首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Melanins are an important factor determining the vulnerability of mammalian skin to UV radiation and thus to UV-induced skin cancers. Transgenic mice overexpressing hepatocyte growth factor/scatter factor (HGF/SF) have extra-follicular dermal melanocytes, notably in the papillary upper dermis, and are susceptible to UV-induced melanoma. Pigmented HGF/SF neonatal mice are more susceptible than albino HGF/SF animals to UVA -induced melanoma, indicating an involvement of melanin in melanoma formation. This raises the question of the effect of transgenic HGF/SF on melanization. We developed a methodology to accurately quantitate both the production of melanin and the efficiency of melanogenesis in normal, and HGF/SF transgenic mice in vivo. Skin and hair shafts of 5 day old and adult (3 week old) C57BL/6-HGF/SF and corresponding C57BL/6 wild type mice were investigated by electron paramagnetic resonance spectroscopy (EPR) to quantitate melanin, by transmission electron microscopy (TEM) for the presence of melanosomes, and by standard histology and by Western blotting and zymography to determine the expression and activity of melanogenesis-related proteins. Eumelanin but no phaeomelanin was detected in transgenic C57BL/6-HGF and C57BL/6 wild type mice. Transgenic HGF/SF overexpression did not change the type of melanin produced in the skin or hair, did not affect the terminal content of melanin production in standard samples of hair and did not influence hair cycle/morphogenesis-related changes in skin thickness. No melanocytes were found in the epidermis and no melanosomes were found in epidermal keratinocytes. HGF/SF transgenic mice thus lack the epidermal melanin UV-protection found in constitutively dark human skin. We conclude that melanocytes in the HGF/SF transgenic mouse, particularly in the papillary dermis, are vulnerable to UVA which interacts with eumelanin but not phaeomelanin to induce melanoma.  相似文献   

2.
The color of hair, skin, and eyes in animals mainly depends on the quantity, quality, and distribution of the pigment melanin, which occurs in two types: black to brown eumelanin and yellow to reddish pheomelanin. Microanalytical methods to quantify the amounts of eumelanin and pheomelanin in biological materials were developed in 1985. The methods are based on the chemical degradation of eumelanin to pyrrole-2,3,5-tricarboxylic acid and of pheomelanin to aminohydroxyphenylalanine isomers, which can be analyzed and quantitated by high performance liquid chromatography. This review summarizes and compares eumelanin and pheomelanin contents in various pigmented tissues obtained from humans, mice, and other animals. These methods have become valuable tools to study the functions of melanin, the control of melanogenesis, and the actions and interactions of pigmentation genes. The methods have also found applications in many clinical studies. High levels of pheomelanin are found only in yellow to red hairs of mammals and in red feathers of birds. It remains an intriguing question why lower vertebrates such as fishes do not synthesize pheomelanin. Detectable levels of pheomelanin are detected in human skin regardless of race, color, and skin type. However, eumelanin is always the major constituent of epidermal melanin, and the skin color appears to be determined by the quantity of melanin produced but not by the quality.  相似文献   

3.
The skin constitutive pigmentation is given by the amount of melanin pigment, its relative composition (eu/pheomelanin) and distribution within the epidermis, and is largely responsible for the sensitivity to UV exposure. Nevertheless, a precise knowledge of melanins in human skin is lacking. We characterized the melanin content of human breast skin samples with variable pigmentations rigorously classified through the Individual Typology Angle (ITA) by image analysis, spectrophotometry after solubilization with Soluene‐350 and high‐performance liquid chromatography (HPLC) after chemical degradation. ITA and total melanin content were found correlated, ITA and PTCA (degradation product of DHICA melanin), and TTCA (degradation product of benzothiazole‐type pheomelanin) as well but not 4‐AHP (degradation product of benzothiazine‐type pheomelanin). Results revealed that human epidermis comprises approximately 74% of eumelanin and 26% pheomelanin, regardless of the degree of pigmentation. They also confirm the low content of photoprotective eumelanin among lighter skins thereby explaining the higher sensitivity toward UV exposure.  相似文献   

4.
In this article, we review the current state of knowledge concerning the physical and chemical properties of the eumelanin pigment. We examine properties related to its photoprotective functionality, and draw the crucial link between fundamental molecular structure and observable macroscopic behaviour. Where necessary, we also briefly review certain aspects of the pheomelanin literature to draw relevant comparison. A full understanding of melanin function, and indeed its role in retarding or promoting the disease state, can only be obtained through a full mapping of key structure-property relationships in the main pigment types. We are engaged in such an endeavor for the case of eumelanin.  相似文献   

5.
The mouse slaty (Dct(slt)) mutation is known to reduce the activity of dopachrome tautomerase (DCT). The reduced DCT activity inhibits melanosome maturation and reduces the melanin content in the skin, hair and eyes. It is not known whether eumelanin and pheomelanin synthesis in slaty melanocytes is modulated by melanogenic factors. In this study, to address this point, epidermal melanocytes derived from 0.5-, 3.5- and 7.5-day-old wild-type mice (Dct(+)/Dct(+) at the slaty locus) and from congenic mice mutant (Dct(slt) /Dct(slt) at that locus) were cultured in serum-free primary culture with or without additional L-tyrosine (Tyr). The content of melanin was measured by high-performance liquid chromatography in the cultured melanocytes as well as culture supernatants in serum-free primary culture. L-Tyr was found to increase the content of pheomelanin in addition to eumelanin in cultured slaty melanocytes and cuture supernatants at all ages tested. The eumelanin and pheomelanin contents in culture supernatants were greater than in cultured melanocytes. The eumelanin and pheomelanin contents in culture supernatants from 7.5-day-old slaty melanocytes in the presence of L-Tyr were greater than those from wild-type melanocytes. These results suggest that the inhibition of eumelanin synthesis by the slaty mutation can be partly restored by the addition of excess L-Tyr. Eumelanin and pheomelanin may accumulate with difficulty in slaty melanocytes and be easily released from them during skin development. L-Tyr may stimulate this release.  相似文献   

6.
Eumelanin was isolated from a sample of black, Indonesian human hair using three different published procedures: two different acid/base extractions and an enzymatic extraction. The morphology and spectroscopic properties of the isolated pigments differ significantly. The acid/base procedures both yield an amorphous material, while enzymatic extraction yields ellipsoidal melanosomes. Amino acid analysis shows that there is protein associated with the isolated pigments, accounting for 52, 40 and 14% of the total mass for the two acid/base extractions and the enzymatic extraction, respectively. The amino acid compositions do not correlate with those of keratin or tyrosinase. Metal elemental analysis shows that the acid/base extraction removes a majority of many metal ions bound to the pigment. Chemical degradation analysis by KMnO4/H+ and H2O2/OH- indicates significant differences between the pigments isolated by acid/base and enzymatic extraction. After correction for the protein mass in the two pigments, the lower yields of both pyrrole-2,3,5-tricarboxylic acid and pyrrole-2,3-dicarboxylic acid, eumelanin degradation products, indicate acid/base extraction modifies the chemical structure of the melanin, consistent with the result of Soluene solubilization assay. While the optical absorption spectra of the bulk pigments are similar, the spectra of the molecular weight less than 1000 mass fractions differ significantly. The data clearly indicate that pigment obtained from human hair by acid/base extraction contains significant protein, exhibits destruction of the melanosome, and possesses altered molecular structure. The acid/base extracted hair melanin is not representative of the natural material and is a poor model system for studying the physical and biological properties of melanins. The enzymatically extracted hair melanin, on the contrary, retains the morphology of intact melanosomes and is an excellent source of human melanin.  相似文献   

7.
The skin pigment melanin is produced in melanocytes in highly specialized organelles known as melanosomes. Melanosomes are related to the organelles of the endosomal/lysosomal pathway and can have a low internal pH. In the present study we have shown that melanin synthesis in human pigment cell lysates is maximal at pH 6.8. We therefore investigated the role of intramelanosomal pH as a possible control mechanism for melanogenesis. To do this we examined the effect of neutralizing melanosomal pH on tyrosinase activity and melanogenesis in 11 human melanocyte cultures and in 3 melanoma lines. All melanocyte cultures (9 of 9) from Caucasian skin as well as two melanoma cell lines with comparable melanogenic activity showed rapid (within 24 h) increases in melanogenesis in response to neutralization of melanosomal pH. Chemical analysis of total melanin indicated a preferential increase in eumelanin production. Electron microscopy revealed an accumulation of melanin and increased maturation of melanosomes in response to pH neutralization. In summary, our findings show that: (i) near neutral melanosomal pH is optimal for human tyrosinase activity and melanogenesis; (ii) melanin production in Caucasian melanocytes is suppressed by low melanosomal pH; (iii) the ratio of eumelanin/phaeomelanin production and maturation rate of melanosomes can be regulated by melanosomal pH. We conclude that melanosomal pH is an essential factor which regulates multiple stages of melanin production. Furthermore, since we have recently identified that pink locus product (P protein) mediates neutralization of melanosomal pH, we propose that P protein is a key control point for skin pigmentation. We would further propose that the wide variations in both constitutive and facultative skin pigmentation seen in the human population could be associated with the high degree of P-locus polymorphism.  相似文献   

8.
The production of melanin in the hair and skin is tightly regulated by the melanocortin 1 receptor (MC1R) whose activation is controlled by two secreted ligands, alpha-melanocyte stimulating hormone (alphaMSH) and agouti signal protein (ASP). As melanin is extremely stable, lasting years in biological tissues, the mechanism underlying the relatively rapid decrease in visible pigmentation elicited by ASP is of obvious interest. In this study, the effects of ASP and alphaMSH on the regulation of melanin synthesis and on visible pigmentation were assessed in normal murine melanocytes and were compared with the quick depigmenting effect of the tyrosinase inhibitor, phenylthiourea (PTU). alphaMSH increased pheomelanin levels prior to increasing eumelanin content over 4 days of treatment. Conversely, ASP switched off the pigment synthesis pathway, reducing eu- and pheo-melanin synthesis within 1 day of treatment that was proportional to the decrease in tyrosinase protein level and activity. These results demonstrate that the visible depigmentation of melanocytes induced by ASP does not require the degradation of existing melanin but rather is due to the dilution of existing melanin by melanocyte turnover, which emphasizes the importance of pigment distribution to visible color.  相似文献   

9.
Certain drugs and chemicals, such as chloroquine, chlorpromazine, and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), are bound to melanin and retained in pigment cells for long periods. This specific retention in pigmented tissues can cause adverse effects in the skin, eye, inner ear, and pigmented nerve cells of the substantia nigra of the brain. To date, all studies have been focused on eu- and neuromelanin. In the present study, we show that chloroquine, chlorpromazine, chlomipramine, paraquat, acridine orange, and nickel, which are bound to eumelanin, also bind to synthetic pheomelanin, but the binding to pheomelanin is lower. The binding varied with the cysteine content and pH, and the results indicate that the binding is complex and includes ionic interactions. In addition, we have shown that these substances also bind to synthetic thiourea-containing melanin, but to quite a low extent. We also present a microautoradiographic study on the binding of 14C-chloroquine to natural pheomelanin in vivo in yellow mice C57BL (Ay/a). Black (C57/BL) and albino (NMRI) mice were used as controls. The autoradiography demonstrated a pronounced uptake of chloroquine in the hair follicles and the dermal melanocytes in the ear of yellow mice, which was comparable to the corresponding accumulation of label in black mice. In the albino mouse, the uptake was lower and more homogeneously distributed in the skin. These results suggest that the toxicological risks of melanin-related adverse effects are applicable to persons with a high content of pheomelanin in the skin and hair.  相似文献   

10.
Certain drugs and chemicals, such as chloroquine, chlorpromazine, and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), are bound to melanin and retained in pigment cells for long periods. This specific retention in pigmented tissues can cause adverse effects in the skin, eye, inner ear, and pigmented nerve cells of the substantia nigra of the brain. To date, all studies have been focused on eu- and neuromelanin. In the present study, we show that chloroquine, chlorpromazine, chlomipramine, paraquat, acridine orange, and nickel, which are bound to eumelanin, also bind to synthetic pheomelanin, but the binding to pheomelanin is lower. The binding varied with the cysteine content and pH, and the results indicate that the binding is complex and includes ionic interactions. In addition, we have shown that these substances also bind to synthetic thiourea-containing melanin, but to quite a low extent. We also present a microautoradiographic study on the binding of 14C-chloroquine to natural pheomelanin in vivo in yellow mice C57BL (Ay/a). Black (C57/BL) and albino (NMRI) mice were used as controls. The autoradiography demonstrated a pronounced uptake of chloroquine in the hair follicles and the dermal melanocytes in the ear of yellow mice, which was comparable to the corresponding accumulation of label in black mice. In the albino mouse, the uptake was lower and more homogeneously distributed in the skin. These results suggest that the toxicologi-cal risks of melanin-related adverse effects are applicable to persons with a high content of pheomelanin in the skin and hair.  相似文献   

11.
Although protein-carbohydrate interactions are supposed to play key roles in cell adhesion, signalling and growth control. Their exact role in skin physiology has only recently been investigated. The endogenous lectins galectin-1 and galectin-3 have been identified in skin including hair follicles. Here, we analyzed the expression and distribution of these galectins and their binding sites in C57BL/6 mice during hair cycle. The expression of galectin-1 and galectin-3 binding sites was found to be predominantly hair cycle-dependent showing some overlapping to the expression of galectin-1 and -3. The outer root sheath (ORS) expressed galectin-1 binding sites during anagen IV to VI and in early catagen, whereas galectin-1 was expressed from early anagen to late catagen. The ORS expressed galectin-3 binding sites during catagen transition corresponding to a galectin-3 expression during anagen V and catagen. The innermost layer of the ORS expressed galectin-3 binding sites during anagen VI until catagen VIII, but galectin-3 during anagen III to IV and catagen. The inner root sheath (IRS) expressed galectin-3 binding sites only in anagen IV but missed expression of any of the two galectins. The matrix cells expressed galectin-3 binding sites in catagen II-III as well as galectin-3 during anagen V to catagen IV. The present study provides the first evidence for a cycle-related expression of both galectin-1 and -3 and their binding sites during murine hair cycle.  相似文献   

12.
The pheo/eumelanin ratio of cultured normal human melanocytes is distinct from the ratio observed for the same cells in vivo where they are in close contact with keratinocytes. To study the possible involvement of keratinocytes in the control of melanogenesis, we compared quantitatively and qualitatively the melanin production in melanocyte mono-cultures, in melanocyte-keratinocyte co-cultures and in pigmented reconstructed epidermis. Pheomelanin and eumelanin contents were assessed by high-performance liquid chromatography with electrochemical and fluorometric detection of their specific degradation products and revealed striking differences in the presence of keratinocytes. In the absence of keratinocytes (melanocyte mono-cultures), we observed a very limited eumelanin production and a very high pheomelanin synthesis. The pheo/eumelanin ratio in mono-cultures could be slightly influenced by changing the composition of the culture medium, however, the very strong imbalance in favor of pheomelanin remained unchanged. An induction of eumelanin synthesis accompanied by an important reduction of pheomelanin formation was only observed in the presence of keratinocytes. The pheo/eumelanin ratio in melanocyte mono-culture dropped from 1043 down to about 25 in the presence of keratinocytes (co-cultures). The same observations were made when the melanocytes were integrated into a reconstructed human epidermis. Interestingly, under co-culture conditions resulting in only a partial contact between melanocytes and keratinocytes, the reduction of the pheo/eumelanin ratio were less pronounced. From these results we conclude that keratinocytes play an important role in the melanin production, affecting the melanogenic pathways.  相似文献   

13.
Although photodegradation of the retinal pigment epithelium (RPE) melanin may contribute to the etiology of age‐related macular degeneration, the molecular mechanisms of this phenomenon and the structural changes of the modified melanin remain unknown. Recently, we found that the ratio of pyrrole‐2,3,4,5‐tetracarboxylic acid (PTeCA) to pyrrole‐2,3,5‐tricarboxylic acid (PTCA) is a marker for the heat‐induced cross‐linking of eumelanin. In this study, we examined UVA‐induced changes in synthetic eumelanins to confirm the usefulness of the PTeCA/PTCA ratio as an indicator of photo‐oxidation and compared changes in various melanin markers and their ratios in human melanocytes exposed to UVA, in isolated bovine RPE melanosomes exposed to strong blue light and in human RPE cells from donors of various ages. The results indicate that the PTeCA/PTCA ratio is a sensitive marker for the oxidation of eumelanin exposed to UVA or blue light and that eumelanin and pheomelanin in human RPE cells undergo extensive structural modifications due to the life‐long exposure to blue light.  相似文献   

14.
Meng S  Kaxiras E 《Biophysical journal》2008,94(6):2095-2105
The molecular structure of melanin, one of the most ubiquitous natural pigments in living organisms, is not known and its multifaceted biological role is still debated. We examine structural models for eumelanin protomolecules, based on tetramers consisting of four monomer units (hydroquinone, indolequinone, and its two tautomers), in arrangements that contain an interior porphyrin ring. These models reproduce convincingly many aspects of eumelanin's experimentally observed behavior. In particular, we present a plausible synthetic pathway of the tetramers and their further complexation through interlayer stacking, or through formation of helical superstructures, into eumelanin macromolecules. The unsaturated nature of C-C bonds in indolequinone units and the finite size of protomolecules introduce covalent bond formation between stacked layers. We employ time-dependent density functional theory to calculate the optical absorption spectrum of each molecule along the eumelanin synthesis pathway, which gradually develops into the characteristic broad-band adsorption of melanin pigment due to electron delocalization. These optical spectra may serve as signatures for identifying intermediate structures.  相似文献   

15.
The color of hair, skin, and eyes in animals mainly depends on the quantity, quality, and distribution of the pigment melanin, which occurs in two types: black to brown eumelanin and yellow to reddish pheomelanin. Microanalytical methods to quantify the amounts of eumelanin and pheomelanin in biological materials were developed in 1985. The methods are based on the chemical degradation of eumelanin to pyrrole‐2,3,5‐tricarboxylic acid and of pheomelanin to aminohydroxyphenylalanine isomers, which can be analyzed and quantitated by high performance liquid chromatography. This review summarizes and compares eumelanin and pheomelanin contents in various pigmented tissues obtained from humans, mice, and other animals. These methods have become valuable tools to study the functions of melanin, the control of melanogenesis, and the actions and interactions of pigmentation genes. The methods have also found applications in many clinical studies. High levels of pheomelanin are found only in yellow to red hairs of mammals and in red feathers of birds. It remains an intriguing question why lower vertebrates such as fishes do not synthesize pheomelanin. Detectable levels of pheomelanin are detected in human skin regardless of race, color, and skin type. However, eumelanin is always the major constituent of epidermal melanin, and the skin color appears to be determined by the quantity of melanin produced but not by the quality.  相似文献   

16.
Melanocytes produce two chemically distinct types of melanin pigments, eumelanin and pheomelanin. These pigments can be quantitatively analyzed by acidic permanganate oxidation or reductive hydrolysis with hydriodic acid to form pyrrole-2,3,5-tricarboxylic acid or aminohydroxyphenylalanine, respectively. About 30 coat color genes in mice have been cloned, and functions of many of those genes have been elucidated. However, little is known about the interacting functions of these loci. In this study, we used congenic mice to eliminate genetic variability, and analyzed eumelanin and pheomelanin contents of hairs from mice mutant at one or more of the major pigment loci, i.e., the albino (C) locus that encodes tyrosinase, the slaty (Slt) locus that encodes tyrosinase-related protein 2 (TRP2 also known as dopachrome tautomerase, DCT), the brown (B) locus that encodes TRP1, the silver (Si) locus that encodes a melanosomal silver protein, the agouti (A) locus that encodes agouti signaling protein (ASP), the extension (E) locus that encodes melanocortin-1 receptor, and the mahogany (Mg) locus that encodes attractin. We also measured total melanin contents after solubilization of hairs in hot Soluene-350 plus water. Hairs were shaved from 2-3-month-old congenic C57BL/6J mice. The chinchilla (c(ch)) allele is known to encode tyrosinase, whose activity is about one third that of wild type (C). Phenotypes of chinchilla (c(ch)/c(ch)) mice that are wild type or mutant at the brown and/or slaty, loci indicate that functioning TRP2 and TRP1 are necessary, in addition to high levels of tyrosinase, for a full production of eumelanin. The chinchilla allele was found to reduce the amount of pheomelanin in lethal yellow and recessive yellow mice to less than one fifth of that in congenic yellow mice that were wild type at the albino locus. This indicates that reduction in tyrosinase activity affects pheomelanogenesis more profoundly compared with eumelanogenesis. Hairs homozygous for mutation at the slaty locus contain 5,6-dihydroxyindole-2-carboxylic acid (DHICA)-poor melanin, and this chemical phenotype was retained in hairs that were mutant at both the brown locus and the slaty locus. Hair from mice mutant at the brown locus, but not at the slaty locus, do not contain DHICA-poor melanin. This indicates that the proportion of DHICA in eumelanin is determined by TRP2, but not by TRP1. Mutation at the slaty locus (Slt(lt)) was found to have no effect on pheomelanogenesis, supporting a role of TRP2 only in eumelanogenesis. The mutation at silver (si) locus showed an effect similar to brown, a partial suppression of eumelanogenesis. The mutation at mahogany (mg) locus partially suppressed the effect of lethal yellow (Ay) on pheomelanogenesis, supporting a role of mahogany in interfering with agouti signaling. These results show that combination of double mutation study of congenic mice with chemical analysis of melanins is useful in evaluating the interaction of pigment gene functions.  相似文献   

17.
We isolated cultured melanocyte population from dorsal skin of C57BL/6J (genotype, a/a; C/C) new-born mouse and established several cell lines. One of the melanocyte clones, TM 10, produces both eumelanin and pheomelanin. This cell line seems to be suitable for study of the regulation mechanism of production of these pigments in vitro.  相似文献   

18.
小眼畸形转录因子(MITF)不仅是黑色素细胞发育、增殖和存活的必要调节因子,而且对调节相关酶和黑素体蛋白表达来确保黑色素产生具有至关重要的作用。MITF下游色素相关基因在小鼠毛囊生长周期中的表达及相关性仍有待研究。HE染色结果表明不同毛囊时期的小鼠毛囊呈现典型的组织形态学结构;免疫组织化学显示,MITF、GPNMB、OA1、TYR、TYRP2在不同毛囊生长周期中的毛基质及内外毛根鞘均有不同程度的阳性表达。黑色素测定结果表明,在毛囊生长初期和中期,碱性可溶性总黑色素(ASM)、真黑素(EM)以及褐黑素(PM)相对含量高于毛囊生长末期。蛋白免疫印迹结果表明,MITF、GPNMB、OA1、TYR、TYRP2在毛囊生长初期和中期蛋白质相对水平明显高于毛囊生长末期。实时荧光定量PCR结果表明, MITF、GPNMB、OA1、TYR、TYRP2、PMEL在毛囊生长初期和中期,mRNA相对表达量显著高于毛囊生长末期。在不同毛囊生长周期小鼠皮肤的MITF下游色素相关基因表达存在显著差异,表明上述因子在维持黑色素细胞色素生成是不可或缺的因素。  相似文献   

19.
Establishing structure-function relationships for eumelanin   总被引:3,自引:0,他引:3  
The aggregation-dependent optical properties of eumelanin from human hair are examined. When aggregation is increased, the absorption spectrum extends to lower energy. The absorption spectra of oligomers isolated from black human hair and Sepia officinalis are comparable and are in quantitative agreement with the reported action spectra for photoinduced oxygen consumption and free-radical generation by eumelanin. The agreement between the optical properties of human hair and squid eumelanins suggests the fundamental molecular constituents of the pigments are similar and aggregation-dependent photophysical behavior is a general feature of all eumelanins.  相似文献   

20.
Alleles at the agouti locus in the mouse determine the synthesis of either phaeomelanin or eumelanin by follicular melanocytes by altering the hair follicle environment. The method of dermal-epidermal recombination of mouse skin from C57BL/6J a/a and C57BL/6J A(w-J)/A(w-J) embryos was used in this study to establish the precise site of agouti gene action within the hair follicle. The pigmentary pattern of hairs formed in the recombination skin grafts was specific for the genotype of the dermal (mesodermal) component of the hair follicle. The genotype of the epidermal (ectodermal) component had no influence on the type of hair pigmentary pattern. These results indicate that future studies on gene mechanisms should focus on the dermis as the determining factor in altering the hair follicle environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号