首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eight newly synthesized carbacylamidophosphates with the general formula RC(O)NHP(O)Cl2 with R = pCl-C6H4 1a, pBr-C6H4 2a, C6H5 3a, and pMe-C6H4 4a and RC(O)NHP(O)(NC4H8O)2 R = pCl-C6H4 1b, pBr-C6H4 2b, C6H5 3b, pMe-C6H4 4b, were selected to compare the inhibition kinetic parameters, IC50, Ki, kp and KD, on human erythrocyte acetylcholinesterase (hAChE) and bovine serum butyrylcholinesterase (BuChE), Also, the in vivo inhibition potency of compound 2a, 2b and 3a, were studied. The data demonstrates that compound 2a and compound 2b are the potent sensitive as AChE and BuChE inhibitors respectively, and the inhibition of hAChE is about 10-fold greater than that of BuChE.  相似文献   

2.
Carbacylamidophosphates with the general formula RC(O)NHP(O)R1R2 constitute organophosphorus compounds that are used as insecticides, pesticides and ureas inhibitors. In this work, we studied the inhibition potency of CCl3-C(O)NHP(O)Cl21, CHCl2C(O)NHP(O)Cl(2)2, CH2ClC(O)NHP(O)Cl23 and CF3C(O)NHP(O)Cl(2)4, which are the major intermediates for carbacylamidophosphates synthesis towards human erythrocyte acetylcholinesterase (hAChe) activity using Ellman's modified kinetic method. Unexpectedly, it was observed that they were not only hydrolytically unstable but also inhibited hAChE in a similar manner to that produced by organophosphorus insecticides. Enzymatic data, bimolecular inhibition rate constants (ki) and IC50 values for inhibition of hAChE demonstrated that they are irreversible inhibitors and the inhibition potency of compound 2 (IC50 = 88 microM) was the greatest in comparison with compounds 1, 3 and 4. Also the electropositivity of the phosphorus atom and the hydrophobicity of the compounds demonstrated that these two factors play an additional effect and different role in the inhibitory activity of these compounds. Hydrolytic stability of the compounds was determined by 31P NMR monitoring of the loss of the parent molecules with D2O as a function of time. This study considers antiacetylcholinesterase activity according to the structural and the electronic aspects of compounds 1-4, according to IR, 1H, 13C and 31P NMR spectral data.  相似文献   

3.
Eight newly synthesized carbacylamidophosphates with the general formula RC(O)NHP(O)Cl2 with R = pCl–C6H4 1a, pBr–C6H4 2a, C6H5 3a, and pMe–C6H4 4a and RC(O)NHP(O)(NC4H8O)2 R = pCl–C6H4 1b, pBr–C6H4 2b, C6H5 3b, pMe–C6H4 4b, were selected to compare the inhibition kinetic parameters, IC50, Ki, kp and KD, on human erythrocyte acetylcholinesterase (hAChE) and bovine serum butyrylcholinesterase (BuChE), Also, the in vivo inhibition potency of compound 2a, 2b and 3a, were studied. The data demonstrates that compound 2a and compound 2b are the potent sensitive as AChE and BuChE inhibitors respectively, and the inhibition of hAChE is about 10-fold greater than that of BuChE.  相似文献   

4.
A novel series of N,N'-bis-methylenedioxybenzyl-alkylenediamines 5a-5g have been designed, synthesized and evaluated as bivalent anti-Alzheimer's disease ligands. The enzyme inhibition assay results indicated that compounds 5e-5g inhibit both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) in the micromolar range (IC(50), 2.76-4.24 μM for AChE and 3.02-5.14 μM for BuChE), which was in the same potential as the reference compound rivastigmine (IC(50), 5.50 μM for AChE and 1.60 μM for BuChE). It was found that compounds could bind simultaneously to the peripheral and catalytic sites of AChE. β-Amyloid (Aβ) aggregation inhibition assay results showed that compound 5e exhibited highest self-mediated Aβ fibril aggregation inhibition activity (40.3%) with a similar potential as curcumin (41.6%). It was also found that 5e-5g did not affect neuroblastoma cell viability at the concentration of 50 μM.  相似文献   

5.
A series of isaindigotone derivatives and analogues were designed, synthesized and evaluated as dual inhibitors of cholinesterases (ChEs) and self-induced β-amyloid (Aβ) aggregation. The synthetic compounds had IC(50) values at micro or nano molar range for cholinesterase inhibition, and some compounds exhibited strong inhibitory activity for AChE and high selectivity for AChE over BuChE, which were much better than the isaindigotone derivatives previously reported by our group. Most of these compounds showed higher self-induced Aβ aggregation inhibitory activity than a reference compound curcumin. The structure-activity relationship studies revealed that the derivatives with higher inhibition activity on AChE also showed higher selectivity for AChE over BuChE. Compound 6c exhibiting excellent inhibition for both AChE and self-induced Aβ aggregation was further studied using CD, EM, molecular docking and kinetics.  相似文献   

6.
A group of 2-substituted N-(naphth-1-ylmethyl)pyrimidin-4-amines (6a-k) and N-benzhydrylpyrimidin-4-amines (7a-k) in conjunction with varying steric and electronic properties at the C-2 position were designed, synthesized and evaluated as dual cholinesterase and amyloid-β (Aβ)-aggregation inhibitors. The naphth-1-ylmethyl compound 6f (2-(4-cyclohexylpiperazin-1-yl)-N-(naphth-1-ylmethyl)pyrimidin-4-amine) exhibited optimum dual ChE (AChE IC(50)=8.0 μM, BuChE IC(50)=3.9 μM) and hAChE-promoted Aβ-aggregation inhibition (30.8% at 100 μM), whereas in the N-benzhydryl series, compound 7f (N-benzhydryl-2-(4-cyclohexylpiperazin-1-yl)pyrimidin-4-amine) exhibited optimum combination of dual ChE (AChE IC(50)=10.0 μM, BuChE IC(50)=7.6μM) and hAChE-promoted Aβ-aggregation inhibition (32% at 100 μM). These results demonstrate that a 2,4-disubstituted pyrimidine ring serves as a suitable template to target multiple pathological routes in AD, with a C-2 cyclohexylpiperazine substituent providing dual ChE inhibition and potency whereas a C-4 diphenylmethane substituent provides Aβ-aggregation inhibition.  相似文献   

7.
Cholinesterases are targets for organophosphorus compounds which are used as pesticides, insecticides, chemical warfare agents and drugs for the treatment of disease such as glaucoma or parasitic infections. Most organophosphorus compounds impart their toxic action via inhibition of cholinesterases by reacting at an essential serine hydroxyl group. The inhibition process depends on the leaving group, stereochemistry and reactivity of the organophosphorus compound. In this study, the inhibitory potency of two isoelectronic and isostructural diaza- and dioxophospholes A (CH3C6H3 O2P(O)Cl) and B (CH3C6H3(NH)2P(O)Cl) against human acetylcholinesterase (hAChE) was examined by spectrophotometric measurements based on Ellman's method. Results indicated that compounds A and B were irreversible inhibitors with IC50 values of 0.48 and 1.54mM, respectively and inactivation constants (k(i)) of 0.0363 and 0.0207min(-1), respectively. The differences in the inhibitory potency of two phosphole compounds is discussed with respect to their structures. In addition, the synthesis and characterization of compound A is discussed.  相似文献   

8.
Chalcones and chalcone epoxides are important synthetic intermediates in organic and medicinal chemistry. Chalcones possess a broad spectrum of biological activities; however, 1,3‐diphenyl‐2‐propenone or chalcone has not been given the attention it deserve as its substituted derivatives. In this study, the inhibition effects of chalcone and its epoxidated derivative chalcone epoxide against human carbonic anhydrase isozymes I and II (hCA I and hCA II), acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE) were evaluated. The results obtained showed that both compounds exhibited potent inhibitory activity, with IC50 values less than 10 µM. IC 50 values in the submicromolar (hCA I and hCA II) to low micromolar range (AChE and BuChE) were observed for both compounds. The mechanism of inhibition and the inhibitory constants ( K i values) for each compound were also determined. Furthermore, chalcone epoxide was docked within the active sites of hCA I, hCA II, AChE, and BuChE to explore its binding mode with the enzymes.  相似文献   

9.
A series of ester derivatives of annulated tetrahydroazocines, namely 2,3,6,11-tetrahydro-1H-azocino[4,5-b]indoles (5-10), 2,3,6,7-tetrahydro-1H-azocino[5,4-b]indoles (11-14), and 4,7,8,9-tetrahydro-1H-pyrrolo[2,3-d]azocines (15-18), synthesized through an efficient 6-->8 membered ring expansion procedure, were investigated for their acetylcholinesterase (AChE) inhibitory activities. Most of the compounds acted as AChE inhibitors in vitro, with IC(50) values ranging from 5 to 40 microM. The most potent compounds 11 and 15, both as racemic mixtures, proved selective toward AChE, exhibiting selectivity ratios versus butyrylcholinesterase (BuChE) of ca. 15 and more than 20, respectively. Structure-activity studies highlighted, among other factors, lipophilicity as a property modulating the AChE inhibition potency, as shown by a reasonable parabolic correlation between pIC(50) and experimental 1-octanol/water partition coefficient (logP), which described the prevailing behavior of the examined compounds (r(2)=0.665). Molecular docking simulations using the X-ray crystal structure of AChE from Torpedo californica suggested possible binding modes of the tetrahydroazocine ester derivatives 11 and 15.  相似文献   

10.
Carbacylamidophosphates with the general formula RC(O)NHP(O)R1R2 constitute organophosphorus compounds that are used as insecticides, pesticides and ureas inhibitors. In this work, we studied the inhibition potency of CCl3C(O)NHP(O)Cl21, CHCl2C(O)NHP(O)Cl22, CH2ClC(O)NHP(O)Cl23 and CF3C(O)NHP(O)Cl24, which are the major intermediates for carbacylamidophosphates synthesis towards human erythrocyte acetylcholinesterase (hAChe) activity using Ellman's modified kinetic method. Unexpectedly, it was observed that they were not only hydrolytically unstable but also inhibited hAChE in a similar manner to that produced by organophosphorus insecticides. Enzymatic data, bimolecular inhibition rate constants (ki) and IC50 values for inhibition of hAChE demonstrated that they are irreversible inhibitors and the inhibition potency of compound 2 (IC50 = 88 μM) was the greatest in comparison with compounds 1, 3 and 4. Also the electropositivity of the phosphorus atom and the hydrophobicity of the compounds demonstrated that these two factors play an additional effect and different role in the inhibitory activity of these compounds. Hydrolytic stability of the compounds was determined by 31P NMR monitoring of the loss of the parent molecules with D2O as a function of time. This study considers antiacetylcholinesterase activity according to the structural and the electronic aspects of compounds 14, according to IR, 1H, 13C and 31P NMR spectral data.  相似文献   

11.
Chloropicrin (CCl3NO2) is a widely used soil fumigant with an unknown mechanism of acute toxicity. We investigated the possible involvement of dechlorination in CCl3NO2 toxicity by considering its metabolism, inhibition of pyruvate and succinate dehydrogenases, cytotoxicity in cultured cells, and interaction with hemoproteins. In a newly discovered pathway, CCl3NO2 is metabolized to thiophosgene, which is characterized as the cyclic cysteine adduct (raphanusamic acid) in the urine of mice. CCl3NO2 inhibits porcine heart pyruvate dehydrogenase complex (IC-50 4 microM) and mouse liver succinate dehydrogenase complex (IC-50 13 microM), whereas its dehalogenated metabolites (CHCl2NO2 and CH2ClNO2) are more than 10 times less effective. The inhibitory potency of CCl3NO2 for these dehydrogenase complexes is similar to that of captan, folpet, and dichlone fungicides (IC-50 2-6 microM). CCl3NO2 cytotoxicity with Hepa 1c1c7+ mouse hepatoma cells (IC-50 9 microM) is not correlated with glutathione depletion. Mice treated intraperitoneally with CCl3NO2 at 50 mg/kg but not with an equivalent dose of CHCl2NO2 show increased concentrations of oxyhemoglobin in liver. The acute toxicity of CCl3NO2 in mice is due to the parent compound or metabolites other than CHCl2NO2 or CH2ClNO2 and may be associated with inhibition of the pyruvate dehydrogenase complex and elevated oxyhemoglobin.  相似文献   

12.
A novel series of chalcone derivatives (4a8d) were designed, synthesized, and evaluated for the inhibition activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The log P values of the compounds were shown to range from 1.49 to 2.19, which suggested that they were possible to pass blood brain barriers in vivo. The most promising compound 4a (IC50: 4.68 μmol/L) was 2-fold more potent than Rivastigmine against AChE (IC50: 10.54 μmol/L) and showed a high selectivity for AChE over BuChE (ratio: 4.35). Enzyme kinetic study suggested that the inhibition mechanism of compound 4a was a mixed-type inhibition. Meanwhile, the result of molecular docking showed its potent inhibition of AChE and high selectivity for AChE over BuChE.  相似文献   

13.
本文对Δ5-3β,7β-二羟基甾醇(1~3)和Δ5-3β,7α-二羟基甾醇(4~6)的一些核磁共振波谱特征进行了比较。活性测试表明化合物1~6对乙酰胆碱酯酶(AChE)无明显的抑制活性,对丁酰胆碱酯酶(BuChE)则有较强的抑制活性,其中24-亚甲基胆甾-5-烯-3β,7α-二醇(6)的IC50值为9.5μM。通过活性数据比较我们发现7α-羟基甾醇对丁酰胆碱酯酶的抑制活性明显比相应的7β-羟基甾醇高。我们通过计算7位羟基和四环平面之间的二面角角度来尝试解释这些活性差别。  相似文献   

14.
Multi-Target approach is particularly promising way to drug discovery against Alzheimer's disease. In the present study, we synthesized a series of compounds comprising the carbazole backbone linked to the benzyl piperazine, benzyl piperidine, pyridine, quinoline, or isoquinoline moiety through an aliphatic linker and evaluated as cholinesterase inhibitors. The synthesized compounds showed IC50 values of 0.11–36.5 µM and 0.02–98.6 µM against acetyl- and butyrylcholinesterase (AChE and BuChE), respectively. The ligand-protein docking simulations and kinetic studies revealed that compound 3s could bind effectively to the peripheral anionic binding site (PAS) and anionic site of the enzyme with mixed-type inhibition. Compound 3s was the most potent compound against AChE and BuChE and showed acceptable inhibition potency for self- and AChE-induced Aβ1-42 aggregation. Moreover, compound 3s could significantly protect PC12 cells against H2O2-induced toxicity. The results suggested that the compounds 3s could be considered as a promising multi-functional agent for further drug discovery development against Alzheimer's disease.  相似文献   

15.
A series of 4-phthalimidobenzenesulfonamide derivatives were designed, synthesized and evaluated for the inhibitory activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Structures of the title compounds were confirmed by spectral and elemental analyses. The cholinesterase (ChE) inhibitory activity studies were carried out using Ellman’s colorimetric method. The biological activity results revealed that all of the title compounds (except for compound 8) displayed high selectivity against AChE. Among the tested compounds, compound 7 was found to be the most potent against AChE (IC50=?1.35?±?0.08?μM), while compound 3 exhibited the highest inhibition against BuChE (IC50=?13.41?±?0.62?μM). Molecular docking studies of the most active compound 7 in AChE showed that this compound can interact with both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE.  相似文献   

16.
A series of novel triazole-containing berberine derivatives were synthesized via the azide-alkyne cycloaddition reaction. Their biological activity as inhibitors of both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) were evaluated. Among them, compound 16d, which featured a diisopropylamino substitution at the 4-position of triazole ring, was found to be a potent inhibitor of AChE, with IC(50) value of 0.044 μM. Compound 18d, which beares a butyl at the 4-position of the triazole ring, showed the highest potency of β-amyloid aggregation inhibition (77.9% at 20 μM). Molecular modeling studies indicated that the triazole moiety of berberine derivatives displayed a face-to-face π-π stacking interaction in a 'sandwich' form with the Trp84 (4.09 ?) and Phe330 (4.33 ?) in catalytic sites of AChE.  相似文献   

17.
In the search for new treatments for complex disorders such as Alzheimer’s disease the Multi-Target-Directed Ligands represent a very promising approach. The aim of the present study was to identify multifunctional compounds among several series of non-imidazole histamine H3 receptor ligands, derivatives of 1-[2-thiazol-5-yl-(2-aminoethyl)]-4-n-propylpiperazine, 1-[2-thiazol-4-yl-(2-aminoethyl)]-4-n-propylpiperazine and 1-phenoxyalkyl-4-(amino)alkylopiperazine using in vitro and in vivo pharmacological evaluation and computational studies. Performed in vitro assays showed moderate potency of tested compounds against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Molecular modeling studies have revealed possible interactions between the active compounds and both AChE and BuChE as well as the human H3 histamine receptor. Computational studies showed the high drug-likeness of selected compounds with very good physicochemical profiles. The parallel artificial membrane permeation assay proved outstanding blood–brain barrier penetration in test conditions. The most promising compound, A12, chemically methyl(4-phenylbutyl){2-[2-(4-propylpiperazin-1-yl)-1,3-thiazol-5-yl]ethyl}amine, possesses good balanced multifunctional profile with potency toward studied targets - H3 antagonist activity (pA2 = 8.27), inhibitory activity against both AChE (IC50 = 13.96 μM), and BuChE (IC50 = 14.62 μM). The in vivo pharmacological studies revealed the anti-amnestic properties of compound A12 in the passive avoidance test on mice.  相似文献   

18.
AChE and BuChE are druggable targets for the discovery of anti-Alzheimer’s disease drugs, while dual-inhibition of these two targets seems to be more effective. In this study, we synthesised a series of novel isoflavone derivatives based on our hit compound G from in silico high-throughput screening and then tested their activities by in vitro AChE and BuChE bioassays. Most of the isoflavone derivatives displayed moderate inhibition against both AChE and BuChE. Among them, compound 16 was identified as a potent AChE/BuChE dual-targeted inhibitor (IC50: 4.60?μM for AChE; 5.92?μM for BuChE). Molecular modelling study indicated compound 16 may possess better pharmacokinetic properties, e.g. absorption, blood–brain barrier penetration and CYP2D6 binding. Taken together, our study has identified compound 16 as an excellent lead compound for the treatment of Alzheimer’s disease.  相似文献   

19.
In this work, we further investigated a previously introduced class of cholinesterase inhibitors. The removal of the carbamic function from the lead compound xanthostigmine led to a reversible cholinesterase inhibitors 3. Some new 3-[omega-(benzylmethylamino)alkoxy]xanthen-9-one analogs were designed, synthesized, and evaluated for their inhibitory activity against both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The length of the alkoxy chain of compound 3 was increased and different substituents were introduced. From the IC(50) values, it clearly appears that the carbamic residue is crucial to obtain highly potent AChE inhibitors. On the other hand, peculiarity of these compounds is the high selectivity toward BuChE with respect to AChE, being compound 12 the most selective one (6000-fold). The development of selective BuChE inhibitors may be of great interest to clarify the physiological role of this enzyme and to provide novel therapeutics for various diseases.  相似文献   

20.
Novel 4-oxobenzo[d]1,2,3-triazin derivatives bearing pyridinium moiety 6a–q were synthesized and screened against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Most of the synthesized compounds showed good inhibitory activity against AChE. Among the synthesized compounds, the compound 6j exhibited the highest AChE inhibitory activity. It should be noted that these compounds displayed low anti-BuChE activity with the exception of the compound 6i, as it exhibited BuChE inhibitory activity more than donepezil. The kinetic study of the compound 6j revealed that this compound inhibited AChE in a mixed-type inhibition mode. This finding was also confirmed by the docking study. The latter study demonstrated that the compound 6j interacted with both the catalytic site and peripheral anionic site of the AChE active site. The compound 6j was also observed to have significant neuroprotective activity against H2O2-induced PC12 oxidative stress, but low activity against β-secretase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号