首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Male adult (200-day-old) Chinese hamsters (Cricetulus griseus) raised from weaning under either LD 16:8 or LD 8:16 were used. The pineal gland of the Chinese hamster consists of superficial (major) and deep (minor) components and a continuous, or interrupted, narrow parenchymal stalk interposed between them. The volume of the superficial pineal including the parenchymal stalk is greater under LD 16:8 than under LD 8:16. Under both photoperiods, pinealocytes in the superficial pineal have larger nuclei and more abundant cytoplasm than those in the deep pineal. Nuclei in the superficial pineal appear pale and usually have irregular profiles, whereas those in the deep pineal appear dark and have round profiles. In the superficial pineal, pinealocyte nuclei are larger, paler, and more irregular; and, in addition, nuclear density is lower under LD 16:8 than under LD 8:16. Similar, but less prominent, photoperiod-induced changes occur in the volume of the deep pineal, the size of pinealocytes, and pinealocyte nuclear morphology in the deep pineal. The results indicate that the development and differentiation of pinealocytes in both pineal portions may be advanced under long photoperiods and delayed under short photoperiods, although pinealocytes in the deep pineal may remain not fully differentiated even in adults. Since testicular weights and body weights are similar under both photoperiods, the photoperiod may exert marked influences on the development of the pineal gland without affecting reproductive activity and growth rates of animals.  相似文献   

3.
4.
Adrenal quarters from adult male or female hamsters were incubated in the presence of melatonin (10(-7) or 10(-4)M), and cortisol concentration in the incubation medium was assayed by RIA. Melatonin did not change cortisol output by adrenals obtained from the male hamsters, while a slight stimulatory effect was observed in female glands, the lower concentration of melatonin being more effective than the higher one. At both concentrations tested, melatonin notably stimulated corticosterone output by isolated rat adrenocortical cells derived from the males, and lowered corticosterone secretion by the cells obtained from the female glands only at a concentration of 10(-7) M. The lower concentration of melatonin increased ACTH (0.1 mU.ml-1)-stimulated corticosterone output by the cells of male and female rat adrenals. The pineal hormone was ineffective at a concentration of 10(-4) M, as well as in the presence of a higher dose of ACTH (1.0 mU.ml-1). These findings indicate a distinct sex-dependent effect of melatonin on in vitro cortisol and corticosterone production, and demonstrate that the modulatory effect of melatonin of the secretion of steroid hormones is more effective at lower concentrations.  相似文献   

5.
6.
7.
Torpor was monitored daily in adult male and female European hamsters (Cricetus cricetus) induced to hibernate by exposure to a cold environment (6 degrees C). The effect of photoperiodic manipulations or administration of exogenous gonadal steroids was examined in gonadectomized or intact hamsters. 1. Gonadal regression occurred in all short day, but only in some long day, cold-exposed hamsters. Entry into hibernation was not observed until reproductive regression had occurred. Thus, gonadal atrophy appears to be a necessary precondition for hibernation. 2. Castrated hamsters in the short day cold condition showed a significantly greater incidence of torpor than those in the long day cold condition. Hence, photoperiod affected torpor independently of its effect on the gonadal cycle. 3. Testosterone, when administered via silastic capsules at near physiological levels, completely inhibited torpor in gonadectomized male and female hamsters hibernating in the short day cold condition. 4. In ovariectomized females, torpor was unaffected by progesterone treatment, but partially inhibited by estradiol. A greater inhibition of torpor was observed when estradiol-primed females were administered both estradiol and progesterone simultaneously. Thus, the effect of both hormones may be functionally comparable to that of the single testicular hormone. 5. Estradiol inhibited torpor to a greater extent in intact and ovariectomized female hamsters hibernating in long days than those in short days, suggesting an effect of photoperiod on responsiveness to estradiol. These results indicate an inverse relationship between the gonadal and hibernation cycles, and a probable role for gonadal steroids to influence the timing of the hibernation season. However, non-gonadal factors must also be involved in controlling hibernation, since photoperiod affected the incidence of torpor in gonadectomized animals and because hamsters were able to terminate hibernation in the absence of gonadal hormones.  相似文献   

8.
9.
10.
The secretion of glucocorticoid hormones is tightly regulated by the circadian clock and by negative humoral feedback loops, both acting on the hypothalamic-pituitary gland-adrenal axis. However, a new study Ishida et al., 2005 [this issue of Cell Metabolism) shows that light can influence the adrenal's glucocorticoid output by a more direct pathway.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
1. Sexually active male European hamsters raised under short photoperiod display high levels of plasma testosterone, high body weight and do not hibernate. 2. Castrated males in May, raised under the same conditions, do not hibernate and do not present the physiological body weight rhythm. 3. Normal and castrated animals under natural conditions enter hibernation and display a normal body weight rhythm. 4. Normal and castrated animals not submitted to the natural succession of long and short days do not enter hibernation. 5. Photoperiod directly controls body weight and hibernation gonadal interactions.  相似文献   

19.
20.
The impact of norepinephrine (NE) and its metabolite, 3-methoxy4-hydroxyphenylglycol (MHPG), on circulating prolactin (PRL) was evaluated in the paraventricular region of the hypothalamus as a function of photoperiod and integrity of the pineal gland. In Experiment 1, whole tissue content of NE and MHPG was assessed in male and female hamsters that had been pinealectomized or sham-pinealectomized and exposed to long or short photoperiods for 5 weeks. The results revealed a marginal effect of photoperiod in males, but no overall effects of surgery. Because analysis of whole tissue content can be complicated by concurrent changes in synthesis and storage rates, Experiment 2 was conducted using microdialysis to assess extracellular levels of NE and MHPG in female hamsters. Pinealectomy completely prevented the short-day-induced suppression of luteinizing hormone, but it only partially prevented the effects of short days on PRL. Furthermore, both NE and MHPG levels were significantly elevated in short-day-exposed pinealectomized and sham-operated animals. These results suggest that NE release within the paraventricular nucleus inhibits the circulating PRL levels and is one mechanism by which direct photic information can influence the neuroendocrine axis independently of the pineal melatonin signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号