首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mycoplasma sp. nov. strain 163K, the gliding microorganism isolated from the gills of a tench (Tinca tinca L.), is capable of chemotaxis, being attracted to sugars, amino acids, and mucus. The chemotactic behavior of the organisms was microscopically investigated and documented by long-time exposure photomicrographs providing motility tracks. In diffusion-generated concentration gradients of chemoattractive substances, the random motion of the mycoplasmas was strongly biased in the direction of increasing attractant concentrations.  相似文献   

2.
Rheotactic behavior of a gliding mycoplasma.   总被引:3,自引:3,他引:0       下载免费PDF全文
Mycoplasma mobile, a new gliding mycoplasma isolated from the gills of a fish, was capable of positive rheotaxis; the cells glided upstream in a moving fluid. To our knowledge this is the first demonstration of rheotactic behavior among the procaryotes.  相似文献   

3.
4.
Mycoplasma mobile glides on surfaces at up to 7 microm/s by an unknown mechanism. We studied the energetics that power gliding by using a novel, growth medium-free system. We found that cells could glide in defined media if the glass substrate is preconditioned by exposure to horse serum. The active component that potentiates gliding is sensitive to proteinase K treatment. We used the defined medium system to test the effect of various inhibitors, ionophores, and poisons on motility of M. mobile. Valinomycin, carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP), N,N'-dicyclohexylcarbodiimide, phenamil, amiloride, rifampin, and puromycin had no short-term effects on gliding. We also confirmed that we were able to modulate the membrane potential with valinomycin and FCCP by using a potential-sensitive dye. Shifting the pH likewise had no effect on motility. These results rule out the use of conventional ion motive forces to power gliding. Arsenate had a dramatic inhibitory effect on gliding, and both the speed and the fraction of cells moving tracked ATP levels. Sodium orthovanadate had a slight but significant inhibitory effect on gliding. Taken together, these results suggest that the motor system of M. mobile is likely an ATPase or is directly coupled to an ATPase.  相似文献   

5.
6.
  1. Download : Download high-res image (207KB)
  2. Download : Download full-size image
  相似文献   

7.
Gliding cells ofMycoplasma mobile 163K are able to transport attached sheep erythrocytes (RBC). The interaction between the mycoplasmas and the RBC was microscopically investigated with Nomarski interference-contrast microscopy and documented by microcine-matography and sequences of single-frame photomicrographs. Two morphological types of attachment are described, and the strength of interaction is calculated.  相似文献   

8.
Mycoplasma mobile glides on solid surfaces by the repeated binding of leg structures to sialylated oligosaccharide fixed on a solid surface. To obtain information about the propulsion caused by the leg, we made elongated and stiff cells using a detergent. Within 30 min after the cells were treated with 0.1% Tween 60, the cells were elongated from 0.8 μm to 2.2 μm in length while maintaining their gliding activity. Fluorescence and electron microscopy showed that a part of the cytoskeletal structure was elongated, while the localization of proteins involved in the gliding was not modified significantly. The elongated cells glided with repeated pivoting around the cellular position of gliding machinery by 10 degrees of amplitude at a frequency of 2 to 3 times per second, suggesting that the propulsion in a line perpendicular to the cell axis can occur with different timings. The pivoting speed decreased as the cell length increased, probably from the load generated by the friction. The torque required to achieve the actual pivoting increased with the cell length without saturation, reaching 54.7 pN nm at 4.3 μm in cell length.  相似文献   

9.
The cell membrane of Mycoplasma mobile was isolated by either ultrasonic or French press treatment of intact cells. The membrane fraction contained all of the cellular lipids, but only one-third of cellular proteins and had a density of 1.14 g ml-1. The soluble fraction contained the NADH dehydrogenase activity of the cells, as well as a protein with an apparent molecular mass of 55 kDa that was phosphorylated in the presence of ATP. Lipid analyses of M. mobile membranes revealed that membrane lipid could be labelled by radioactive glycerol, oleate and to a much higher extent by palmitate but not by acetic acid. The membrane lipid fraction was composed of 54% neutral and 46% polar lipid. The major constituents of the neutral lipid fraction were free fatty acid, free cholesterol and cholesterol esters (45, 25 and 20%, respectively, of total neutral lipid fraction). The free cholesterol count was 13% (w/w) of total membrane lipids with a cholesterol:phospholipid molar ratio of about 0.9. Among the polar lipids, both phospho- and glycolipids were detected. The phospholipid fraction consisted of a major de novo-synthesized phosphatidylglycerol (approximately 63% of total phospholipids), plus exogenous phosphatidylcholine and sphingomyelin incorporated in an unchanged form from the growth medium. The glycolipid fraction was dominated by a single glycolipid (approximately 90% of total glycolipids) that was preferentially labelled by palmitic acid and showed a very high saturated:unsaturated fatty acids ratio.  相似文献   

10.
Cells of Flavobacterium johnsoniae move rapidly over surfaces by a process known as gliding motility. Gld proteins are thought to comprise the motor that propels the cell surface adhesin SprB. Cells with mutations in sprB are partially defective in motility and are also resistant to some bacteriophages. Transposon mutagenesis of a strain carrying a deletion spanning sprB identified eight mutants that were resistant to additional phages and exhibited reduced motility. Four of the mutants had transposon insertions in remA, which encodes a cell surface protein that has a lectin domain and appears to interact with polysaccharides. Three other genes identified in this screen (remC, wza, and wzc) encode proteins predicted to be involved in polysaccharide synthesis and secretion. Myc-tagged versions of RemA localized to the cell surface and were propelled rapidly along the cell at speeds of 1 to 2 μm/s. Deletion of gldN and gldO, which encode components of a bacteroidete protein secretion system, blocked the transport of RemA to the cell surface. Overexpression of RemA resulted in the formation of cell aggregates that were dispersed by the addition of galactose or rhamnose. Cells lacking RemC, Wza, and Wzc failed to aggregate. Cells of a remC mutant and cells of a remA mutant, neither of which formed aggregates in isolation, aggregated when they were mixed together, suggesting that polysaccharides secreted by one cell may interact with RemA on another cell. Fluorescently labeled lectin Ricinus communis agglutinin I detected polysaccharides secreted by F. johnsoniae. The polysaccharides bound to cells expressing RemA and were rapidly propelled on the cell surface. RemA appears to be a mobile cell surface adhesin, and secreted polysaccharides may interact with the lectin domain of RemA and enhance motility.  相似文献   

11.
12.
The purpose of this study was to determine the swimmers’ loss of speed during the underwater gliding motion of a grab start. This study also set out to determine the kinematical variables influencing this loss of speed. Eight French national-level swimmers participated in this study. The swimmers were filmed using 4 mini-DV cameras during the entire underwater phase. Using the DLT technique and the Dempster's anthropometric data, swimmer's movement have been identified. Two principal components analysis (PCA) have been used to study the relations between the kinematical variables influencing the loss of speed. The swimmers reached a velocity between 2.2 and 1.9 m s?1 after their centre of mass covered a distance ranging between 5.63 and 6.01 m from the start wall. For this range of velocity, head position was included between 6.02 and 6.51 m. First PCA show that the kinematical parameters at the immersion (first image at which the swimmers’ whole body was under water) are included in the first two components. Second PCA show that the knee, hip and shoulder angles can be included in the same component. The present study identified the optimal instant for initiating underwater leg movements after a grab start. This study also showed that the performance during the underwater gliding motion is determined as much by variables at the immersion as by the swimmer's loss of speed. It also seems that to hold the streamlined position the synergetic action of the knee, the hip and the shoulder is essential.  相似文献   

13.
Non-toxic concentrations of various substances were tested for their influence on the gliding motility of Mycoplasma mobile 163K. A significant inhibitory effect on motility was observed with agents acting on nucleic acid synthesis (mitomycin), protein synthesis (puromycin, chloramphenicol), energy metabolism (p-chloromercuribenzoate, iodoacetate) and with compounds reacting with the cytoplasmic membrane or contractile elements (albumin, cholesterol, EDTA, 2-propanol, procain, CaCl2, MgCl2, colchicin and KI). The surface-active compounds Triton X-100, Tego and SDS increased the gliding velocity significantly in some concentrations and incubation periods. The results suggest that the motility of M. mobile depends on a functional cytoplasmic membrane and that cytoskeletal elements are involved in the gliding mechanism.  相似文献   

14.
A protein with a molecular mass of 42 kDa (P42) from Mycoplasma mobile, one of several mycoplasmas that exhibit gliding motility, was shown to be a novel NTPase (nucleoside triphosphatase). Although the P42 protein lacks a common ATP-binding sequence motif (Walker A), the recombinant proteins expressed in Escherichia coli certainly hydrolysed some nucleoside triphosphates, including ATP. The results of photoaffinity labelling by an ATP analogue supported that the P42 protein contains a specific binding site for ATP (or another nucleoside triphosphate). In the M. mobile genome, the P42 gene is located downstream of gli123, gli349 and gli521 genes, and they have been reported to be polycis-tronically transcribed. As the huge proteins encoded by gli123, gli349 and gli521 play a role in gliding motility of M. mobile, P42 might also have some kind of function in the gliding motility. The gliding motility of M. mobile is driven directly by ATP hydrolysis, but the key ATPase has not been identified. Our results showed that, among these four proteins, only P42 exhibited ATPase activity. Biochemical characteristics--optimal conditions for activity, substrate specificities, and inhibiting effects by ATP analogues--of the recombinant P42 proteins were very similar to those of a putative ATPase speculated from a previous analysis with a gliding 'ghost' whose cell membrane was permeabilized by Triton X-100. These results support the hypothesis that the P42 protein is the key ATPase in the gliding motility of M. mobile.  相似文献   

15.
16.
Mycoplasma mobile is a bacterium that uses a unique mechanism to glide on solid surfaces at a velocity of up to 4.5 μm/s. Its gliding machinery comprises hundreds of units that generate the force for gliding based on the energy derived from ATP; the units catch and pull sialylated oligosaccharides fixed to solid surfaces. In this study, we measured the stall force of wild-type and mutant strains of M. mobile carrying a bead manipulated using optical tweezers. The strains that had been enhanced for binding exhibited weaker stall forces than the wild-type strain, indicating that stall force is related to force generation rather than to binding. The stall force of the wild-type strain decreased linearly from 113 to 19 picoNewtons after the addition of 0–0.5 mM free sialyllactose (a sialylated oligosaccharide), with a decrease in the number of working units. After the addition of 0.5 mM sialyllactose, the cells carrying a bead loaded using optical tweezers exhibited stepwise movements with force increments. The force increments ranged from 1 to 2 picoNewtons. Considering the 70-nm step size, this small-unit force may be explained by the large gear ratio involved in the M. mobile gliding machinery.  相似文献   

17.
Cellular cardiac preparations in which spontaneous activity was suppressed by EGTA buffering were isolated by microdissection. Uniform and reproducible contractions were induced by iontophoretically released calcium ions. No effects of a diffusional barrier to calcium ions between the micropipette and the contractile system were detected since the sensitivity of the mechanical performance for calcium was the same regardless of whether a constant amount of calcium ions was released from a single micropipette or from two micropipettes positioned at different sites along the longitudinal axis of the preparation. Force development, muscle length, and shortening velocity of eitherisometric or isotopic contractions were measured simultaneously. Initial length, and hence preload of the preparation were established by means of an electronic stop and any additional load was sensed as afterload. Mechanical performance was derived from force velocity relations and from the interrelationship between simultaneously measured force, length, and shortening velocity. From phase plane analysis of shortening velocity vs, instantaneous length during shortening and from load clamp experiments, the interrelationship between force, shortening, and velocity was shown to be independent of time during the major portion of shortening. Moreover, peak force, shortening, and velocity of shortening depended on the amount of calcium ions in the medium at low and high ionic strength.  相似文献   

18.
Several mycoplasma species are known to glide in the direction of the membrane protrusion (head-like structure), but the mechanism underlying this movement is entirely unknown. To identify proteins involved in the gliding mechanism, protein fractions of Mycoplasma mobile were analyzed for 10 gliding mutants isolated previously. One large protein (Gli349) was observed to be missing in a mutant m13 deficient in hemadsorption and glass binding. The predicted amino acid sequence indicated a 348,758-Da protein that was truncated at amino acid residue 1257 in the mutant. Immunofluorescence microscopy with a monoclonal antibody showed that Gli349 is localized at the head-like protrusion's base, which we designated the cell neck, and immunoelectron microscopy established that the Gli349 molecules are distributed all around this neck. The number of Gli349 molecules on a cell was estimated by immunoblot analysis to be 450 +/- 200. The antibody inhibited both the hemadsorption and glass binding of M. mobile. When the antibody was used to treat gliding mycoplasmas, the gliding speed and the extent of glass binding were inhibited to similar extents depending on the concentration of the antibody. This suggested that the Gli349 molecule is involved not only in glass binding for gliding but also in movement. To explain the present results, a model for the mechanical cycle of gliding is discussed.  相似文献   

19.
20.
Mycoplasma mobile cells glide on solid surfaces such as glass with a fast and continuous motion in the direction of the membrane protrusion (head-like structure) at one cell pole. To examine its cell-surface movement, a latex bead was attached to a cell and behavior in gliding was monitored. The bead was carried without movement relative to the cell body, suggesting that the cell does not roll around the cell axis and the surface movement is limited to a small area. A small percentage of cells showed an elongated head-like structure in an old batch culture. The head-like structure moved forward, sometimes leaving the cell body in one position, resulting in a stretching of this head-like structure. These results indicate that the head-like structure drags the cell body, leading us to conclude that the force for gliding is generated at the head-like structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号