首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ellipsometry and mechanically assisted sodium dodecyl sulphate elution was utilized to study the adsorption of human serum albumin (HSA), human immunoglobulin G (IgG), and laminin-1, as well as competitive adsorption from a mixture of these proteins on spin-coated and sintered hydroxyapatite (HA) surfaces, respectively. The HA surfaces were characterized with respect to wettability and roughness by means of water contact angles and atomic force microscopy, respectively. Both surface types were hydrophilic, and the average roughness (Sa) and surface enlargement (Sdr) were lower for the sintered compared to the spin-coated HA surfaces. The adsorbed amounts on the sintered HA increased as follows: HSA < laminin-1 < IgG < the protein mixture. For the competitive adsorption experiments, the adsorbed fractions increased accordingly: HSA < laminin-1 < IgG on both types of HA substratum. However, a higher relative amount of HSA and laminin-1 and a lower relative amount of IgG was found on the spin-coated surfaces compared to the sintered surfaces. The effects observed could be ascribed to differences in surface roughness and chemical composition between the two types of HA substratum, and could have an influence on selection of future implant surface coatings.  相似文献   

2.
The influence of protein stability on the adsorption and desorption behavior to surfaces with fundamentally different properties (negatively charged, positively charged, hydrophilic, and hydrophobic) was examined by surface plasmon resonance measurements. Three engineered variants of human carbonic anhydrase II were used that have unchanged surface properties but large differences in stability. The orientation and conformational state of the adsorbed protein could be elucidated by taking all of the following properties of the protein variants into account: stability, unfolding, adsorption, and desorption behavior. Regardless of the nature of the surface, there were correlation between (i) the protein stability and kinetics of adsorption, with an increased amplitude of the first kinetic phase of adsorption with increasing stability; (ii) the protein stability and the extent of maximally adsorbed protein to the actual surface, with an increased amount of adsorbed protein with increasing stability; (iii) the protein stability and the amount of protein desorbed upon washing with buffer, with an increased elutability of the adsorbed protein with increased stability. All of the above correlations could be explained by the rate of denaturation and the conformational state of the adsorbed protein. In conclusion, protein engineering for increased stability can be used as a strategy to decrease irreversible adsorption on surfaces at a liquid-solid interface.  相似文献   

3.
This study investigated the effect of glow discharge treatment of titania surfaces on plasma protein adsorption, by means of ellipsometry and mechanically assisted SDS elution. The adsorption and film elution of three plasma proteins, viz. human serum albumin (HSA), human immunoglobulin G (IgG) and laminin-1, as well as competitive adsorption from a mixture of the three proteins, showed that the adsorbed amount of the individual proteins after 1 h increased in the order HSA 相似文献   

4.
This study investigated the effect of glow discharge treatment of titania surfaces on plasma protein adsorption, by means of ellipsometry and mechanically assisted SDS elution. The adsorption and film elution of three plasma proteins, viz. human serum albumin (HSA), human immunoglobulin G (IgG) and laminin-1, as well as competitive adsorption from a mixture of the three proteins, showed that the adsorbed amount of the individual proteins after 1 h increased in the order HSA <IgG <laminin-1 ≤ protein mixture. Film elutability showed that 30 min of SDS interaction resulted in almost complete removal of adsorbed films. No difference in the total adsorbed amounts of individual proteins, or from the mixture, was observed between untreated and glow discharge treated titania surfaces. However, the composition of the adsorbed films from the mixture differed between the untreated and glow discharge treated substrata. On glow discharge-treated titania the fraction of HSA increased, the fraction of laminin-1 decreased and the fraction of IgG was unchanged compared to the adsorption on the untreated titania, which was attributed to protein–protein interactions and competitive/associative adsorption behaviour.  相似文献   

5.
The surface of chitosan films was modified using acid chloride and acid anhydrides. Chemical composition at the film surface was analyzed by attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). ATR-FTIR data verified that the substitution took place at the amino groups of chitosan, thus forming amide linkages, and the modification proceeded to the depth at least 1 microm. Choices of molecules substituted at the amino groups of the glucosamine units did affect the hydrophobicity of the film surface, as indicated by air-water contact angle analysis. The surface became more hydrophobic than that of non-modified film when a stearoyl group (C(17)H(35)CO-) was attached to the films. The reaction of chitosan films with succinic anhydride or phthalic anhydride, however, produced more hydrophilic films. Selected modified films were subjected to protein adsorption study. The amount of protein adsorbed, determined by bicinchoninic acid (BCA) assay, related to the types of attached molecules. The improved surface hydrophobicity affected by the stearoyl groups promoted protein adsorption. In contrast, selective adsorption behavior was observed in the case of the chitosan films modified with anhydride derivatives. Lysozyme adsorption was enhanced by H-bonding and charge attraction with the hydrophilic surface. While the amount of albumin adsorbed was decreased possibly due to negative charges that gave rise to repulsion between the modified surface and albumin. This study has demonstrated that it is conceivable to fine-tune surface properties which influence its response to bio-macromolecules by heterogeneous chemical modification.  相似文献   

6.
Adsorption characteristics of zein protein on hydrophobic and hydrophilic surfaces have been investigated to understand the orientation changes associated with the protein structure on a surface. The protein is adsorbed by a self-assembly procedure on a monolayer-modified gold surface. It is observed that zein shows higher affinity toward hydrophilic than hydrophobic surfaces on the basis of the initial adsorption rate followed by quartz crystal microbalance studies. Reflection absorption infrared (RAIR) spectroscopic studies reveal the orientation changes associated with the adsorbed zein films. Upon adsorption, the protein is found to be denatured and the transformation of alpha-helix to beta-sheet form is inferred. This transformation is pronounced when the protein is adsorbed on hydrophobic surfaces as compared to hydrophilic surfaces. Electrochemical techniques (cyclic voltammetry and impedance techniques) are very useful in assessing the permeability of zein film. It is observed that the zein moieties adsorbed on hydrophilic surfaces are highly impermeable in nature and act as a barrier for small molecules. The topographical features of the deposits before and after adsorption are analyzed by atomic force microscopy. The protein adsorbed on hydrophilic surface shows rod- and disclike features that are likely to be the base units for the growth of cylindrical structures of zein. The thermal stability of the adsorbed zein film has been followed by variable-temperature RAIR measurements.  相似文献   

7.
Plasma-polymerized films were formed on flat glass plates using allylamine, acrylic acid, acrolein, and allylcyanide as monomers. Adsorption of (125)I-labeled-proteins such as immunoglobulin G (IgG), its F(ab')(2) and Fc fragments, and human serum albumin (HSA) was measured on these plasma-polymerized (PP) films covering the glass plates and on commercially available polymer plates. The adsorption isotherm followed the Langmuir equation, from which the binding constant and amount of saturation binding were estimated. We found that, in general, a cationic surface had higher affinity for protein adsorption than an anionic surface. Among the surfaces examined, the PP-allylamine surface showed the highest binding capacity (264.2 nmol/m(2)) for F(ab')(2) fragment: it was remarkably high. Of the surfaces examined, the PP-acrylic acid surface showed the lowest binding capacity (12.8 nmol/m(2)) for F(ab')(2) fragment. The PP-acrylic acid surface also indicated the lowest protein binding capacity for IgG (16.5 nmol/m(2)), Fc-IgG (32.4 nmol/m(2)) and HSA (16.7 nmol/m(2)), respectively. These imply that the PP-acrylic acid film is useful to fabricate as a low protein adsorption material which expected to decrease cell adhesion. Results of our investigation indicate that the plasma-polymerization technique is promising for fabrication of a smart NanoBio-interface which can control the protein adsorption on a solid-phase substrate using a suitable monomer such as allylamine for the large adsorption and acrylic acid for the small adsorption.  相似文献   

8.
The fixation in the bone of an artificial titanium tooth root is believed to be initiated by the rapid adsorption of the proteins present in the surgical cavity on the titanium surface. The study of this adsorption should make it possible to predict the osseointegration capacities of new implant surface treatments. We describe here a new method, based on matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS), for quantifying proteins adsorbed on titanium surfaces fully identical to these designed for implantology. The key step of this method is a new MALDI-MS sample preparation allowing the adsorbed proteins to be removed from the surface and to be homogeneously dispersed in the matrix crystals. The adsorption of a model protein (lysozyme) on two titanium surfaces (polished and sandblasted) was studied in order to evaluate the method. The absolute MALDI-MS intensity was shown to vary linearly with the amount of adsorbed lysozyme. After dipping the titanium surfaces for different times in lysozyme solutions at different concentrations, the maximum amount of adsorbed lysozyme was measured by MALDI-MS and was shown to correspond to a lysozyme monolayer, which is consistent with results described in the literature.  相似文献   

9.
Ellipsometric studies have proved that monoclonal immunoglobulin G(IgG) against gamma-interferon (gamma-INF) and immunoglobulin fraction (Ig-fraction) of rabbit blood serum against human serum albumin (HSA) are adsorbed according to the Langmuir model on the surfaces of mirror plates of covalently modified gamma-INF or HSA, respectively. The maximum surface concentrations (Tmax) and equilibrium adsorption constants (K) for IgG and Ig-fraction are equal to 2.57 pmol/cm2 and 2 x 10(7) M-1, 3.3 mg/m2 and 0.1 cm3/micrograms, respectively. The additional treatment of gamma-INF modified surfaces with Tween-20 leads to an increase of K IgG ut to 2.7 x 10(-7) M-1 while Tmax decreases up to 1.12 pmol/cm2 which is conditioned by the blocking of protein non-specific binding sites. The role of specific and non-specific interactions of IgG and Ig-fraction with covalently immobilized antigens was studied at antibody-antigen mixture adsorption. The necessity to apply this method to quantitative determination of gamma-IHF and HSA in solutions was proved.  相似文献   

10.
The adsorption of proteins from high cell density yeast suspensions on mixed-mode fluoride-modified zirconia (FmZr) particles (38 to 75 microm, surface area of 29 m(2)/g and density of 2.8 g/cm(3)) was investigated using human serum albumin (HSA) added to Saccharomyces cerevesiae as the model expression host. Because of the high density of the porous zirconia particles, HSA (4 mg/mL) can be adsorbed from a 100 g dry cell weight (DCW)/L yeast suspension in a threefold-expanded bed of FmZr. The expanded bed adsorption of any protein from a suspension containing >50 g DCW/L cells has not been previously reported. The FmZr bed expansion characteristics were well represented by the Richardson-Zaki correlation with a particle terminal velocity of 3.1 mm/s and a bed expansion index of 5.4. Expanded bed hydrodynamics were investigated as a function of bed expansion using residence time distribution studies with sodium nitrite as the tracer. The adsorption of HSA on FmZr exhibited features of multicomponent adsorption due to the presence of dimers. The protein binding capacity at 5% breakthrough decreased from 22 mg HSA/mL settled bed void volume for 20 g DCW/L yeast to 15 mg HSA/mL settled bed void volume for 40 g DCW/L yeast and remained unchanged for the higher yeast concentrations (60 to 100 g DCW/L). However, the batch (or equilibrium) binding capacity decreased monotonically as a function of yeast concentration (20 to 100 g DCW/L) and the binding capacity at 100 g DCW/L yeast was fivefold lower compared with that at 20 g DCW/L yeast. The lower batch binding capacity at high cell concentrations resulted from the adsorption of cells at the surface of the particles restricting access of HSA to the intraparticle surface area. Batch (or equilibrium) and column HSA adsorption results indicated that the adsorption of HSA on FmZr occurred at a time scale that may be much faster than that of yeast cells. The zirconia particles were cleaned of adsorbed HSA and yeast with a total of 1500 to 2000 column volumes (over many cycles) of 0. 25 M NaOH, without any significant effect on the chromatographic performance.  相似文献   

11.
Experimental evidence suggests that proteins adsorbed to hydrophobic surfaces at low coverages are stabilized relative to the bulk. For larger coverages, proteins unfold and form β-sheets. We performed computer simulations on model proteins and found that: 1), For weakly adsorbing surfaces, unfolded conformations lose more entropy upon adsorption than folded ones. 2), The melting temperature, both in the bulk and at surfaces, decreases with increasing protein concentration because of favorable interprotein interactions. 3), Proteins in the bulk show large unfolding free energy barriers; this barrier decreases at stronger adsorbing surfaces. We conjecture that typical experimental temperatures appear to be below the bulk melting temperature for a single protein, but above the melting temperature for concentrated protein solutions. Purely thermodynamic factors then explain protein stabilization on adsorption at low concentrations. However, both thermodynamic and kinetic factors are important at higher concentrations. Thus, proteins in the bulk do not denature with increasing concentration due to large kinetic barriers, even though the aggregated state is thermodynamically preferred. However, they readily unfold upon adsorption, with the surface acting as a heterogeneous catalyst. The thermal behavior of proteins adsorbed to hydrophobic surfaces thus appears to follow behavior independent of their chemical specificity.  相似文献   

12.
The biological consequences of protein adsorption on biomaterial surfaces are considered to be of utmost importance for their biocompatibility. A new method based on amino group-labeling coupled to a chemiluminescence reaction for direct determination of proteins adsorbed on material surfaces was employed. This method was used to explore the effects of surface chemistry and surface roughness on protein adsorption in a silicon oxide model system. Corundum sandblasting was applied to silicon wafers to create roughened surfaces while immobilization of fluorocarbon-, hydrocarbon-, and poly(ethylene glycol)-containing silanes produced surfaces of varying wettability. The adsorption behavior of two complex body fluids, human serum and saliva, and of two purified components, human serum albumin and fibronectin, was strongly influenced by the surface parameters. A general tendency to higher amounts of adsorbed protein was found on roughened surfaces and modification with poly(ethylene glycol) or with fluorocarbon moieties reduced protein adsorption. The values obtained with the new method could be confirmed by a colorimetric determination of protein amounts adsorbed on identically modified silica beads and were in accordance with those previously reported utilizing established methods for protein quantification. The presented method, which was methodically simple to perform and allowed the simultaneous measurement of a large number of samples, may be of future value for high-throughput surveying of the protein adsorption characteristics of biomaterials.  相似文献   

13.
Different biologands carrying synthetic adsorbents have been reported in the literature for protein separation. We have developed a novel and new approach to obtain high protein adsorption capacity utilizing 2-methacrylamidohistidine (MAH) as a bioligand. MAH was synthesized by reacting methacrylochloride and histidine. Spherical beads with an average size of 150–200 μm were obtained by the radical suspension polymerization of MAH and 2-hydroxyethyl-methacrylate (HEMA) conducted in an aqueous dispersion medium. p(HEMA-co-MAH) beads had a specific surface area of 17.6 m2/g. Synthesized MAH monomer was characterized by NMR. p(HEMA-co-MAH) beads were characterized by swelling test, FTIR and elemental analysis. Then, Cu(II) ions were incorporated onto the beads and Cu(II) loading was found to be 0.96 mmol/g. These affinity beads with a swelling ratio of 65%, and containing 1.6 mmol. MAH/g were used in the adsorption/desorption of human serum albumin (HSA) from both aqueous solutions and human serum. The adsorption of HSA onto p(HEMA-co-MAH) was low (8.8 mg/g). Cu(II) chelation onto the beads significantly increased the HSA adsorption (56.3 mg/g). The maximum HSA adsorption was observed at pH 3.0 Higher HSA adsorption was observed from human plasma (94.6 mg HSA/g). Adsorption of other serum proteins were obtained as 3.7 mg/g for fibrinogen and 8.5 mg/g for γ-globulin. The total protein adsorption was determined as 107.1 mg/g. Desorption of HSA was obtained using 0.1 M Tris/HCl buffer containing 0.5M NaSCN. High desorption ratios (up to 98% of the adsorbed HSA) were observed. It was possible to reuse Cu(II) chelated-p(HEMA-co-MAH) beads without significant decreases in the adsorption capacities.  相似文献   

14.
The control of protein adsorption on microchannel surfaces is important for biosensors. In this study, we demonstrated protein adsorption method that is controlled through temperature change, i.e., thermoresponsive protein adsorption, on polydimethylsiloxane (PDMS) microchannel surfaces using a thermoresponsive polymer, poly(N-isopropylacrylamide) (PNIPAAm). To provide general protein adsorption control method, we adopted biotin-streptavidin chemistry and synthesized streptavidin covalently modified with PNIPAAm (PNIPAAm-StAv). Modification of streptavidin, a hydrophilic protein, with PNIPAAm induced successful thermoresponsive adsorption on a PDMS microchannel surfaces: PNIPAAm-StAv adsorbed at 37 degrees C and desorbed at 10 degrees C on the surfaces. We also demonstrated the thermoresponsive adsorption of biotinylated immunoglobulin G (IgG-b) using PNIPAAm-StAv. Conjugation of IgG-b with PNIPAAm-StAv induced successful thermoresponsive IgG-b adsorption on PDMS. Modification of PDMS surfaces with PNIPAAm reduced physical adsorption of the partially hydrophobic IgG-b on the surface and contributed to the high-contrast thermoresponsive adsorption of IgG-b: less than 1% of the IgG-b adsorbed at 37 degrees C was detected after the PNIPAAm-PDMS surface was washed at 10 degrees C. The controllable adsorption of this system is expected to be applied to the regeneration of biosensor chips and to on-chip protein manipulation.  相似文献   

15.
Adsorption of human serum albumin (HSA), egg albumin (EA), immunoglobulin G (IgG) and immunologic reactions occurring between them on silicon surface were studied by ellipsometry. Adsorption of HSA, IgG and antibodies on the monolayer of antigen is monomolecular in their isoelectric points and can be depicted by Langmuir's equation. Adsorption of EA is polymolecular apparently because of great tendency of the protein to aggregation in aqueous solutions. Comparison of the magnitudes of the protein monolayer thickness and areas per adsorbed molecule with their linear dimensions indicate that they preserve their native conformation. This allows an evaluation of the maximum number of the active sites (as approximately four) on the antigen surface accessible for antibodies and the adsorption constants for specific and nonspecific adsorption of IgG.  相似文献   

16.
The adsorption of the enzyme glucose oxidase (EC 1.1.3.4) to clays followed the pattern described for other proteins as being pH dependent. Maximum adsorption occurred at or below the isoelectric point of the enzyme. The amount of enzyme adsorbed to clay was influenced by the type of clay used, and also the saturating cations. Initially adsorbed enzyme showed low specific activities, and as amounts of enzyme adsorbed approached maximum stauration of clay, specific activities increased approaching that determined for free enzyme. The adsorption of glucose oxidase involved a temperature-independent cation-exchange mechanism, and enzyme adsorbed to surfaces of clay could be desorbed in active form by elevation of pH of suspending solution. This was followed by a slower temperature-dependent fixation, probably by hydrogen bonding, which resulted in protein being irreversibly adsorbed to clay surfaces. It is proposed that on adsorption of glucose oxidase to clay surfaces unravelling of the protein structure occurred, which allowed penetration of protein into the interlamellar spaces of montmorillonite. This proposal was based on the observed expansion of montmorillonite to 23 A, and the decreases in amount of a second-protein lysozyme adsorbed with extended incubation times of glucose oxidase - clay complexes at pH 4.5.  相似文献   

17.
The complex formed by the interaction of the amphiphilic penicillin drug nafcillin and human serum albumin (HSA) in water at 25 degrees C has been characterised using a range of physicochemical techniques. Measurements of the solution conductivity and the electrophoretic mobility of the complexes have shown an ionic adsorption of the drug on the protein surface leading to a surface saturation at a nafcillin concentration of 0.012 mmol kg(-1) and subsequent formation of drug micelles in solutions of higher nafcillin concentration. Measurements of the size of the complex and the thickness of the adsorbed layer by static and dynamic light scattering have shown a gradual change in hydrodynamic radius of the complex with increasing drug concentration typical of a saturation rather than a denaturation process, the magnitude of the change being insufficient to account for any appreciable extension or unfolding of the HSA molecule. The interaction potential between the HSA/nafcillin complexes, and the stability of the complexes were determined from the dependence of diffusion coefficients on protein concentration by application of the DLVO colloidal stability theory. The results indicate decreasing stability of the colloidal dispersion of the drug/protein complexes with an increase in the concentration of added drug.  相似文献   

18.
Utilization of 125I-labeled IgG enables an investigation of protein immobilized to gold electrodes sputter deposited on microporous nylon membranes, including the precise nature of the surface-protein bond (i.e. covalent or non-specific adsorption), physical location of the immobilized protein (i.e. on the surface of the gold electrode or within the pores of the membrane), and the amount of protein immobilized. This is accomplished by comparing the mass of protein immobilized to gold surfaces that have been treated in several different fashions, as well as, deposition of the gold on nylon membranes that have been treated differently. It is shown that these microporous gold electrodes, proposed previously for conducting novel non-separation electrochemical enzyme immunoassays, consist of multiple protein layers non-specifically adsorbed. Approximately, half of the total adsorbed protein is immobilized to the gold surface with the remaining protein bound within the pores on the nylon membrane.  相似文献   

19.
The adsorption of BSA and fibrinogen onto plasma-polymerized di-(ethylene glycol) vinyl ether, allylamine, and maleic anhydride films were investigated in detail by surface plasmon resonance spectroscopy (SPR). The chemical properties of the plasma polymers were initially determined by the plasma deposition conditions during the generation procedure. The analysis of the chemical structure of the films and the refractive index of plasma polymers in aqueous solution was carried out using Fourier transform infrared spectroscopy and waveguide mode spectroscopy, respectively. Using water contact angle measurement, the surface wettability of plasma polymers was also characterized. These properties have a critical influence on the behavior of protein adsorption on the surface of the plasma polymers. Protein adsorption was found to depend not only on the types of functionalized groups, but also on the plasma polymer thickness since the protein molecules penetrate into the plasma polymer network bulk. According to the size of protein molecules in aqueous solution and the amount of adsorbed proteins observed by SPR, the conformational changes of proteins could be deduced.  相似文献   

20.
原位椭圆偏振术研究牛血清清蛋白在固/液界面的吸附   总被引:1,自引:0,他引:1  
用原位椭圆偏振术系统研究了硅片表面因素及缓冲液环境因素对牛血清清蛋白在固/液界面吸附的影响。在生理条件下,疏水表面与亲水表面相比BSA吸附量较大。随着硅片表面电荷密度增加,BSA吸附量增加。BSA吸附量当体溶液pH值等于BSA等电点时达到最大。而随着体溶液离子强度增加,BSA吸附量亦上升。实验结果提示:除了熵驱动作用之外,硅片表面与BSA分子及BSA分子之间的静电作用在BSA吸附中起着十分重要的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号