首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recombinant plasmids were constructed by fusing the gene fragments encoding the full-length (1-191aa) and the truncated (1-40aa and 1-69aa) HCV core proteins (HCc) respectively to the core gene of HBV at the position of amino acid 144 and expressed in E. coli. The products were analyzed by ELISA, Western blotting as well as the immunization of the mice. The results showed that those fusion proteins (B144C191, B144C69, B144C40) possessed the dual antigenicity and immunogenicity of both hepatitis B virus core antigen (HBcAg) and hepatitis C virus core protein (HCc). Analysis by electron microscopy and CsCl density gradient ultra-centrifugation revealed that similar to the HBcAg itself, all fusion proteins were able to form particles. Comparison of the antigenicity and immunogenicity of those fusion proteins showed that the length of HCc gene fused to HBeAg had no much effect on the antigenicity and immunogenicity of HBcAg, however, B144C69 and B144C40 induced higher titres antibodies against HCc than B14d  相似文献   

2.
Recombinant plasmids were constructed by fusing the gene fragments encoding the full-length (1-191aa) and the truncated (1-40aa and l-69aa) HCV core proteins (HCc) respectively to the core gene of HBV at the position of amino acid 144 and expressed inE. coli. The products were analyzed by ELISA, Western blotting as well as the immunization of the mice. The results showed that those fusion proteins (B144C191, B144C69, B144C40) possessed the dual antigenicity and immunogenicity of both hepatitis B virus core antigen (HBcAg) and hepatitis C virus core protein (HCc). Analysis by electron microscopy and CsCI density gradient ultra-centrifugation revealed that similar to the HBcAg itself, all fusion proteins were able to form particles. Comparison of the antigenicity and immunogenicity of those fusion proteins showed that the length of HCc gene fused to HBcAg had no much effect on the antigenicity and immunogenicity of HBcAg, however, B144C69 and B144C40 induced higher titres antibodies against HCc than B144C191. Using those fusion proteins, ELISA for screening of antibodies against both HBV and HCV in human sera was also established.  相似文献   

3.
Human fibroblast activation protein (FAP), an integral membrane serine protease, was produced in insect cells as a hexa-His-tagged protein using a recombinant baculovirus expression system. Two isoforms of FAP, glycosylated and nonglycosylated, were identified by Western blotting using an anti-His-tag antibody and separated by lectin chromatography. The glycosylated FAP was purified to near homogeneity using immobilized metal affinity chromatography and was shown to have both postprolyl dipeptidyl peptidase and postgelatinase activities. In contrast, the nonglycosylated isoform demonstrated no detectable gelatinase activity by either zymography or a fluorescence-based gelatinase activity assay. The kinetic parameters of the dipeptidyl peptidase activity for glycosylated FAP were determined using dipeptide Ala-Pro-7-amino-trifluoromethyl-coumarin as the substrate. The k(cat) is 2.0 s(-1) and k(cat)/K(m) is 1.0 x 10(4) M(-1) s(-1) at pH 8.5. The pH dependence of k(cat) reveals two ionization groups with pK(a1) of 7.0 and pK(a2) of 11.0. The pH profile of k(cat)/K(m) yields similar results with pK(a1) 6.2 and pK(a2) 11.0. The neutral pK(a1) is associated with His at the active site. The basic pK(a2) might be contributed from an ionization group that is not involved directly in catalysis, instead associated with the stability of the active site structure.  相似文献   

4.
The nonstructural protein 3 (NS3) of the hepatitis C virus (HCV) is a bifunctional protein with protease and helicase activities. Nonstructural protein 4A (NS4A) is preceded by NS3 and augments the proteolytic activity of NS3 through protein-protein interaction. The central domain of NS4A has been shown to be sufficient for the enhancement of the NS3 protease activity. However, investigations on the roles of the N-terminal and the C-terminal regions of NS4A have been hampered by the difficulty of purification of full-length NS4A, a polypeptide that contains highly hydrophobic amino acid residues. Here we report a procedure by which one can produce and purify an active, full-length NS4A using maltose-binding protein fusion method. The full-length NS4A fused to the maltose binding protein is soluble and maintains its NS3 protease-enhancing activity.  相似文献   

5.
Many studies have provided evidence that hepatitis B surface antigen (HBsAg) including preS1 and preS2 sequences could be an ideal candidate for a new hepatitis B virus (HBV) vaccine with higher efficacy. However, the large (L) protein containing the entire preS region expressed in mammalian cells is not efficiently assembled into particles and secreted. Here we report an alternative approach to include the dominant epitopes of preS1 and preS2 to the small (S) protein as fusion proteins by the recombinant DNA technology. Three fusion proteins containing preS2(120-146) and preS1(21-47) at the N-terminus and/or truncated C-terminus of S protein were expressed using the recombinant vaccinia virus system. All these fusion proteins were efficiently secreted in the particulate form, and displayed S, preS1 and/or preS2 antigenicity. Further analysis showed that these chimeric HBsAg particles elicited strong antibody responses against S, preS1 and preS2 antigens in BALB/c mice, suggesting that they could be promising candidates for a new recombinant vaccine to induce broader antibody response required for protection against hepatitis B viral infection.  相似文献   

6.
The NS5B encoded by the hepatitis C virus genome is a RNA-dependent RNA polymerase essential to viral replication. The entire NS5B protein contains a catalytic domain followed by a regulatory motif and a membrane-anchor domain at its C-terminus. Reported here is the molecular cloning and expression of the full-length NS5B polymerase (NS5B-FL) in bacterial cells as a non-fusion protein. The non-tagged NS5B-FL was purified to homogeneity using sequential chromatographic columns and its identity was confirmed using anti-NS5B peptide antibodies and amino acid sequencing. Purified NS5B-FL demonstrated RNA-dependent RNA polymerase activity and was able to replicate a HCV RNA genome fragment through both copy-back and de novo mechanisms. Its biochemical properties were further characterized in comparison with a truncated form of NS5B polymerase with a deletion of 51 residues from its C-terminus.  相似文献   

7.
Aims: To display a liver‐specific ligand on the hepatitis B virus core particles for cell‐targeting delivery. Methods and Results: A liver cell–binding ligand (preS1) was fused at the N‐terminal end of the hepatitis B core antigen (HBcAg), but the fusion protein (preS1His6HBcAg) was insoluble in Escherichia coli and did not form virus‐like particles (VLPs). A method to display the preS1 on the HBcAg particle was established by incorporating an appropriate molar ratio of the truncated HBcAg (tHBcAg) to the preS1His6HBcAg. Gold immunomicroscopy showed that the subunit mixture reassembled into icosahedral particles, displaying the preS1 ligand on the surface of VLPs. Fluorescence microscopy revealed that the preS1 ligand delivered the fluorescein‐labelled VLPs into the HepG2 cells efficiently. Conclusions: Chimeric VLPs containing the insoluble preS1His6HBcAg and highly soluble tHBcAg were produced by a novel incorporation method. The preS1 ligand was exposed on the surface of the VLPs and was shown to deliver fluorescein molecules into liver cells. Significance and Impact of Study: The newly established incorporation method can be used in the development of chimeric VLPs that could serve as potential nanovehicles to target various cells specifically by substituting the preS1 ligand with different cell‐specific ligands.  相似文献   

8.
Bax is a proapoptotic ion channel forming protein of the Bcl-2 family. In cells the protein is found in the cytosol and in the mitochondria membrane where it presumably is involved during apoptosis in disruption of the mitochondrial membrane potential and release of cytochrome c. The protein has a hydrophobic domain at the C-terminus, which renders it a limited solubility. Thus, all studies on recombinant Bax has so far been performed on C-terminal truncated protein. We have expressed and purified the full-length human Bax alpha. The protein was expressed with a His tag at the N-terminus and purified by affinity chromatography on Ni-NTA-agarose followed by ion-exchange chromatography on Q-Sepharose. The protein was more than 98% pure on SDS-PAGE and in the presence of 1% (w/v) octyl glucoside it could be concentrated up to 0.5 mg/ml. Full-length Bax was 25-fold more efficient, compared to C-terminal truncated Bax, in forming ion channels and trigger carboxyfluorescein release from liposomes.  相似文献   

9.
A full-length synthetic gene encoding the light chain of botulinum neurotoxin serotype B, approximately 50 kDa (BoNT/B LC), has been cloned into a bacterial expression vector pET24a+. BoNT/B LC was expressed in Escherichia coli BL21.DE3.pLysS and isolated from the soluble fraction. The resultant protein was purified to homogeneity by cation chromatography and was determined to be >98% pure as assessed by SDS-polyacrylamide gel stained with SilverXpress and analyzed by densitometry. Mass spectroscopic analysis indicated the protein to be 50.8 kDa, which equaled the theoretically expected mass. N-terminal sequencing of the purified protein showed the sequence corresponded to the known reported sequence. The recombinant BoNT/B light chain was found to be highly stable, catalytically active, and has been used to prepare antisera that neutralizes against BoNT/B challenge. Characterization of the protein including pH, temperature, and the stability of the protein in the presence or absence of zinc is described within. The influence of pH differences, buffer, and added zinc on secondary and tertiary structure of BoNT/B light chain was analyzed by circular dichroism and tryptophan fluorescence measurements. Optimal conditions for obtaining maximum metalloprotease activity and stabilizing the protein for long term storage were determined. We further analyzed the thermal denaturation of BoNT/B LC as a function of temperature to probe the pH and added zinc effects on light chain stability. The synthetic BoNT/B LC has been found to be highly active on its substrate (vesicle associated membrane protein-2) and, therefore, can serve as a useful reagent for BoNT/B research.  相似文献   

10.
The hepatitis B virus (HBV) core particle serves as a protective capsid shell for the viral genome and is highly immunogenic. Recombinant capsid-like core particles are used as effective carriers of foreign T and B cell epitopes and as delivery vehicles for oligonucleotides. The core monomer contains an arginine-rich C terminus that directs core particle attachment to cells via membrane heparan sulfate proteoglycans. Here we investigated the mechanism of recombinant core particle uptake and its intracellular fate following heparan sulfate binding. We found that the core particles are internalized in an energy-dependent manner. Core particle uptake is inhibited by chlorpromazine and by cytosol acidification known to block clathrin-mediated endocytosis but not by nystatin, which blocks lipid raft endocytosis. Particle uptake is abolished by expression of dominant negative forms of eps15 and Rab5, adaptors involved in clathrin-mediated endocytosis and early endosome transport, respectively. Endocytosed particles are transported to lysosomes where the core monomer is endoproteolytically cleaved into its distinct domains. Using protease inhibitors, cathepsin B was identified as the enzyme responsible for core monomer cleavage. Finally we found that monomer cleavage promotes particle dissociation within cells. Together, our results show that HBV capsid-like core particles are internalized through clathrin-mediated endocytosis, leading to lysosomal cleavage of the core monomer and particle dissociation.  相似文献   

11.
HBc-VLP can be used in an epitope presentation system to carry foreign epitopes and mimic live virus in order to study viral particle uptake, virion-mediated activation and antigen presentation by dendritic cells. In this study, a multifunctional mAb was produced using a novel research strategy. A truncated HBc-VLP bone vector with a special conformation was used as an immunogen and the target hybridoma cell lines were screened by a series of tests; including ELISA, Western blot, and cellular immunofluorescence based on the epitope presentation system. The screened monoclonal antibody was used to identify the HBc-VLP vector, a fusion HBc-VLP vaccine, and intracellular HBV capsids. The new strategy facilitated acquisition of the desired mAbs and will serve as a reference for other VLP-related research.  相似文献   

12.
A polypeptide corresponding to the full-length C-terminal cytoplasmic domain of a G-protein-regulated inwardly rectifying potassium channel (Kir3.1) bearing a hexahistidine (His6) tag was produced by DNA recombinant overexpression techniques in Escherichia coli. This permitted the isolation of approximately 5 mg of pure protein per liter of bacterial culture. Further purification by size exclusion chromatography (SEC) of the C-terminal domain revealed that it exists predominantly as a dimer. The secondary structure was estimated using circular dichroism measurements that indicated the presence of approximately 35% beta-sheet and approximately 15% alpha-helix. G-protein betagamma subunits incubated with His-tagged Kir3.1 C-terminal domain, bound to immobilized metal affinity chromatography (IMAC) resin, copurified with the peak of specifically eluted recombinant protein. These observations demonstrate that full-length Kir3.1 C-terminus can be purified in a stable conformation capable of binding proteins known to activate Kir3 channels and may contain elements involved in channel assembly.  相似文献   

13.
Hepatitis B virus X protein (HBx) is a multifunctional protein that interacts directly with many host proteins. For example, HBx interacts with anti-apoptotic proteins, Bcl-2 and Bcl-xL, through its BH3-like motif, which leads to elevated cytosolic calcium levels, efficient viral DNA replication and the induction of apoptosis. To facilitate sample preparation and perform detailed structural characterization of the complex between HBx and Bcl-xL, we designed and purified a recombinant HBx BH3-like motif-linker-Bcl-xL fusion protein produced in E. coli. The fusion protein was characterized by size exclusion chromatography, circular dichroism and nuclear magnetic resonance experiments. Our results show that the fusion protein is a monomer in aqueous solution, forms a stable intramolecular complex, and likely retains the native conformation of the complex between Bcl-xL and the HBx BH3-like motif. Furthermore, the HBx BH3-like motif of the intramolecular complex forms an α-helix. These observations indicate that the fusion protein should facilitate structural studies aimed at understanding the interaction between HBx and Bcl-xL at the atomic level.  相似文献   

14.
超氧化物歧化酶(SOD)家族是保护细胞免受正常代谢过程中产生的活性氧(ROS)毒性所必需的,含Mn2+离子的超氧化物歧化酶(Mn-SOD,SOD2)是其中最重要的一种。本研究合成了人源SOD2全基因序列,并将其插入带有GST的原核表达载体p GEX-4T-1中,成功构建了GST-SOD2融合蛋白表达质粒。然后,将重组质粒p GEX-4T-1-SOD2转化大肠杆菌BL21(DE3),用IPTG在25℃下诱导表达融合蛋白,得到可溶性GST-SOD2融合蛋白,经GST亲和树脂纯化得到比活为1 788 U/mg的纯蛋白,分子量约为46 k Da。利用凝血酶切去GST标签后经肝素亲和柱纯化得到了电泳纯的SOD2重组蛋白,该蛋白分子量约为25 k Da,与SOD2全长序列的理论分子量相符,比活为2 000 U/mg。两种重组SOD2蛋白在生理条件下都具有良好的SOD活性,且都具有显著的跨膜能力(P0.05)。这些工作为深入研究两种全长重组SOD2蛋白的结构与生物效应建立了基础。  相似文献   

15.
The expression vector pGEX-2T under the control of the IPTG-inducibletac promotor is effective for the production of a fusion protein of glutathione transferase (GST, 26 kDa) and promatrilysin (28 kDa) separated from the C-terminus of GST by a thrombin cleavage site. Zwittergen (palmityl sulfobetaine), 2%, solubilizes the fusion protein that is found associated with inclusion bodies. The solubilized fusion protein is purified by affinity chromatography on GSH agarose. Promatrilysin is obtained by thrombin cleavage either on the column or after GSH elution of the fusion protein. Mono S chromatography of the recovered protein yields homogeneous promatrilysin. The zinc content of promatrilysin and its activated enzyme product is slightly greater than 2 mol of zinc per mole of protein. The results indicate that the matrix metalloproteinases (MMPs) contain two metal-binding sites at which zinc is firmly bound and possibly a third site at which it is weakly bound. Primary sequence alignments for all the MMPs have a sequence homologous to the zinc-binding site of astacin,HExxHxxGxxH, suggesting one of the zinc sites is a catalytic one, in agreement with the known inhibition of these enzymes by chelators. However, the other zinc-binding site(s) likely reflect the different ways that astacin and the MMP subfamilies are stabilized, i.e., disulfides in astacin and metal ions in the MMPs.  相似文献   

16.
Vitronectin (VN) is one of the primary adhesive proteins in serum and serves to promote the attachment and spreading of a wide variety of cell types to tissue culture plastic. In this study, the pGEX2t expression vector was used to express full-length human VN as a GST-tagged fusion protein in Escherichia coli. GST/VN production was induced with IPTG and the protein was found to localize to inclusion bodies. The inclusion bodies were isolated from cell lysates, washed once with 2 M urea and Triton X-100, and then solubilized with 8 M urea in the presence of a reducing compound. Solubilized GST/VN was purified by heparin affinity chromatography and refolded by dialysis against phosphate buffered saline. Approximately 40 mg of GST/VN was recovered from 1L of bacterial culture. Purified GST/VN migrated at the predicted molecular mass on SDS-PAGE and was recognized by both anti-GST and anti-VN antibodies. GST/VN bound to heparin and promoted cell adhesion, spreading, and growth to a similar extent as that observed with plasma-derived VN. As such, the production of recombinant VN in bacteria represents a rapid and convenient method to produce large quantities of VN for cellular studies.  相似文献   

17.
18.
19.
Virus-like particles (VLPs) of the recombinant hepatitis B virus (HBV) core protein (HBc) are routinely used in HBV diagnostics worldwide and are of potential interest as carriers of foreign peptides (e.g., immunological epitopes and targeting addresses, and/or as vessels for packaged diagnostic and therapeutic nanomaterials). Despite numerous reports exploiting different expression systems, a rapid and comprehensive large-scale methodology for purification of HBc VLPs from yeast is still lacking. Here, we present a convenient protocol for highly efficient production and rapid purification of endotoxin-free ayw subtype HBc VLPs from the methylotrophic yeast Pichia pastoris. The HBc gene expression cassette along with the geneticin resistance gene was transferred to the P. pastoris genome via homologous recombination. A producer clone was selected among 2000 transformants for the optimal synthesis of the target protein. Fermentation conditions were established ensuring biomass accumulation of 163 g/L. A simple combination of pH/heat and salt treatment followed by a single anion-exchange chromatography step resulted in a more than 90% pure preparation of HBc VLPs, with a yield of about 3.0 mg per 1 g of wet cells. Purification is performed within a day and may be easily scaled up if necessary. The quality of HBc VLPs was verified by electron microscopy. Mass spectrometry analysis and direct polyacrylamide gel staining revealed phosphorylation of HBc at at least two sites. To our knowledge, this is the first report of HBc phosphorylation in yeast.  相似文献   

20.
Although many viruses replicate in the nucleus, little is known about the processes involved in the nuclear import of viral genomes. We show here that in vitro generated core particles of human hepatitis B virus bind to nuclear pore complexes (NPCs) in digitonin-permeabilized mammalian cells. This only occurred if the cores contained phosphorylated core proteins. Binding was inhibited by wheat germ agglutinin, by antinuclear pore complex antibodies, and by peptides corresponding either to classical nuclear localization signals (NLS) or to COOH-terminal sequences of the core protein. Binding was dependent on the nuclear transport factors importins (karyopherins) alpha and beta. The results suggested that phosphorylation induces exposure of NLS in the COOH-terminal portion of the core protein that allows core binding to the NPCs by the importin- (karyopherin-) mediated pathway. Thus, phosphorylation of the core protein emerged as an important step in the viral replication cycle necessary for transport of the viral genome to the nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号