首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adaptive diversification is a process intrinsically tied to species interactions. Yet, the influence of most types of interspecific interactions on adaptive evolutionary diversification remains poorly understood. In particular, the role of mutualistic interactions in shaping adaptive radiations has been largely unexplored, despite the ubiquity of mutualisms and increasing evidence of their ecological and evolutionary importance. Our aim here is to encourage empirical inquiry into the relationship between mutualism and evolutionary diversification, using herbivorous insects and their microbial mutualists as exemplars. Phytophagous insects have long been used to test theories of evolutionary diversification; moreover, the diversification of a number of phytophagous insect lineages has been linked to mutualisms with microbes. In this perspective, we examine microbial mutualist mediation of ecological opportunity and ecologically based divergent natural selection for their insect hosts. We also explore the conditions and mechanisms by which microbial mutualists may either facilitate or impede adaptive evolutionary diversification. These include effects on the availability of novel host plants or adaptive zones, modifying host-associated fitness trade-offs during host shifts, creating or reducing enemy-free space, and, overall, shaping the evolution of ecological (host plant) specialization. Although the conceptual framework presented here is built on phytophagous insect-microbe mutualisms, many of the processes and predictions are broadly applicable to other mutualisms in which host ecology is altered by mutualistic interactions.  相似文献   

2.
Adaptive diversification is a process intrinsically tied to species interactions. Yet, the influence of most types of interspecific interactions on adaptive evolutionary diversification remains poorly understood. In particular, the role of mutualistic interactions in shaping adaptive radiations has been largely unexplored, despite the ubiquity of mutualisms and increasing evidence of their ecological and evolutionary importance. Our aim here is to encourage empirical inquiry into the relationship between mutualism and evolutionary diversification, using herbivorous insects and their microbial mutualists as exemplars. Phytophagous insects have long been used to test theories of evolutionary diversification; moreover, the diversification of a number of phytophagous insect lineages has been linked to mutualisms with microbes. In this perspective, we examine microbial mutualist mediation of ecological opportunity and ecologically based divergent natural selection for their insect hosts. We also explore the conditions and mechanisms by which microbial mutualists may either facilitate or impede adaptive evolutionary diversification. These include effects on the availability of novel host plants or adaptive zones, modifying host-associated fitness trade-offs during host shifts, creating or reducing enemy-free space, and, overall, shaping the evolution of ecological (host plant) specialization. Although the conceptual framework presented here is built on phytophagous insect–microbe mutualisms, many of the processes and predictions are broadly applicable to other mutualisms in which host ecology is altered by mutualistic interactions.  相似文献   

3.
Ehrlich and Raven's essay on coevolution has stimulated voluminous work on the mechanisms of insect/plant interaction, but few explicit tests of their model's prediction that the evolutionary success of entire insect and plant clades is governed by their putative reciprocal adaptations. This paper begins an inquiry into possible coevolutionary diversification for North American milkweeds of the genus Asclepias and one of their few major herbivores, the longhorn beede genus Tetraopes , focusing first on the historical duration and continuity of the interaction. A phylogeny for Tetraopes and relatives, estimated from morphology and allozymes, shows evident similarity to a morphology based hostplant cladogram synthesized from the literature, though the significance of the correspondence under heuristic statistical tests depends on the treatment of one beede species reported (without certainty) from multiple host species. Fossils and biogeography support the interpretation that cladogram correspondence reflects synchronous diversification of these two clades, hence opportunity for coevolution, rather than beede 'host-tracking' of previously-diversified plants. Cladogram correspondence is more evident at higher than at lower levels, as expected under Ehrlich and Raven's model. An apparent phylogenetic progression in the potency and location of milkweed cardenolides, seemingly related to species diversity of both Asclepias and Tetraopes subclades, provides further suggestive evidence for that model. The phylogeography of the Tetraopes /Asclepias assemblage suggests that extant species evolved largely in their current, often quite localized biomes, facilitating potential experimental tests for hypotheses of adaptation and counteradaptation and their importance to diversification.  相似文献   

4.
Phytophagous insects have a close relationship with their host plants. For this reason, their interactions can lead to important changes in insect population dynamics and evolutionary trajectories. Next generation sequencing (NGS) has provided an opportunity to analyze omics data on a large scale, facilitating the change from a classical genetics approach to a more holistic understanding of the underlying molecular mechanisms of host plant use by insects. Most studies have been carried out on model species in Holarctic and temperate zones. In tropical zones, however, the effects of use of various host plants on evolutionary insect history is less understood. In the current review, we describe how omics methodologies help us to understand phytophagous insect–host plant interactions from an evolutionary perspective, using as example the Neotropical phytophagous insect West Indian fruit fly, Anastrepha obliqua (Macquart) (Diptera: Tephritidae), an economically important fruit crop pest in the Americas. Anastrepha obliqua could adopt a generalist or a specialist lifestyle. We first review the adaptive molecular mechanisms of phytophagous insects to host plants, and then describe the main tools to study phytophagous insect–host plant interactions in the era of omics sciences. The omics approaches will advance the understanding of insect molecular mechanisms and their influence on diversification and evolution. Finally, we discuss the importance of a multidisciplinary approach that integrates the use of omics tools and other, more classical methodologies in evolutionary studies.  相似文献   

5.
Herbivorous insects and the plants on which they specialize, represent the most abundant terrestrial life on earth, yet their inter-specific interactions in promoting species diversification remains unclear. This study utilizes the discreet geologic attributes of Hawai'i and one of the most diverse endemic herbivore radiations, the leafhoppers (Hemiptera: Cicadellidae: Nesophrosyne), as a model system to understand the role of host-plant use in insect diversification. A comprehensive phylogeny is reconstructed to examine the origins, species diversification, and host-plant use of the native Hawaiian leafhoppers. Results support a monophyletic Nesophrosyne, originating from the Western Pacific basin, with a sister-group relationship to the genus Orosius. Nesophrosyne is characterized by high levels of endemicity according to individual islands, volcanoes, and geologic features. Clades demonstrate extensive morphologically cryptic diversity among allopatric species, utilizing widespread host-plant lineages. Nesophrosyne species are host-plant specific, demonstrating four dominant patterns of specialization that shape species diversification: (1) diversification through host switching; (2) specialization on widespread hosts with allopatric speciation; (3) repeated, independent shifts to the same hosts; and, (4) absence or low abundance on some host. Finally, evidence suggests competing herbivore radiations limit ecological opportunity for diversifying insect herbivores. Results provide evolutionary insights into the mechanisms that drive and shape this biodiversity.  相似文献   

6.
Patterns of diversification in species-rich clades provide insight into the processes that generate biological diversity. We tested different models of lineage and phenotypic diversification in an exceptional continental radiation, the ovenbird family Furnariidae, using the most complete species-level phylogenetic hypothesis produced to date for a major avian clade (97% of 293 species). We found that the Furnariidae exhibit nearly constant rates of lineage accumulation but show evidence of constrained morphological evolution. This pattern of sustained high rates of speciation despite limitations on phenotypic evolution contrasts with the results of most previous studies of evolutionary radiations, which have found a pattern of decelerating diversity-dependent lineage accumulation coupled with decelerating or constrained phenotypic evolution. Our results suggest that lineage accumulation in tropical continental radiations may not be as limited by ecological opportunities as in temperate or island radiations. More studies examining patterns of both lineage and phenotypic diversification are needed to understand the often complex tempo and mode of evolutionary radiations on continents.  相似文献   

7.
Ehrlich and Raven's (1964) hypothesis on coevolution has stimulated numerous phylogenetic studies that focus on the effects of plant defensive chemistry as the main ecological axis of phytophagous insect diversification. However, other ecological features affect host use and diet breadth and they may have very different consequences for insect evolution. In this paper, we present a phylogenetic study based on DNA sequences from mitochondrial and protein-coding genes of species in the seed beetle genus Stator, which collectively show considerable interspecific variation in host affiliation, diet breadth, and the dispersal stage of the seeds that they attack. We used comparative analyses to examine transitions in these three axes of resource use. We argue that these analyses show that diet breadth evolution is dependent upon colonizing novel hosts that are closely or distantly related to the ancestral host, and that oviposition substrate affects the evolution of host-plant affiliation, the evolution of dietary specialization, and the degree to which host plants are shared between species. The results of this study show that diversification is structured by interactions between different selective pressures and along multiple ecological axes.  相似文献   

8.
The origins of evolutionary radiations are often traced to the colonization of novel adaptive zones, including unoccupied habitats or unutilized resources. For herbivorous insects, the predominant mechanism of diversification is typically assumed to be a shift onto a novel lineage of host plants. However, other drivers of diversification are important in shaping evolutionary history, especially for groups residing in regions with complex geological histories. We evaluated the contributions of shifts in host plant clade, bioregion, and elevation to diversification in Eois (Lepidoptera: Geometridae), a hyper‐diverse genus of moths found throughout the Neotropics. Relationships among 107 taxa were reconstructed using one mitochondrial and two nuclear genes. In addition, we used a genotyping‐by‐sequencing approach to generate 4641 SNPs for 137 taxa. Both datasets yielded similar phylogenetic histories, with relationships structured by host plant clade, bioregion, and elevation. While diversification of basal lineages often coincided with host clade shifts, more recent speciation events were more typically associated with shifts across bioregions or elevational gradients. Overall, patterns of diversification in Eois are consistent with the perspective that shifts across multiple adaptive zones synergistically drive diversification in hyper‐diverse lineages.  相似文献   

9.
Evolutionary radiation is a widely recognized mode of species diversification, but its underlying mechanisms have not been unambiguously resolved for species-rich cosmopolitan plant genera. In particular, it remains largely unknown how biological and environmental factors have jointly driven its occurrence in specific regions. Here, we use Rhododendron, the largest genus of woody plants in the Northern Hemisphere, to investigate how geographic and climatic factors, as well as functional traits, worked together to trigger plant evolutionary radiations and shape the global patterns of species richness based on a solid species phylogeny. Using 3,437 orthologous nuclear genes, we reconstructed the first highly supported and dated backbone phylogeny of Rhododendron comprising 200 species that represent all subgenera, sections, and nearly all multispecies subsections, and found that most extant species originated by evolutionary radiations when the genus migrated southward from circumboreal areas to tropical/subtropical mountains, showing rapid increases of both net diversification rate and evolutionary rate of environmental factors in the Miocene. We also found that the geographically uneven diversification of Rhododendron led to a much higher diversity in Asia than in other continents, which was mainly driven by two environmental variables, that is, elevation range and annual precipitation, and were further strengthened by the adaptation of leaf functional traits. Our study provides a good example of integrating phylogenomic and ecological analyses in deciphering the mechanisms of plant evolutionary radiations, and sheds new light on how the intensification of the Asian monsoon has driven evolutionary radiations in large plant genera of the Himalaya-Hengduan Mountains.  相似文献   

10.
For organisms involved in specialized ecological interactions, the potential exists to have congruent evolutionary histories, such that diversification within one lineage of organisms parallels diversification within another. This model of shared evolutionary history has most often been explored in a bitrophic context, particularly with plants and specialized herbivorous insects, though also with other ecological partners such as vertebrate hosts and their invertebrate parasites. Recently, the possibility has been raised that evolutionary histories might be shared across more than two trophic levels, a phenomenon that we term a phylogenetic cascade. We review previous work on tritrophic diversification and discuss outstanding questions, with an emphasis on plants, caterpillars, and parasitoids, in diverse tropical communities.  相似文献   

11.
Plant-insect interactions are key model systems to assess how some species affect the distribution, the abundance, and the evolution of others. Tree reproductive structures represent a critical resource for many insect species, which can be likely drivers of demography, spatial distribution, and trait diversification of plants. In this review, we present the ecological implications of predispersal herbivory on tree reproductive structures by insects (PIHR) in forest ecosystems. Both insect's and tree's perspectives are addressed with an emphasis on how spatiotemporal variation and unpredictability in seed availability can shape such particular plant-animal interactions. Reproductive structure insects show strong trophic specialization and guild diversification. Insects evolved host selection and spatiotemporal dispersal strategies in response to variable and unpredictable abundance of reproductive structures in both space and time. If PIHR patterns have been well documented in numerous systems, evidences of the subsequent demographic and evolutionary impacts on tree populations are still constrained by time-scale challenges of experimenting on such long-lived organisms, and modeling approaches of tree dynamics rarely consider PIHR when including biotic interactions in their processes. We suggest that spatially explicit and mechanistic approaches of the interactions between individual tree fecundity and in sect dynamics will clarify predictions of the demogenetic implications of PIHR in tree populations. In a global change context, further experimental and theoretical contributions to the likelihood of life-cycle disruptions between plants and their specialized herbivores, and to how these changes may gen erate novel dynamic patterns in each partner of the interaction are increasingly critical.  相似文献   

12.
We reviewed published phylogenies and selected 111 phylogenetic studies representing mammals, birds, insects, and flowering plants. We then mapped the latitudinal range of all taxa to test the relative importance of the tropical conservatism, out of the tropics, and diversification rate hypotheses in generating latitudinal diversity gradients. Most clades originated in the tropics, with diversity peaking in the zone of origin. Transitions of lineages between latitudinal zones occurred at 16–22% of the tree nodes. The most common type of transition was range expansions of tropical lineages to encompass also temperate latitudes. Thus, adaptation to new climatic conditions may not represent a major obstacle for many clades. These results contradict predictions of the tropical conservatism hypothesis (i.e., few clades colonizing extratropical latitudes), but support the out‐of‐the‐tropics model (i.e., tropical originations and subsequent latitudinal range expansions). Our results suggest no difference in diversification between tropical and temperate sister lineages; thus, diversity of tropical clades was not explained by higher diversification rates in this zone. Moreover, lineages with latitudinal stasis diversified more compared to sister lineages entering a new latitudinal zone. This preserved preexisting diversity differences between latitudinal zones and can be considered a new mechanism for why diversity tends to peak in the zone of origin.  相似文献   

13.
Abstract The search for pattern in the ecology and evolutionary biology of insect–plant associations has fascinated biologists for centuries. High levels of tropical (low-latitude) plant and insect diversity relative to poleward latitudes and the disproportionate abundance of host-specialized insect herbivores have been noted. This review addresses several aspects of local insect specialization, host use abilities (and loss of these abilities with specialization), host-associated evolutionary divergence, and ecological (including “hybrid”) speciation, with special reference to the generation of biodiversity and the geographic and taxonomic identification of “species borders” for swallowtail butterflies (Papilionidae). From ancient phytochemically defined angiosperm affiliations that trace back millions of years to recent and very local specialized populations, the Papilionidae (swallowtail butterflies) have provided a model for enhanced understanding of localized ecological patterns and genetically based evolutionary processes. They have served as a useful group for evaluating the feeding specialization/physiological efficiency hypothesis. They have shown how the abiotic (thermal) environment interacts with host nutrirional suitability to generate “voltinism/suitability” gradients in specialization or preference latitudinally, and geographical mosaics locally. Several studies reviewed here suggest strongly that the oscillation hypothesis for speciation does have considerable merit, but at the same time, some species-level host specializations may lead to evolutionary dead-ends, especially with rapid environmental/habitat changes involving their host plants. Latitudinal gradients in species richness and degree of herbivore feeding specialization have been impacted by recent developments in ecological genetics and evolutionary ecology. Localized insect–plant associations that span the biospectrum from polyphenisms, polymorphisms, biotypes, demes, host races, to cryptic species, remain academically contentious, with simple definitions still debated. However, molecular analyses combined with ecological, ethological and physiological studies, have already begun to unveil some answers for many important ecological/evolutionary questions.  相似文献   

14.
Modern whales are frequently described as an adaptive radiation spurred by either the evolution of various key innovations (such as baleen or echolocation) or ecological opportunity following the demise of archaic whales. Recent analyses of diversification rate shifts on molecular phylogenies raise doubts about this interpretation since they find no evidence of increased speciation rates during the early evolution of modern taxa. However, one of the central predictions of ecological adaptive radiation is rapid phenotypic diversification, and the tempo of phenotypic evolution has yet to be quantified in cetaceans. Using a time-calibrated molecular phylogeny of extant cetaceans and a morphological dataset on size, we find evidence that cetacean lineages partitioned size niches early in the evolutionary history of neocetes and that changes in cetacean size are consistent with shifts in dietary strategy. We conclude that the signature of adaptive radiations may be retained within morphological traits even after equilibrium diversity has been reached and high extinction or fluctuations in net diversification have erased any signature of an early burst of diversification in the structure of the phylogeny.  相似文献   

15.
Many tropical plants are pollinated by birds and several bird phylogenetical lineages have specialised to a nectar diet. The long-assumed, intimate ecological and evolutionary relationship between ornithophilous plants and phenotypically specialised nectarivorous birds has nevertheless been questioned in recent decades, where such plant–pollinator interactions have been shown to be highly generalised. In our study, we analysed two extensive interaction datasets: bird–flower and insect–flower interactions, both collected on Mt Cameroon, west-central Africa. We tested if: 1) insects and birds interact with distinct groups of plants; 2) plants with a typical set of ornithophilous floral traits (i.e. bird pollination syndrome) interact mainly with birds; 3) birds favour plants with bird pollination syndrome and; 4) if and how the individual floral traits and plant level nectar production predict bird visitation. Bird-visited plants were typically also visited by insects, while approximately half of the plants were visited by insects only. We confirmed the validity of the bird pollination syndrome hypothesis, as plants with bird-pollination syndrome traits were visited by birds at a higher rate and mostly hosted a lower frequency of visiting insects. However, these ornithophilous plants were not more attractive than the other plants for nectar-feeding birds. Nectar production per plant individual was a better predictor of bird visitation than any other floral trait traditionally related to the bird pollination syndrome. Our study thus demonstrated the highly asymmetrical relationship between ornithophilous plants and nectarivorous birds.  相似文献   

16.
The plant genus Halenia (Gentianaceae) consists of herbs growing in temperate and tropical alpine habitats and most species possess flowers in which nectar is produced in spurs. This probably helps reward only specialized long-tongued pollinators, and a narrow pollinator/flower relationship is thought to accelerate diversification rates (a key innovation). To test the pattern of diversification of Halenia against the unspurred sister group we reconstructed phylogenetic relationships among 22 species plus outgroups using nuclear ITS and chloroplast rpl16 intron sequence data. We show that Halenia originated in East Asia and migrated via North America into Central America. From there, it colonized South America three times independently, probably within the last million years. Significant changes in diversification rates were found during the evolution of Halenia using a sister group method, a likelihood method, and a diversity-through-time plot. In contrast to other studies, we could not observe a direct speciation rate effect of the evolution of nectar spurs in comparison with the unspurred sister group of Halenia. Rather, increases in diversification occurred following the colonization of Central and South America by spurred progenitor taxa. This later switch in diversification may have resulted from the availability of new geographical and ecological opportunities, or from the availability of more and different pollinators in these regions. Following the latter hypothesis, the nectar spurs were a preadaption and functioned as a key innovation only in this new biotic environment. After an initial rapid increase, a reduction in diversification rate was observed in Central America, probably illustrating density dependence of speciation rates. Finally, we found preliminary evidence for the key innovation hypothesis in geologically young spurred and unspurred lineages of Halenia in South America.  相似文献   

17.
Phylogenetic studies are increasing our understanding of the evolution of associations between phytophagous insects and their host plants. Sequential evolution, i.e. the shift of insect herbivores onto pre-existing plant species, appears to be much more common than coevolution, where reciprocal selection between interacting insects and plants is thought to induce chemical diversification and resistance in plants and food specialization in insects.Extreme host specificity is common in phytophagous insects and future studies are likely to reveal even more specialization. Hypotheses that assume that food specialists have selective advantages over generalists do not seem to provide a general explanation for the ubiquity of specialist insect herbivores. Specialists are probably committed to remain so, because they have little evolutionary opportunity to reverse the process due to genetically determined constraints on the evolution of their physiology or nervous system. The same constraints might result in phylogenetic conservatism, i.e. the frequent association of related insect herbivores with related plants. Current phylogenetic evidence, however, indicates that there is no intrinsic direction to the evolution of specialization.Historical aspects of insect-host plant associations will be illustrated with the small ermine moth genus Yponomeuta. Small ermine moths show an ancestral host association with the family Celastraceae. The genus seems to be committed to specialization per se rather than to a particular group of plants. Whatever host shift they have made in their evolutionary past (onto Rosaceae, Crassulaceae, and Salicaceae), they remain monophagous. The oligophagous Y. padellus is the only exception. This species might comprise a mosaic of genetically divergent host-associated populations.  相似文献   

18.
The evolutionary history of phytophagous insects and mites and of their food-plants is traced in the conservative preferences of modern-day insects for plants. Based on UK data in the Phytophagous Insects Data Bank, a correspondence analysis displays 182 insect families and 117 plant families in a bi-variate plot. The overall pattern suggests the expansion of diversity of insects and host plants from Gymnosperms to Dicots. Plots for phytophagous insect orders and major plant clades are described, with families provisionally ranked as evolutionarily basal, intermediate or advanced. There are blurred patterns of evolutionary advancement from basal insect families with more species on conifers and on ferns and Eurosid I trees. Intermediate families are commoner on Malpighiales and Fabales, and advanced insects more frequent on later evolved euasterids II (Asterales and Lamiales), Caryophyllales and Gramineae. Basal Hymenoptera have associations with conifers, basal Lepidoptera to Eurosid I trees, and Diptera are mainly advanced families on commelinids (grasses) and Asteraceae. Blurred traces of similar phylogenetic sequences are described for subfamilies within eight example insect families. Basal families and clades tend to have fewer species than derived advanced clades. Insect communities on plants should be seen in the light of this linked past evolutionary background.  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 78 , 51–83.  相似文献   

19.

Background

The tree of life is significantly asymmetrical - a result of differential speciation and extinction - but general causes of such asymmetry are unclear. Differences in niche partitioning are thought to be one possible general explanation. Ecological specialization might lead to increases in diversification rate or, alternatively, specialization might limit the evolutionary potential of specialist lineages and increase their extinction risk. Here we compare the diversification rates of gall-inducing and non-galling insect lineages. Compared with other insect herbivores feeding on the same host plant, gall-inducing insects feed on plant tissue that is more nutritious and less defended, and they do so in a favorable microhabitat that may also provide some protection from natural enemies. We use sister-taxon comparisons to test whether gall-inducing lineages are more host-specific than non-galling lineages, and more or less diverse than non-gallers. We evaluate the significance of diversity bipartitions under Equal Rates Markov models, and use maximum likelihood model-fitting to test for shifts in diversification rates.

Results

We find that, although gall-inducing insect groups are more host-specific than their non-galling relatives, there is no general significant increase in diversification rate in gallers. However, gallers are found at both extremes - two gall-inducing lineages are exceptionally diverse (Euurina sawflies on Salicaceae and Apiomorpha scale insects on Eucalytpus), and one gall-inducing lineage is exceptionally species-poor (Maskellia armored scales on Eucalyptus).

Conclusions

The effect of ecological specialization on diversification rates is complex in the case of gall-inducing insects, but host range may be an important factor. When a gall-inducing lineage has a host range approximate to that of its non-galling sister, the gallers are more diverse. When the non-galler clade has a much wider host range than the galler, the non-galler is also much more diverse. There are also lineage-specific effects, with gallers on the same host group exhibiting very different diversities. No single general model explains the observed pattern.  相似文献   

20.
The feeding behaviour of insects is a difficult ecological interaction to study. To date, entomologists have used biochemical and molecular techniques to identify the meals of predatory insects. We present here a molecular approach to identifying the DNA of plant species in the insect gut using the ribulose bisphosphate carboxylase gene large subunit (rbcL). A reference collection of 23 plant species from the southern Jordan Valley, Israel, was genetically characterized and employed. Insects belonging to eight different families were collected in the field along with the plants upon which they were found. After collection and prior to analysis, these insects were isolated on the plants they were found upon in the laboratory. This was to ensure that the insects had only one plant meal in their gut, as multiple plant meals would require additional techniques like cloning. A blind study was performed, genetically confirming plant DNA to species level from the processed gut contents of the insects. All reference plant species could be differentiated using a 157 bp long fragment of the rbcL gene. Plant DNA was identifiable, and the meal of the respective insect was accurately determined in each case. Analyses using experimentally fed crickets, Gryllodes hebraeus, determined that plant DNA was still detectable by PCR up to 12 h post-ingestion. This research proposes the application of molecular techniques for the identification of herbivorous insect feeding behaviour to increase understanding of plant–insect interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号