately 300 years, the effective size of these populations is estimated to be approximately 1,500 individuals. Apparent differences in the distribution of the number and frequency of alleles in the major histocompatibility complexes of mice and rats and the level of genetic differentiation among separate rat populations may be due to the effects of genetic drift in small populations.  相似文献   

3.
Sporophytic self-incompatibility (SSI) was studied in 11 British Senecio squalidus populations to quantify mating system variation and determine how its recent colonization of the United Kingdom has influenced its mating behavior. S allele number, frequency, and dominance interactions in populations were assessed using full diallels of controlled pollinations. A mean of 5.1 S alleles per population was observed, and no population contained more than six S alleles. Numbers of S alleles within populations of S. squalidus declined with increasing distance from the center of its introduction (Oxford). Cross-classification of S alleles allowed an estimate of approximately seven and no more than 11 S alleles for the entire British S. squalidus population. The low number of S alleles observed in British S. squalidus compared to other SI species is consistent with the population bottleneck associated with S. squalidus' introduction to the Oxford Botanic Garden and subsequent colonization of Britain. Extensive S allele dominance interactions were observed to be a feature of the S. squalidus SSI system and may represent an adaptive response to improve limited mate availability imposed by the presence of so few S alleles. Multilocus allozyme genotypes were also identified for individuals in all populations and geographic patterns of S locus and allozyme loci variation investigated. Less interpopulation structure was observed for the S locus than for allozyme diversity--a finding indicative of the effects of negative frequency-dependent selection at the S locus maintaining equal S phenotypes within populations and enhancing effective migration between populations.  相似文献   

4.
The Mauna Kea silversword, Argyroxiphium sandwicense ssp. sandwicense, has experienced both a severe population crash associated with an increase in alien ungulate populations on Mauna Kea, and a population bottleneck associated with reintroduction. In this paper, we address the genetic consequences of both demographic events using eight microsatellite loci. The population crash was not accompanied by a significant reduction in number of alleles or heterozygosity. However, the population bottleneck was accompanied by significant reductions in observed number of alleles, effective number of alleles, and expected heterozygosity, though not in observed heterozygosity. The effective size of the population bottleneck was calculated using both observed heterozygosities and allele frequency variances. Both methods corroborated the historical census size of the population bottleneck of at most three individuals. The results suggest that: (i) small populations, even those that result from severe reductions in historical population size and extent, are not necessarily genetically depauperate; and (ii) species reintroduction plans need to be conceived and implemented carefully, with due consideration to the genetic impact of sampling for reintroduction.  相似文献   

5.
Carex scabrifolia, a perennial herb that commonly grows on sandbars in lagoons and tidal estuaries, is threatened by habitat reduction in some areas of Japan. Clonal diversity and the extent of gene flow among ten populations located along the Seto Inland Sea and the Japan Sea in western Japan were examined using six microsatellite loci. From 299 samples, we detected 77 multilocus genotypes. The mean number of alleles per population was 2.8 and the mean clonal diversity was 0.23. Many populations consisted of small patches, and the mean number of genets per patch was 2.0. The average number of alleles per locus and clonal diversity were positively correlated with the number of patches within a watershed. Gene flow was detected between the Ichikawa River and the Ohta River populations along the Seto Inland Sea, and weak differentiation among populations located along the Seto Inland Sea was observed. Our results suggest that effective conservation of C. scabrifolia populations should include maintaining all patches within a watershed regardless of population size, thus promoting genotype preservation.  相似文献   

6.
An understanding of the relative roles of historical and contemporary factors in structuring genetic variation is a fundamental, but understudied aspect of geographic variation. We examined geographic variation in microsatellite DNA allele frequencies in bull trout (Salvelinus confluentus, Salmonidae) to test hypotheses concerning the relative roles of postglacial dispersal (historical) and current landscape features (contemporary) in structuring genetic variability and population differentiation. Bull trout exhibit relatively low intrapopulation microsatellite variation (average of 1.9 alleles per locus, average He = 0.24), but high levels of interpopulation divergence (F(ST) = 0.39). We found evidence of historical influences on microsatellite variation in the form of a decrease in the number of alleles and heterozygosities in populations on the periphery of the range relative to populations closer to putative glacial refugia. In addition, one region of British Columbia that was colonized later during deglaciation and by more indirect watershed connections showed less developed and more variable patterns of isolation by distance than a similar region colonized earlier and more directly from refugia. Current spatial and drainage interconnectedness among sites and the presence of migration barriers (falls and cascades) within individual streams were found to be important contemporary factors influencing historical patterns of genetic variability and interpopulation divergence. Our work illustrates the limited utility of equilibrium models to delineate population structure and patterns of genetic diversity in recently founded populations or those inhabiting highly heterogeneous environments, and it highlights the need for approaches incorporating a landscape context for population divergence. Substantial microsatellite DNA divergence among bull trout populations may also signal divergence in traits important to population persistence in specific environments.  相似文献   

7.
North American freshwater mussel species have experienced substantial range fragmentation and population reductions. These impacts have the potential to reduce genetic connectivity among populations and increase the risk of losing genetic diversity. Thirteen microsatellite loci and an 883 bp fragment of the mitochondrial ND1 gene were used to assess genetic diversity, population structure, contemporary migration rates, and population size changes across the range of the Sheepnose mussel (Plethobasus cyphyus). Population structure analyses reveal five populations, three in the Upper Mississippi River Basin and two in the Ohio River Basin. Sampling locations exhibit a high degree of genetic diversity and contemporary migration estimates indicate that migration within river basins is occurring, although at low rates, but there is no migration is occurring between the Ohio and Mississippi river basins. No evidence of bottlenecks was detected, and almost all locations exhibited the signature of population expansion. Our results indicate that although anthropogenic activity has altered the landscape across the range of the Sheepnose, these activities have yet to be reflected in losses of genetic diversity. Efforts to conserve Sheepnose populations should focus on maintaining existing habitats and fostering genetic connectivity between extant demes to conserve remaining genetic diversity for future viable populations.  相似文献   

8.
Wide‐ranging mammals face significant conservation threats, and knowledge of the spatial scale of population structure and its drivers is needed to understand processes that maintain diversity in these species. We analysed DNA from 655 Alaskan caribou (Rangifer tarandus granti) from 20 herds that vary in population size, used 19 microsatellite loci to document genetic diversity and differentiation in Alaskan caribou, and examined the extent to which genetic differentiation was associated with hypothesized drivers of population subdivision including landscape features, population size and ecotype. We found that Alaskan caribou are subdivided into two hierarchically structured clusters: one group on the Alaska Peninsula containing discrete herds and one large group on the Mainland lacking differentiation between many herds. Population size, geographic distance, migratory ecotype and the Kvichak River at the nexus of the Alaska Peninsula were associated with genetic differentiation. Contrary to previous hypotheses, small Mainland herds were often differentiated genetically from large interconnected herds nearby, and genetic drift coupled with reduced gene flow may explain this pattern. Our results raise the possibility that behaviour helps to maintain genetic differentiation between some herds of different ecotypes. Alaskan caribou show remarkably high diversity and low differentiation over a broad geographic scale. These results increase information for the conservation of caribou and other migratory mammals threatened by population reductions and landscape barriers and may be broadly applicable to understanding the spatial scale and ecological drivers of population structure in widespread species.  相似文献   

9.
Dendrobium officinale (Orchidaceae) is an endangered plant species with important medicinal value. To evaluate the effectiveness of ex situ collection of D. officinale genetic diversity, we developed 15 polymorphic trinucleotide microsatellite loci of D. officinale to examine the genetic diversity and structure of three D. officinale germplasm collections comprising 120 individuals from its germplasm collection base and their respective wild populations consisting of 62 individuals from three provinces in China. The three germplasm collections showed reductions in gene diversity and average number of alleles per locus, but an increase in average number of rare alleles (frequency?≤?0.05) per locus in comparison to their wild populations. However, the differences in gene diversity between the germplasm collections and wild populations were not statistically significant. The analysis using STRUCTURE revealed evident differences in genetic composition between each germplasm collection and its wild population, probably because the D. officinale individuals with distinct genotypes in each wild population were unevenly selected for establishing its germplasm collection. For conservation management plans, we propose that D. officinale individuals with rare alleles need to be conserved with top priority, and those individuals with the most common alleles also should be concerned. The 15 new microsatellite loci may be used as a powerful tool for further evaluation and conservation of the genetic diversity of D. officinale germplasm resources.  相似文献   

10.
Miller KM  Kaukinen KH  Beacham TD  Withler RE 《Genetica》2001,111(1-3):237-257
Balancing selection maintains high levels of polymorphism and heterozygosity in genes of the MHC (major histocompatibility complex) of vertebrate organisms, and promotes long evolutionary persistence of individual alleles and strongly differentiated allelic lineages. In this study, genetic variation at the MHC class II DAB-beta1 locus was examined in 31 populations of sockeye salmon (Oncorhynchus nerka) inhabiting the Fraser River drainage of British Columbia, Canada. Twenty-five percent of variation at the locus was partitioned among sockeye populations, as compared with 5% at neutral genetic markers. Geographic heterogeneity of balancing selection was detected among four regions in the Fraser River drainage and among lake systems within regions. High levels of beta1 allelic diversity and heterozygosity, as well as distributions of alleles and allelic lineages that were more even than expected for a neutral locus, indicated the presence of balancing selection in populations throughout much of the interior Fraser drainage. However, proximate populations in the upper Fraser region, and four of six populations from the lower Fraser drainage, exhibited much lower levels of genetic diversity and had beta1 allele frequency distributions in conformance with those expected for a neutral locus, or a locus under directional selection. Pair-wise FST values for beta1 averaged 0.19 and tended to exceed the corresponding values estimated for neutral loci at all levels of population structure, although they were lower among populations experiencing balancing selection than among other populations. The apparent heterogeneity in selection resulted in strong genetic differentiation between geographically proximate populations with and without detectable levels of balancing selection, in stark contrast to observations at neutral loci. The strong partitioning and complex structure of beta1 diversity within and among sockeye populations on a small geographic scale illustrates the value of incorporating adaptive variation into conservation planning for the species.  相似文献   

11.
In this paper, we investigated the genetic structure and distribution of allelic frequencies at the gametophytic self-incompatibility locus in three populations of Prunus avium L. In line with theoretical predictions under balancing selection, genetic structure at the self-incompatibility locus was almost three times lower than at seven unlinked microsatellites. Furthermore, we found that S-allele frequencies in wild cherry populations departed significantly from the expected isoplethic distribution towards which balancing selection is expected to drive allelic frequencies (i.e. identical frequency equal to the inverse of the number of alleles in the population). To assess whether this departure could be caused either by drift alone or by population structure, we used numerical simulations to compare our observations with allelic frequency distributions expected : (1) within a single deme from a subdivided population with various levels of differentiation; and (2) within a finite panmictic population with identical allelic diversity. We also investigated the effects of sample size and degree of population structure on tests of departure from isoplethic equilibrium. Overall, our results showed that the observed allele frequency distributions were consistent with a model of subdivided population with demes linked by moderate migration rate.  相似文献   

12.
Population viability has often been assessed by census of reproducing adults. Recently this method has been called into question and estimation of the effective population size (Ne) proposed as a complementary method to determine population health. We examined genetic diversity in five populations of chinook salmon (Oncorhynchus tshawytscha) from the upper Fraser River watershed (British Columbia, Canada) at 11 microsatellite loci over 20 years using DNA extracted from archived scale samples. We tested for changes in genetic diversity, calculated the ratio of the number of alleles to the range in allele size to give the statistic M, calculated Ne from the temporal change in allele frequency, used the maximum likelihood method to calculate effective population size (NeM), calculated the harmonic mean of population size, and compared these statistics to annual census estimates. Over the last two decades population size has increased in all five populations of chinook examined; however, Ne calculated for each population was low (81-691) and decreasing over the time interval measured. Values of NeM were low, but substantially higher than Ne calculated using the temporal method. The calculated values for M were generally low (M < 0.70), indicating recent population reductions for all five populations. Large-scale historic barriers to migration and development activities do not appear to account for the low values of Ne; however, available spawning area is positively correlated with Ne. Both Ne and M estimates indicate that these populations are potentially susceptible to inbreeding effects and may lack the ability to respond adaptively to stochastic events. Our findings question the practice of relying exclusively on census estimates for interpreting population health and show the importance of determining genetic diversity within populations.  相似文献   

13.
Temporal changes in genetic variation within and between 13 North European cattle breeds were evaluated using erythrocyte antigen systems and transferrin protein as genetic markers. Current data on allele frequency distributions of markers in large commercial and smaller endangered native cattle breeds were compared to data published during 1956 to 1975. Intrabreed genetic variation was quantified by conventional parameters (e.g. heterozygosity, average number of alleles per locus) and migration by the effective migration rate. The neighbour-joining dendrogram of relationships between old and present cattle populations was constructed using Nei's standard genetic distance. Variance effective population size was estimated from changes in allele frequencies over time. Comparison of old and new data indicated some significant changes in allele frequencies. In six of the breeds, a few low-frequency alleles in the old data were absent in the present samples. Heterozygosity remained stable in most breeds. The harmonic means for variance effective population size ranged between 30 and 257. Current results indicate that despite marked declines in total population sizes, North European native cattle breeds have retained a reasonably high genetic diversity. However, their genes contribute less than previously to genetic variation of Nordic production breeds. Commercial breeds do not appear to have a larger effective population size than native breeds. The present effective population sizes imply that Nordic breeds could have lost from 1 to 11% of their heterozygosity over a 20-40-year period.  相似文献   

14.
Genetic diversity at the S‐locus controlling self‐incompatibility (SI) is often high because of negative frequency‐dependent selection. In species with highly patchy spatial distributions, genetic drift can overwhelm balancing selection and cause stochastic loss of S‐alleles. Natural selection may favor the breakdown of SI in populations with few S‐alleles because low S‐allele diversity constrains the seed production of self‐incompatible plants. We estimated S‐allele diversity, effective population sizes, and migration rates in Leavenworthia alabamica, a self‐incompatible mustard species restricted to discrete habitat patches in rocky glades. Patterns of polymorphism were investigated at the S‐locus and 15 neutral microsatellites in three large and three small populations with 100‐fold variation in glade size. Populations on larger glades maintained more S‐alleles, but all populations were estimated to harbor at least 20 S‐alleles, and mate availabilities typically exceeded 0.80, which is consistent with little mate limitation in nature. Estimates of the effective size (Ne) in each population ranged from 600 to 1600, and estimated rates of migration (m) ranged from 3 × 10−4 to nearly 1 × 10−3. According to theoretical models, there is limited opportunity for genetic drift to reduce S‐allele diversity in populations with these attributes. Although pollinators or resources limit seed production in small glades, limited S‐allele diversity does not appear to be a factor promoting the incipient breakdown of SI in populations of this species that were studied.  相似文献   

15.
The distribution of neutral genetic variability within and among sets of populations results from the combined actions of genetic drift, migration, extinction and recolonization processes, mutation, and the mating system. We here analyzed these factors in 38 populations of the hermaphroditic snail Bulinus truncatus. The sampling area covered a large part of the species range. The variability was analyzed using four polymorphic microsatellite loci. A very large number of alleles (up to 55) was found at the level of the whole study. Observed heterozygote deficiencies within populations are consistent with very high selfing rates, generally above 0.80, in all populations. These should depress the variability within populations, because of low effective size, genetic hitchhiking, and background selection, whatever the model of mutation assumed. However, that some populations exhibit much more variability than others suggests that historical demographic processes (e.g., population size variation, bottlenecks, or founding events) may play a significant role. A hierarchical analysis of the distribution of the variability across populations indicates a strong pattern of isolation by distance, whatever the geographical scale considered. Our analysis also illustrates how the mutation rate may affect population differentiation, as different mutation rates result in different levels of homoplasy at microsatellite loci. The effects of both genetic drift and gene flow vary with the temporal and spatial scales considered in B. truncatus populations.  相似文献   

16.
利用本实验室克隆的16个和国际上发表的8个微卫星标记,对4个中华绒螯蟹群体(江苏、安徽、辽宁、天津)的遗传多样性进行检测。所检测到的扩增片段长度为80—445bp,在群体间扩增出2—10个等位基因,共计155个等位基因,平均等位基因6.458个。4个中华绒螯蟹群体的平均有效等位基因数(Ne)为4.3491—4.7234,平均观察杂合度(Ho)为0.5690—0.6722,平均期望杂合度(He)为0.7238—0.7546,并通过基因型的P值,确定了7个座位处于Hardy-Weinberg平衡;同时对4个群体的遗传距离进行了估算,聚类分析结果表明,安徽、江苏、天津聚为一支,属于长江河蟹类型,辽河种群单独聚为一支。  相似文献   

17.
Abstract. An island model of migration is used to study the effects of subdivision within populations and species on sample genealogies and on between-population or between-species measures of genetic variation. The model assumes that the number of demes within each population or species is large. When populations (or species), connected either by gene flow or historical association, are themselves subdivided into demes, changes in the migration rate among demes alter both the structure of genealogies and the time scale of the coalescent process. The time scale of the coalescent is related to the effective size of the population, which depends on the migration rate among demes. When the migration rate among demes within populations is low, isolation (or speciation) events seem more recent and migration rates among populations seem higher because the effective size of each population is increased. This affects the probability of reciprocal monophyly of two samples, the chance that a gene tree of a sample matches the species tree, and relative likelihoods of different types of polymorphic sites. It can also have a profound effect on the estimation of divergence times.  相似文献   

18.
To examine the effects of recent habitat fragmentation, we assayed genetic diversity in a rain forest endemic lizard, the prickly forest skink (Gnypetoscincus queenslandiae), from seven forest fragments and five sites in continuous forest on the Atherton tableland of northeastern Queensland, Australia. The rain forest in this region was fragmented by logging and clearing for dairy farms in the early 1900s and most forest fragments studied have been isolated for 50-80 years or nine to 12 skink generations. We genotyped 411 individuals at nine microsatellite DNA loci and found fewer alleles per locus in prickly forest skinks from small rain forest fragments and a lower ratio of allele number to allele size range in forest fragments than in continuous forest, indicative of a decrease in effective population size. In contrast, and as expected for populations with small neighbourhood sizes, neither heterozygosity nor variance in allele size differed between fragments and sites in continuous forests. Considering measures of among population differentiation, there was no increase in FST among fragments and a significant isolation by distance pattern was identified across all 12 sites. However, the relationship between genetic (FST) and geographical distance was significantly stronger for continuous forest sites than for fragments, consistent with disruption of gene flow among the latter. The observed changes in genetic diversity within and among populations are small, but in the direction predicted by the theory of genetic erosion in recently fragmented populations. The results also illustrate the inherent difficulty in detecting genetic consequences of recent habitat fragmentation, even in genetically variable species, and especially when effective population size and dispersal rates are low.  相似文献   

19.
The self-incompatibility (S-) locus of flowering plants is among the most polymorphic known. PCR methods can now be used to estimate both the number of alleles in natural populations and their sequence diversity. The number of alleles provides an estimate of recent effective population size, thus the S-locus provides a tool for examining how species characteristics affect population size. Sequence relationships among alleles provide another estimate of population size extending millions of years into the past. Relationships between S-alleles and related genes provide a means of dating the age of origin of incompatibility systems and determining which, if any, angiosperm families share incompatibility by homology.  相似文献   

20.
Razorback sucker (Xyrauchen texanus) was once common and widely distributed throughout the Colorado River drainage of western North America. Water development and predation by non-native species led to significant decrease in the species’ range, and dramatic reduction in size of remaining populations. Previous analyses of mtDNA variation determined that most variation was found within locations and that haplotypes were randomly distributed relative to geography, indicating these samples represent remnants of a single, basin-wide population. In addition, both diversity and number of haplotypes declined progressively down- to upstream, consistent with geologically-recent expansion into the northern portions of the basin. Analyses of variation at 13 microsatellite loci also identified a decrease in genetic variation from down- to upstream, also consistent with the hypothesis of recent expansion. Analyses of population structure identified three distinct groups, but the majority of microsatellite variation was found within populations. Most individuals from the upper Colorado River were identified as a discrete unit. These individuals exhibited high levels of relatedness, indicating this represented an isolated group of closely related individuals. There also were significant differences between populations above and below the Grand Canyon; however, estimates of Θ were relatively low. Given nothing is known of local adaptation in this species, populations above and below the canyon should be managed as independent units; however, if numbers become too low it will be possible to translocate individuals from southern populations northward to increase levels of genetic variability and decrease relatedness within units. These results also illustrate the need for careful consideration of all available information when using molecular data in identifying units for management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号