首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biodegradable molecularly imprinted polymers based on poly(ε-caprolactone)   总被引:1,自引:0,他引:1  
Novel biodegradable molecularly imprinted polymers (MIPs) based on poly(ε-caprolactone) (PCL) were prepared by combining two important properties required of ideal biomaterials, biodegradability (with biocompatibility) and molecular recognition properties. Acrylate or methacrylate end-capped PCL macromers were synthesized through the reaction of PCL diol or triol with acryloyl or methacryloyl chloride. The synthesis of acrylate or methacrylate end-capped macromers was confirmed using FT-IR and H NMR spectroscopic techniques. These macromers were used to prepare biodegradable crosslinked networks by photopolymerization with functional monomer (acrylic acid) and a model template (theophylline). The theophylline-imprinted polymer showed higher binding capacity for theophylline compared with non-imprinted polymer (NIP), and also showed selectivity for theophylline over caffeine (similar structure molecules). PCL-based MIP degraded 8% of the initial weight in 30 days in phosphate-buffered saline (PBS) solution (pH 7.4) and over 90% of the initial weight within 24 h in 1 N NaOH at 37°C.  相似文献   

2.
In this study, we synthesized and characterized a series of macromers based on poly( N-isopropylacrylamide) that undergo thermally induced physical gelation and, following chemical modification, can be chemically cross-linked. Macromers with number average molecular weights typically ranging from 2000-3500 Da were synthesized via free radical polymerization from, in addition to N-isopropylacrylamide, pentaerythritol diacrylate monostearate, a bifunctional monomer containing a long hydrophobic chain, acrylamide, a hydrophilic monomer, and hydroxyethyl acrylate, a hydrophilic monomer used to provide hydroxyl groups for further chemical modification. Results indicated that the hydrophobic-hydrophilic balance achieved by varying the relative concentrations of comonomers used during synthesis was an important parameter in controlling the transition temperature of the macromers in solution and stability of the resultant gels. Storage moduli of the macromers increased over 4 orders of magnitude once gelation occurred above the transition temperature. Furthermore, chemical cross-linking of these macromers resulted in gels with increased stability compared to uncross-linked controls. These results demonstrate the feasibility of synthesizing poly( N-isopropylacrylamide)-based macromers that undergo tandem gelation and establish key criteria relating to the transition temperature and stability of these materials. The data suggest that these materials may be attractive substrates for tissue engineering and cellular delivery applications as the combination of mechanistically independent gelation techniques used in tandem may offer superior materials with regard to gelation kinetics and stability.  相似文献   

3.
We present polymeric hydrogel biomaterials that are biomimetic both in their synthesis and degradation. The design of oligopeptide building blocks with dual enzymatic responsiveness allows us to create polymer networks that are formed and functionalized via enzymatic reactions and are degradable via other enzymatic reactions, both occurring under physiological conditions. The activated transglutaminase enzyme factor XIIIa was utilized for site-specific coupling of prototypical cell adhesion ligands and for simultaneous cross-linking of hydrogel networks from factor XIIIa substrate-modified multiarm poly(ethylene glycol) macromers. Ligand incorporation is nearly quantitative and thus controllable, and does not alter the network's macroscopic properties over a concentration range that elicits specific cell adhesion. Living mammalian cells can be encapsulated in the gels without any noticeable decrease in viability. The degradation of gels can be engineered to occur, for example, via cell-secreted matrix metalloproteinases, thus rendering these gels interesting for biomedical applications such as drug delivery systems or smart implants for in situ tissue engineering.  相似文献   

4.
Novel biodegradable hydrogels by photocrosslinking macromers based on chitosan derivative are reported. Photocrosslinkable macromers, a water-soluble (methacryloyloxy) ethyl carboxyethyl chitosan were prepared by Michael-addition reaction between chitosan and ethylene glycol acrylate methacrylate. The macromers were characterized by Fourier transform infrared spectroscopy, (1)H NMR and (13)C NMR. Hydrogels were fabricated by exposing aqueous solutions of macromers with 0.1% (w/v) photoinitiator to UV light irradiation, and their swelling kinetics as well as degradation behaviors was evaluated. The results demonstrated that the degradation rates were affected strongly by crosslinking density. The hydrogel was compatible to Vero cells, not exhibiting significant cytotoxicity. Cell culture assay also demonstrated that the hydrogels were good in promoting the cell attachment and proliferation, showing their potential as tissue engineering scaffolds.  相似文献   

5.
Organophosphorous hydrolase (OPH) was physically and covalently immobilized within photosensitive polyethylene glycol (PEG)-based hydrogels. The hydroxyl ends of branched polyethylene glycol (b-PEG, four arms, MW = 20,000) were modified with cinnamylidene acetate groups to give water-soluble, photosensitive PEG macromers (b-PEG-CA). The b-PEG-CA macromers underwent photocrosslinking reaction and formed gels upon UV irradiation (>300 nm) in the presence of erythrosin B. Native OPH was pegylated with cinnamylidene-terminated PEG chains (MW = 3400) to be covalently linked with the b-PEG-CA macromers during photogelation. The effect of pegylation on the stability of the enzyme was determined. Furthermore, the effect of enzyme concentration, wavelength of irradiation, and photosensitizer on the stability of the entrapped enzyme was also investigated. The pegylated OPH was more stable than the native enzyme, and the OPH-containing gels exhibited superior stability than the soluble enzyme preparations.  相似文献   

6.
Du JZ  Sun TM  Weng SQ  Chen XS  Wang J 《Biomacromolecules》2007,8(11):3375-3381
Novel biodegradable hydrogels by photo-cross-linking macromers based on polyphosphoesters and poly(ethylene glycol) (PEG) are reported. Photo-cross-linkable macromers were synthesized by ring-opening polymerization of the cyclic phosphoester monomer 2-(2-oxo-1,3,2-dioxaphospholoyloxy) ethyl methacrylate (OPEMA) using PEG as the initiator and stannous octoate as the catalyst. The macromers were characterized by 1H NMR, Fourier transform infrared spectroscopy, and gel permeation chromatography measurements. The content of polyphosphoester in the macromer was controlled by varying the feed ratio of OPEMA to PEG. Hydrogels were fabricated by exposing aqueous solutions of macromers with 0.05% (w/w) photoinitiator to UV light irradiation, and their swelling kinetics as well as degradation behaviors were evaluated. The results demonstrated that cross-linking density and pH values strongly affected the degradation rates. The macromers was compatible to osteoblast cells, not exhibiting significant cytotoxicity up to 0.5 mg/mL. "Live/dead" cell staining assay also demonstrated that a large majority of the osteoblast cells remained viable after encapsulation into the hydrogel constructs, showing their potential as tissue engineering scaffolds.  相似文献   

7.
In pursuit of a wound-specific corneal adhesive, hydrogels formed by the reaction of propionaldehyde, butyraldehyde, or 2-oxoethyl succinate-functionalized poly(ethylene glycol) (PEG) with a peptide-based dendritic cross-linker (Lys(3)Cys(4)) were characterized. These macromers react within minutes of mixing to form transparent and elastic hydrogels with in vitro degradation times that range from hours to months based on the type of bonds formed during the cross-linking reaction, either thiazolidine or pseudoproline. The mechanical properties of these materials, determined via parallel plate rheology, were dependent on the polymer concentration, as was the hydrogel adhesive strength, which was determined by lap shear adhesive testing. In addition, these hydrogels were efficacious in closing ex vivo 4.1 mm central corneal lacerations: wounds closed with these hydrogel adhesives were able to withstand intraocular pressure values equivalent to, or in excess of, those obtained by closing the wounds with suturing.  相似文献   

8.
Poly (vinyl alcohol) (PVA) hydrogels are highly attractive for biomedical applications, especially for controlled release of drugs and proteins. Recently, degradable PVA hydrogels have been described, having the advantage that the material disappears over time from the implantation site. Herein, we report the synthesis of radiopaque degradable PVA, which gives a further advantage that the position of the hydrogel can precisely be determined by X-ray fluoroscopy. Radiopacity has been introduced by replacing 0.5% of the pendent alcohol groups on the PVA with 4-iodobenzoylchloride. This level of substitution rendered the polymer adequately radiopaque. The subsequent modification of 0.8% of the pendent hydroxyl groups with an ester acrylate functional group allowed for cross-linking of the macromers. The radiopaque hydrogels degraded over a time span of 140 days. Rheology data suggested that the macromer solutions were appropriate for injection.  相似文献   

9.
Glycidylmethacrylate-modified dextran macromers (Dex-GMA) of different degrees of substitution (DS) were synthesized. The elastic modulus of the hydrogels produced using one-component and two-component macromer systems was measured using rheometry. When one macromer of DS 1/10 was used, a hydrogel modulus in the range of 0.2 Pa to 42 kPa was obtained by varying the Dex-GMA concentration from 80 to 200 mg/mL. When a mixture of two macromers of different DS (1/10 and 1/23) was used, a more uniform variation of modulus in the range of 0.4 Pa to 42 kPa was achieved by controlling the ratio of the two macromers. When dextran hydrogels were functionalized with fibronectin and immobilized onto glass substrates, the attachment, spreading, and growth of human aortic smooth muscle cells were modulated by the elastic properties of the dextran matrix. The dextran hydrogel system with tunable mechanical and biochemical properties appears promising for applications in cell culture and tissue engineering.  相似文献   

10.
Triblock copolymers of functionalized poly(lactic acid)-b-poly(ethylene glycol)-b-poly(lactic acid) (PLA-b-PEG-b-PLA) have been widely investigated as precursors for fabricating resorbable polymeric drug delivery vehicles and tissue engineering scaffolds. Previous studies show degradation and erosion behavior of PLA-b-PEG-b-PLA hydrogels to rely on macromer chemistry as well as structural characteristics of the cross-linked networks. In this research, the degradation kinetics of diacrylated PLA-b-PEG-b-PLA copolymers as soluble macromers and cross-linked gels are directly compared as a function of macromer concentration, buffer pH, and ionic strength. The pseudo first-order rate constants for degradation of soluble macromers increase with water concentration and show a minimum at intermediate pH values, but are insensitive to ionic strength. The degradation rate constants for covalently cross-linked gels display a greater sensitivity to local water concentration and a minimum at lower pH values than corresponding soluble macromers. In addition, ionic strength significantly affects the rate of gel degradation due to the direct correlation between the degree of network ionization and gel water content.  相似文献   

11.
Hyaluronic acid (HA) is a natural polysaccharide abundant in biological tissues with excellent potential for constructing synthetic extracellular matrix analogues. In this work, we established a simple and dependable approach to prepare hyaluronic acid-based hydrogels with controlled stiffness and cell recognition properties for use as cell-interactive substrates. This approach relied on a new procedure for the synthesis of methacrylate-modified HA macromers (HA-MA) and, on photorheometry allowing real time monitoring of gelation during photopolymerization. We showed in this way the ability to obtain gels that encompass the range of physiologically relevant elastic moduli while still maintaining the recognition properties of HA by specific cell surface receptors. These hydrogels were prepared from HA macromers having a degree of methacrylation <0.5, which allows to minimize compromising effects on the binding affinity of HA to its cell receptors due to high substitution on the one hand, and to achieve nearly 100% conversion of the methacrylate groups on the other. When the HA hydrogels were immobilized on glass substrates, it was observed that the attachment and the spreading of a variety of mammalian cells rely on CD44 and its coreceptor RHAMM. The attachment and spreading were also shown to be modulated by the elastic properties of the HA matrix. All together, these results highlight the biological potential of these HA hydrogel systems and the needs of controlling their chemical and physical properties for applications in cell culture and tissue engineering.  相似文献   

12.
Tuning the degradation profiles of polymer cell carriers to match cell and tissue growth is an important design parameter for (cartilage) tissue engineering. In this study, degradable hydrogels were fabricated from divinyl, tetrafunctional poly(ethylene glycol) (PEG) and multivinyl, multifunctional poly(vinyl alcohol) (PVA) macromers to form homopolymer and copolymer gels. These gels were characterized by their volumetric swelling ratio and mass loss profiles as a function of degradation time. By variation of the macromer chemistry and functionality, the degradation time changed from less than 1 day for homopolymer PVA gels to 34 days for pure PEG gels. Furthermore, the degrading medium influenced mass loss, and a marked decrease in degradation time, from 34 to 12 days, was observed with the PEG gels when a chondrocyte-specific medium containing fetal bovine serum was employed. Interestingly, when copolymer gels of PEG and PVA were formed, PVA was released throughout the degradation (as determined by gel permeation chromatography) suggesting that covalent cross-linking of the PVA in the network was facilitated by copolymerizing with the PEG macromer. To assess these novel gels for cartilage tissue engineering applications, chondrocytes were photoencapsulated in the copolymer networks and cultured in vitro for up to 6 weeks. DNA, glycosaminoglycan (GAG), and total collagen contents increased with culture time, and the resulting neocartilaginous tissue at 6 weeks was homogeneously distributed as seen histologically. Biochemical analysis revealed that the constructs were comprised of 0.66 +/- 0.04 microg of DNA/mg wet weight (ww), 1.0 +/- 0.05% GAG/ww, and 0.29 +/- 0.07% total collagen/ww at 6 weeks. Furthermore, the compressive modulus increased during culture from 7 to 97 kPa as the neocartilaginous tissue evolved and the gel degraded. In summary, fabricating hydrogels through the copolymerization of PEG and PVA macromers is an effective tool for encapsulating chondrocytes, controlling gel degradation profiles, and generating cartilaginous tissue.  相似文献   

13.
Photoencapsulation of protein therapeutics is very attractive for preparing biomolecule-loaded hydrogels for a variety of biomedical applications. However, detrimental effects of highly active radical species generated during photoencapsulation must be carefully evaluated to maintain efficient hydrogel cross-linking while preserving the structure and bioactivity of encapsulated biomolecules. Here, we examine the free-radical-mediated inactivation and incomplete release of proteins from photocurable hydrogels utilizing lysozyme as a conservative model system. Various protein photoencapsulation conditions were tested to determine the factors affecting lysozyme structural integrity and bioactivity. It was found that a portion of the lysozyme becomes conjugated to polymer chains at high photoinitiator concentrations and long polymerization times. We also found that the more hydrophilic photoinitiator Irgacure-2959 (I-2959, 2-hydroxy-1-[4-(hydroxyethoxy)phenyl]-2-methyl-1-propanone) causes more damage to lysozyme compared to the hydrophobic photoinitiator Irgacure-651 (I-651, 2,2-dimethoxy-2-phenylacetophenone), even though I-2959 has been previously shown to be more cytocompatible. Furthermore, while nonacrylated PEG provides only limited protection from the denaturing free radicals that are present during hydrogel curing, acrylated PEG macromers effectively preserve lysozyme structural integrity and bioactivity in the presence of either photoinitiator. Overall, these findings indicate how photopolymerization conditions (e.g., photoinitiator type and concentration, UV exposure time, etc.) must be optimized to obtain a functional hydrogel device that can preserve protein bioactivity and provide maximal protein release.  相似文献   

14.
Siloxane-polyurethane fouling-release (FR) coatings based on aminopropyl terminated poly(dimethylsiloxane) (PDMS) macromers were prepared and characterized for FR performance via laboratory biological assays. These systems rely on self-stratification, resulting in a coating with a siloxane-rich surface and polyurethane bulk. Previously, these coating systems have used PDMS with multiple functional groups which react into the polyurethane bulk. Here, aminopropyl terminated PDMS macromers were prepared, where a single amine group anchors the PDMS in the coating. Coatings were prepared with four molecular weights (1000, 5000, 10,000, and 15,000 g mol?1) and two levels of PDMS (5% and 10%). High water contact angles and low surface energies were observed for the coatings before and after water immersion, along with low pseudobarnacle removal forces. Laboratory bioassays showed reduced biofilm retention of marine bacteria, good removal of diatoms from coatings with low molecular weight PDMS, high removal of algal sporelings (young plants), and low removal forces of live barnacles.  相似文献   

15.
The impact of synthesis and solution formulation parameters on the swelling and mechanical properties of a novel class of thermally and chemically gelling hydrogels combining poly(N-isopropylacrylamide)-based thermogelling macromers containing pendant epoxy rings with polyamidoamine-based hydrophilic and degradable diamine cross-linking macromers was evaluated. Through variation of network hydrophilicity and capacity for chain rearrangement, the often problematic tendency of thermogelling hydrogels to undergo significant syneresis was addressed. The demonstrated ability to tune postformation dimensional stability easily at both the synthesis and formulation stages represents a significant novel contribution toward efforts to utilize poly(N-isopropylacrylamide)-based polymers as injectable biomaterials. Furthermore, the cytocompatibility of the hydrogel system under relevant conditions was established while demonstrating time- and dose-dependent cytotoxicity at high solution osmolality. Such injectable in situ forming degradable hydrogels with tunable water content are promising candidates for many tissue-engineering applications, particularly for cell delivery to promote rapid tissue regeneration in non-load-bearing defects.  相似文献   

16.
Siloxane–polyurethane fouling-release (FR) coatings based on aminopropyl terminated poly(dimethylsiloxane) (PDMS) macromers were prepared and characterized for FR performance via laboratory biological assays. These systems rely on self-stratification, resulting in a coating with a siloxane-rich surface and polyurethane bulk. Previously, these coating systems have used PDMS with multiple functional groups which react into the polyurethane bulk. Here, aminopropyl terminated PDMS macromers were prepared, where a single amine group anchors the PDMS in the coating. Coatings were prepared with four molecular weights (1000, 5000, 10,000, and 15,000 g mol?1) and two levels of PDMS (5% and 10%). High water contact angles and low surface energies were observed for the coatings before and after water immersion, along with low pseudobarnacle removal forces. Laboratory bioassays showed reduced biofilm retention of marine bacteria, good removal of diatoms from coatings with low molecular weight PDMS, high removal of algal sporelings (young plants), and low removal forces of live barnacles.  相似文献   

17.
Conducting polymer actuators based on polypyrrole are being developed for use in biorobotic fins that are designed to create and control forces like the pectoral fin of the bluegill sunfish (Lepomis macrochirus). It is envisioned that trilayer bending actuators will be used within, and as, the fin's webbing to create a highly controllable, shape morphing, flexible fin surface, and that linear conducting polymer actuators will be used to actuate the bases of the fin's fin-rays, like an agonist-antagonist muscle pair, and control the fin's stiffness. For this application, trilayer bending actuators were used successfully to reproduce the cupping motion of the sunfish pectoral fin by controlling the curvature of the fin's surface and the motion of its dorsal and ventral edges. However, the speed of these large polymer films was slow, and must be increased if the fin's shape is to be modulated synchronously with the fin's flapping motion. Free standing linear conducting polymer films can generate large stresses and strains, but there are many engineering obstacles that must be resolved in order to create linear polymer actuators that generate simultaneously the forces, displacements and actuation rates required by the fin. We present two approaches that are being used to solve the engineering challenges involved in utilizing conducting polymer linear actuators: the manufacture of long, uniform ribbons of polymer and gold film, and the parallel actuation of multiple conducting polymer films.  相似文献   

18.
The traditional bulk elastic modulus approach to plant cell pressure-volume relations is inconsistent with its definition. The relationship between the bulk modulus and Young's modulus that forms the basis of their usual application to cell pressure-volume properties is demonstrated to be physically meaningless. The bulk modulus describes stress/strain relations of solid, homogeneous bodies undergoing small deformations, whereas the plant cell is best described as a thin-shelled, fluid-filled structure with a polymer base. Because cell walls possess a polymer structure, an alternative method of mechanical analysis is presented using polymer elasticity principles. This initial study presents the groundwork of polymer mechanics as would be applied to cell walls and discusses how the matrix and microfibrillar network induce nonlinear stress/strain relationships in the cell wall in response to turgor pressure. In subsequent studies, these concepts will be expanded to include anisotropic expansion as regulated by the microfibrillar network.  相似文献   

19.
This study evaluates the in vitro biocompatibility of an injectable and biodegradable polymeric network based on poly(propylene fumarate) (PPF) and the cross-linking agent PPF-diacrylate (PPF-DA). Using a methyl tetrazolium (MTT) assay, the effect of the concentrations of PPF and PPF-DA on the cytotoxicity of its unreacted macromers, cross-linked networks, and degradation products was examined. The influence of network structure properties on cell viability and attachment to the cross-linked material was also investigated. The unreacted macromers exhibited a time- and dose-dependent cytotoxic response that increased with more PPF-DA in the mixture. Conversely, the cross-linked networks formed with more PPF-DA did not demonstrate an adverse response because increases in conversion and cross-linking density prevented the extraction of toxic products. Fibroblast attachment was observed on the PPF/PPF-DA networks with the highest double bond conversions. The degradation products, obtained from the complete breakdown of the networks in basic conditions, displayed a dose-dependent cytotoxic response. These results show that there are concerns regarding the biocompatibility of injectable, biodegradable PPF/PPF-DA networks but also sheds light onto potential mechanisms to reduce the cytotoxic effects.  相似文献   

20.
Polysaccharides are being processed into biomaterials for numerous biological applications due to their native source in numerous tissues and biological functions. For instance, hyaluronic acid (HA) is found abundantly in the body, interacts with cells through surface receptors, and can regulate cellular behavior (e.g., proliferation, migration). HA was previously modified with reactive groups to form hydrogels that are degraded by hyaluronidases, either added exogenously or produced by cells. However, these hydrogels may be inhibitory and their applications are limited if the appropriate enzymes are not present. Here, for the first time, we synthesized HA macromers and hydrogels that are both hydrolytically (via ester group hydrolysis) and enzymatically degradable. The hydrogel degradation and growth factor release was tailored through the hydrogel cross-linking density (i.e., macromer concentration) and copolymerization with purely enzymatically degradable macromers. When mesenchymal stem cells (MSCs) were encapsulated in the hydrogels, cellular organization and tissue distribution was influenced by the copolymer concentration. Importantly, the distribution of released extracellular matrix molecules (e.g., chondroitin sulfate) was improved with increasing amounts of the hydrolytically degradable component. Overall, this new macromer allows for enhanced control over the structural evolution of the HA hydrogels toward applications as biomaterials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号