首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is an ongoing debate of how best to measure the effects of sleep loss in a reliable and feasible way, partly because well controlled laboratory studies and field studies have come to different conclusions. The aims of the present study were to investigate both sleepiness and performance in response to long‐term sleep restriction and recovery in a semi‐laboratory environment, investigate order effects (i.e., whether levels return to baseline) in a study with seven days of recovery, and characterize individual differences in tolerance to restricted sleep. Nine healthy men (age 23–28 yrs) participated in the protocol, which included one habituation day (sleep 23:00–07:00 h), two baseline days (23:00–07:00 h), five days with restricted sleep (03:00–07:00 h), and seven recovery days (23:00–07:00 h). Participants went outdoors at least twice each day. Reaction‐time tests were performed at 08:00, 14:00, and 20:00 h each day in the laboratory. Sleepiness was self‐rated by the Karolinska Sleepiness Scale (KSS) after each test. The mixed‐effect regression models showed that each day of restricted sleep resulted in an increase of sleepiness by 0.64±.05 KSS units (a nine‐step scale, p<.001), increase of median reaction times of 6.6±1.6 ms (p=.003), and increase of lapses/test of 0.69±.16 ms (p<.001). Seven days of recovery allowed participants to return to the baseline for sleepiness and median reaction time, but not for lapses. The individual differences were larger for performance measures than for sleepiness; the between‐subject standard deviation for the random intercept was in the magnitude of the effects of 1.1 days of restricted sleep for sleepiness, 6.6 days of restricted sleep for median reaction time, and 3.2 days for lapses. In conclusion, the present study shows that sleepiness is closely related to sleep pressure, while performance measures, to a larger extent, appear determined by specific individual traits. Moreover, it is suggested to measure sleepiness in a standardized situation so as to minimize the influences of contextual factors.  相似文献   

2.
During the last ten years, severe sleepiness or falling asleep by watch keeping officers has been a direct or a contributing factor in a number of maritime accidents. This study examined the relationship between two watch systems and its impact on fatigue and sleepiness in bridge officers. A questionnaire and a sleep/work diary were sent to a representative sample of the Finnish Maritime Officer Association. In all, 185 bridge officers answered the questionnaire on sleep, work hours, and safety, including the Skogby Excessive Daytime Sleepiness index (SEDS); 42% of the bridge officers worked two 4 h watches (4/8) per day, while 26% worked two 6 h watches per day (6/6). Ninety-five of the participants completed a sleep diary for seven consecutive days while at sea. The timing of the watch duties and sleep was recorded, as was subjective sleepiness every 2 h using the Karolinska Sleepiness Scale (KSS). 17.6% of the participants had fallen asleep at least once while on duty during their career. Compared to the 4/8 watch system, the officers working the 6/6 watch system reported shorter sleep durations, more frequent nodding-off on duty (7.3% vs. 1.5%), and excessive sleepiness (32% vs. 16% with SEDS>14). Based on a logistic regression analysis, high SEDS was significantly related with probable obstructive sleep apnea (OR 5.7), the 6/6 watch system (OR 4.0), and morningness-eveningness while controlling simultaneously several individual and sleep-related factors. Subjective sleepiness (KSS) was highest at 04:00 and 06:00 h. In a multivariate analysis, the KSS was significantly related to time of day, time after awaking, sleep length, and interactions of the watch systems with age, morningness-eveningness, and Epworth sleepiness scale (ESS) score. Severe sleepiness at 04:00-06:00 h was especially problematic in the 6/6 watch system among evening types and among the bridge officers with high ESS. The results suggest the 6/6 watch system is related to a higher risk of severe sleepiness during the early morning hours compared to the 4/8 and the other watch systems assessed.  相似文献   

3.
During the last ten years, severe sleepiness or falling asleep by watch keeping officers has been a direct or a contributing factor in a number of maritime accidents. This study examined the relationship between two watch systems and its impact on fatigue and sleepiness in bridge officers. A questionnaire and a sleep/work diary were sent to a representative sample of the Finnish Maritime Officer Association. In all, 185 bridge officers answered the questionnaire on sleep, work hours, and safety, including the Skogby Excessive Daytime Sleepiness index (SEDS); 42% of the bridge officers worked two 4 h watches (4/8) per day, while 26% worked two 6 h watches per day (6/6). Ninety‐five of the participants completed a sleep diary for seven consecutive days while at sea. The timing of the watch duties and sleep was recorded, as was subjective sleepiness every 2 h using the Karolinska Sleepiness Scale (KSS). 17.6% of the participants had fallen asleep at least once while on duty during their career. Compared to the 4/8 watch system, the officers working the 6/6 watch system reported shorter sleep durations, more frequent nodding‐off on duty (7.3% vs. 1.5%), and excessive sleepiness (32% vs. 16% with SEDS>14). Based on a logistic regression analysis, high SEDS was significantly related with probable obstructive sleep apnea (OR 5.7), the 6/6 watch system (OR 4.0), and morningness‐eveningness while controlling simultaneously several individual and sleep‐related factors. Subjective sleepiness (KSS) was highest at 04:00 and 06:00 h. In a multivariate analysis, the KSS was significantly related to time of day, time after awaking, sleep length, and interactions of the watch systems with age, morningness‐eveningness, and Epworth sleepiness scale (ESS) score. Severe sleepiness at 04:00–06:00 h was especially problematic in the 6/6 watch system among evening types and among the bridge officers with high ESS. The results suggest the 6/6 watch system is related to a higher risk of severe sleepiness during the early morning hours compared to the 4/8 and the other watch systems assessed.  相似文献   

4.
Ratings of subjective sleepiness are often used in laboratory and field studies of sleep loss and shifted sleep hours. Some studies suggest that such ratings might fail to reflect sleepiness as shown in physiology or performance. One reason for this may be the influence of the context of the rating. Social interaction or physical activity may mask latent sleepiness. The present study attempted to approach this question. Nine subjects participated in a partial sleep-deprivation experiment (five days of 4 h of time in bed [TIB]), preceded by two baseline days (8 h TIB) and followed by three recovery days (8 h TIB). Sleepiness was self-rated on the Karolinska Sleepiness Scale (KSS; scores of 1-9) after a period of relaxation, after a reaction-time test, and after 30 min of free activities. The results showed a strong increase in subjective sleepiness during sleep restriction and a significant difference between conditions. Free activity reduced the self-rated subjective sleepiness by 1.1 KSS units compared to the level of sleepiness self-rated at the end of the reaction-time test. Thus, the results of this study indicate that the context of a sleepiness rating affects the outcome of the rating.  相似文献   

5.
Ratings of subjective sleepiness are often used in laboratory and field studies of sleep loss and shifted sleep hours. Some studies suggest that such ratings might fail to reflect sleepiness as shown in physiology or performance. One reason for this may be the influence of the context of the rating. Social interaction or physical activity may mask latent sleepiness. The present study attempted to approach this question. Nine subjects participated in a partial sleep‐deprivation experiment (five days of 4 h of time in bed [TIB]), preceded by two baseline days (8 h TIB) and followed by three recovery days (8 h TIB). Sleepiness was self‐rated on the Karolinska Sleepiness Scale (KSS; scores of 1–9) after a period of relaxation, after a reaction‐time test, and after 30 min of free activities. The results showed a strong increase in subjective sleepiness during sleep restriction and a significant difference between conditions. Free activity reduced the self‐rated subjective sleepiness by 1.1 KSS units compared to the level of sleepiness self‐rated at the end of the reaction‐time test. Thus, the results of this study indicate that the context of a sleepiness rating affects the outcome of the rating.  相似文献   

6.
To compare the behavioral effects of sleep-loss sleepiness (performance impairment due to sleep loss) and sleep inertia (period of impaired performance that follows awakening), mean response latencies and number of lapses from a visual simple reaction-time task were analyzed. Three experimental conditions were designed to manipulate sleepiness and sleep-inertia levels: uninterrupted sleep, partial sleep reduction, and total sleep deprivation. Each condition included two consecutive nights (the first always a night of uninterrupted sleep, and the second either a night of uninterrupted sleep, a night when sleep was reduced to 3 h, or a night of total sleep deprivation), as well as two days in which performance was assessed at 10 different time points (08:00, 08:30, 09:00, 09:30, 10:00, 11:00, 14:00, 17:00, 20:00, and 23:00 h). From 08:00 to 09:00 h, reaction times in the partial sleep-reduction and total sleep-deprivation conditions were at a similar level and were slower than those observed in the uninterrupted sleep condition. In the same time period, the frequency of lapses in the total sleep-deprivation condition was higher than in the partial sleep-reduction condition, while this latter condition never differed from the uninterrupted sleep condition. The results indicate that both sleep inertia and sleep-loss sleepiness lead to an increase in response latencies, but only extreme sleepiness leads to an increase in lapse frequency. We conclude that while reaction times slow as a result of both sleep inertia and sleep-loss sleepiness, lapses appear to be a specific feature of sleep-loss sleepiness.  相似文献   

7.
Nurses working 12-h shifts complain of fatigue and insufficient/poor-quality sleep. Objectively measured sleep times have not been often reported. This study describes sleep, sleepiness, fatigue, and neurobehavioral performance over three consecutive 12-h (day and night) shifts for hospital registered nurses. Sleep (actigraphy), sleepiness (Karolinska Sleepiness Scale [KSS]), and vigilance (Performance Vigilance Task [PVT]), were measured serially in 80 registered nurses (RNs). Occupational fatigue (Occupational Fatigue Exhaustion Recovery Scale [OFER]) was assessed at baseline. Sleep was short (mean 5.5?h) between shifts, with little difference between day shift (5.7?h) and night shift (5.4?h). Sleepiness scores were low overall (3 on a 1-9 scale, with higher score indicating greater sleepiness), with 45% of nurses having high level of sleepiness (score >?7) on at least one shift. Nurses were progressively sleepier each shift, and night nurses were sleepier toward the end of the shift compared to the beginning. There was extensive caffeine use, presumably to preserve or improve alertness. Fatigue was high in one-third of nurses, with intershift fatigue (not feeling recovered from previous shift at the start of the next shift) being most prominent. There were no statistically significant differences in mean reaction time between day/night shift, consecutive work shift, and time into shift. Lapsing was traitlike, with rare (39% of sample), moderate (53%), and frequent (8%) lapsers. Nurses accrue a considerable sleep debt while working successive 12-h shifts with accompanying fatigue and sleepiness. Certain nurses appear more vulnerable to sleep loss than others, as measured by attention lapses.  相似文献   

8.
The present study aimed to experimentally evaluate the effect of early morning shifts on sleep and sleepiness of train drivers during normal working conditions. A total of 17 experienced train drivers were studied during a 4.5 h drive in two directions with a 2.5 h break in between on three different shifts: an early shift that started at 05:49 h (train left at 06:18 h) and ended at 17:41h, a day shift (07:49-19:41 h), and an evening shift (09:49-21:41 h). Retrospective (since the last stop) ratings of mean sleepiness and peak sleepiness (Karolinska Sleepiness Scale--KSS: 1 = very alert, 9= very sleepy, fighting sleep, difficulty staying awake) were assessed at each stop during the drive. The results showed that sleep length was reduced (p <0.001) by 1 h and 2h, respectively, by the early shift compared to the day and evening shifts. The prevalence of severe sleepiness (KSS > or = 7) was high, especially during the early shift when 14 (82%) subjects reported at least one event during the drive. Application of the Generalized Linear Mixed Models (GLMM) to the sleepiness data showed that there was an increased risk for severe sleepiness during the early shift (OR = 4.9) that increased further with the length of the drive between stops (OR = 1.9, 15 min), suggesting an interaction between early morning shift and monotony. The findings have practical implications in risk assessment. Long drives without stops and other monotonous situations should have a higher risk rating for severe sleepiness in shifts with an early start before 06:00 h, compared to shifts that begin 2 h later.  相似文献   

9.
To compare the behavioral effects of sleep‐loss sleepiness (performance impairment due to sleep loss) and sleep inertia (period of impaired performance that follows awakening), mean response latencies and number of lapses from a visual simple reaction‐time task were analyzed. Three experimental conditions were designed to manipulate sleepiness and sleep‐inertia levels: uninterrupted sleep, partial sleep reduction, and total sleep deprivation. Each condition included two consecutive nights (the first always a night of uninterrupted sleep, and the second either a night of uninterrupted sleep, a night when sleep was reduced to 3 h, or a night of total sleep deprivation), as well as two days in which performance was assessed at 10 different time points (08:00, 08:30, 09:00, 09:30, 10:00, 11:00, 14:00, 17:00, 20:00, and 23:00 h). From 08:00 to 09:00 h, reaction times in the partial sleep‐reduction and total sleep‐deprivation conditions were at a similar level and were slower than those observed in the uninterrupted sleep condition. In the same time period, the frequency of lapses in the total sleep‐deprivation condition was higher than in the partial sleep‐reduction condition, while this latter condition never differed from the uninterrupted sleep condition. The results indicate that both sleep inertia and sleep‐loss sleepiness lead to an increase in response latencies, but only extreme sleepiness leads to an increase in lapse frequency. We conclude that while reaction times slow as a result of both sleep inertia and sleep‐loss sleepiness, lapses appear to be a specific feature of sleep‐loss sleepiness.  相似文献   

10.
Ships are operated around the clock using rapidly rotating shift schedules called sea watch systems. Sea watch systems may cause fatigue, in the same way as other irregular working time arrangements. The present study investigated subjective sleepiness and sleep duration in connection with a 6 h on/6 h off duty system. The study was performed in a bridge simulator, very similar to those found on ships. Twelve officers divided into two groups participated in the study that lasted 66 h. Half of the subjects started with the 06:00-12:00 h watch and the other half with the 12:00-18:00 h watch. The subjects alternated between off-duty and on-duty for the remainder of the experimental period. Approximately halfway through the experiment, the 12:00-18:00 h watch was divided into two 3 h watches/off-duty periods. The effect of this was to reverse the on-duty/off-duty pattern between the two groups. This enabled all subjects to work the four possible watches (00:00-06:00 h, 06:00-12:00 h, 12:00-18:00 h, and 18:00-24:00 h) in an order that was essentially counterbalanced between groups. Ratings of sleepiness (Karolinska Sleepiness Scale; KSS) were obtained every 30 min during on-duty periods and if subjects were awake during off-duty periods. The subjectively rated duration of sleep was recorded after each off-duty period that preceded watch periods when KSS was rated. The results showed that the average level of sleepiness was significantly higher during the 00:00-06:00 h watch compared to the 12:00-18:00 h and 18:00-24:00 h watches, but not to the 06:00-12:00 h watch. Sleepiness also progressed significantly from the start toward the end of each watch, with the exception of the 06:00-12:00 h watch, when levels remained approximately stable. There were no differences between groups (i.e., the order between watches). Sleep duration during the 06:00-12:00 h off-duty period (3 h 29 min) was significantly longer than during the 12:00-18:00 h period (1 h 47 min) and the 18:00-24:00 h period (2 h 7 min). Sleep during the 00:00-06:00 h period (4 h 23 min) was longer than all sleep periods except the 06:00-12:00 h period. There were no differences between groups. In spite of sufficient opportunities for sleep, sleep was on the average around 1-1 h 30 min shorter than the 7-7 h 30 min that is considered “normal” during a 24 h period. This is probably a consequence of the difficulty to sleep during daytime due to the alerting effects of the circadian rhythm. Also, sleepiness during the night and early mornings reached high levels, which may be explained by a combination of working close to or during the circadian trough of alertness and the relatively short sleep periods obtained. An initial suppression of sleepiness was observed during all watches, except for the 06:00-12:00 h watch. This suppression may be explained by the “masking effect” exerted by the relative high levels of activity required when taking over the responsibility of the ship. Toward the end of watches, the levels of sleepiness progressively increased to relatively high levels, at least during the 00:00-06:00 h watch. Presumably, initially high levels of activity are replaced by routine and even boredom.  相似文献   

11.
The aim of this study was to evaluate patterns of sleepiness, comparing working and non-working students. The study was conducted on high school students attending evening classes (19:00-22:30 h) at a public school in S?o Paulo, Brazil. The study group consisted of working (n=51) and non-working (n=41) students, aged 14-21 yrs. The students answered a questionnaire about working and living conditions and reported health symptoms and diseases. For seven consecutive days, actigraphy measurements were recorded, and the students also filled in a sleep diary. Sleepiness ratings were given six times per day, including upon waking and at bedtime, using the Karolinska Sleepiness Scale. Statistical analyses included three-way ANOVA and t-test. The mean sleep duration during weekdays was shorter among workers (7.2 h) than non-workers (8.8 h) (t=4.34; p<.01). The mean duration of night awakenings was longer among workers on Tuesdays and Wednesdays (28.2 min) and shorter on Mondays (24.2 min) (t=2.57; p=.03). Among workers, mean napping duration was longer on Mondays and Tuesdays (89.9 min) (t=2.27; p=.03) but shorter on Fridays and Sundays (31.4 min) (t=3.13; p=.03). Sleep efficiency was lower on Fridays among non-workers. Working students were moderately sleepier than non-workers during the week and also during class on specific days: Mondays (13:00-15:00 h), Wednesdays (19:00-22:00 h), and Fridays (22:00-00:59 h). The study found that daytime sleepiness of workers is moderately higher in the evening. This might be due to a work effect, reducing the available time for sleep and shortening the sleep duration. Sleepiness and shorter sleep duration can have a negative impact on the quality of life and school development of high school students.  相似文献   

12.
Nurses working 12-h shifts complain of fatigue and insufficient/poor-quality sleep. Objectively measured sleep times have not been often reported. This study describes sleep, sleepiness, fatigue, and neurobehavioral performance over three consecutive 12-h (day and night) shifts for hospital registered nurses. Sleep (actigraphy), sleepiness (Karolinska Sleepiness Scale [KSS]), and vigilance (Performance Vigilance Task [PVT]), were measured serially in 80 registered nurses (RNs). Occupational fatigue (Occupational Fatigue Exhaustion Recovery Scale [OFER]) was assessed at baseline. Sleep was short (mean 5.5?h) between shifts, with little difference between day shift (5.7?h) and night shift (5.4?h). Sleepiness scores were low overall (3 on a 1–9 scale, with higher score indicating greater sleepiness), with 45% of nurses having high level of sleepiness (score ?>?7) on at least one shift. Nurses were progressively sleepier each shift, and night nurses were sleepier toward the end of the shift compared to the beginning. There was extensive caffeine use, presumably to preserve or improve alertness. Fatigue was high in one-third of nurses, with intershift fatigue (not feeling recovered from previous shift at the start of the next shift) being most prominent. There were no statistically significant differences in mean reaction time between day/night shift, consecutive work shift, and time into shift. Lapsing was traitlike, with rare (39% of sample), moderate (53%), and frequent (8%) lapsers. Nurses accrue a considerable sleep debt while working successive 12-h shifts with accompanying fatigue and sleepiness. Certain nurses appear more vulnerable to sleep loss than others, as measured by attention lapses. (Author correspondence: )  相似文献   

13.
Ships are operated around the clock using rapidly rotating shift schedules called sea watch systems. Sea watch systems may cause fatigue, in the same way as other irregular working time arrangements. The present study investigated subjective sleepiness and sleep duration in connection with a 6 h on/6 h off duty system. The study was performed in a bridge simulator, very similar to those found on ships. Twelve officers divided into two groups participated in the study that lasted 66 h. Half of the subjects started with the 06:00–12:00 h watch and the other half with the 12:00–18:00 h watch. The subjects alternated between off‐duty and on‐duty for the remainder of the experimental period. Approximately halfway through the experiment, the 12:00–18:00 h watch was divided into two 3 h watches/off‐duty periods. The effect of this was to reverse the on‐duty/off‐duty pattern between the two groups. This enabled all subjects to work the four possible watches (00:00–06:00 h, 06:00–12:00 h, 12:00–18:00 h, and 18:00–24:00 h) in an order that was essentially counterbalanced between groups. Ratings of sleepiness (Karolinska Sleepiness Scale; KSS) were obtained every 30 min during on‐duty periods and if subjects were awake during off‐duty periods. The subjectively rated duration of sleep was recorded after each off‐duty period that preceded watch periods when KSS was rated. The results showed that the average level of sleepiness was significantly higher during the 00:00–06:00 h watch compared to the 12:00–18:00 h and 18:00–24:00 h watches, but not to the 06:00–12:00 h watch. Sleepiness also progressed significantly from the start toward the end of each watch, with the exception of the 06:00‐12:00 h watch, when levels remained approximately stable. There were no differences between groups (i.e., the order between watches). Sleep duration during the 06:00–12:00 h off‐duty period (3 h 29 min) was significantly longer than during the 12:00–18:00 h period (1 h 47 min) and the 18:00–24:00 h period (2 h 7 min). Sleep during the 00:00–06:00 h period (4 h 23 min) was longer than all sleep periods except the 06:00–12:00 h period. There were no differences between groups. In spite of sufficient opportunities for sleep, sleep was on the average around 1–1 h 30 min shorter than the 7–7 h 30 min that is considered “normal” during a 24 h period. This is probably a consequence of the difficulty to sleep during daytime due to the alerting effects of the circadian rhythm. Also, sleepiness during the night and early mornings reached high levels, which may be explained by a combination of working close to or during the circadian trough of alertness and the relatively short sleep periods obtained. An initial suppression of sleepiness was observed during all watches, except for the 06:00–12:00 h watch. This suppression may be explained by the “masking effect” exerted by the relative high levels of activity required when taking over the responsibility of the ship. Toward the end of watches, the levels of sleepiness progressively increased to relatively high levels, at least during the 00:00–06:00 h watch. Presumably, initially high levels of activity are replaced by routine and even boredom.  相似文献   

14.
Although sleep restriction is associated with decrements in daytime alertness and neurobehavioural performance, there are considerable inter-individual differences in the degree of impairment. This study examined the effects of short-term sleep restriction on neurobehavioural performance and sleepiness, and the associations between individual differences in impairments and circadian rhythm phase. Healthy adults (n = 43; 22 M) aged 22.5 ± 3.1 (mean ± SD) years maintained a regular 8:16 h sleep:wake routine for at least three weeks prior to laboratory admission. Sleep opportunity was restricted to 5 hours time-in-bed at home the night before admission and 3 hours time-in-bed in the laboratory, aligned by wake time. Hourly saliva samples were collected from 5.5 h before until 5 h after the pre-laboratory scheduled bedtime to assess dim light melatonin onset (DLMO) as a marker of circadian phase. Participants completed a 10-min auditory Psychomotor Vigilance Task (PVT), the Karolinska Sleepiness Scale (KSS) and had slow eye movements (SEM) measured by electrooculography two hours after waking. We observed substantial inter-individual variability in neurobehavioural performance, particularly in the number of PVT lapses. Increased PVT lapses (r = -0.468, p < 0.01), greater sleepiness (r = 0.510, p < 0.0001), and more slow eye movements (r = 0.375, p = 0.022) were significantly associated with later DLMO, consistent with participants waking at an earlier circadian phase. When the difference between DLMO and sleep onset was less than 2 hours, individuals were significantly more likely to have at least three attentional lapses the following morning. This study demonstrates that the phase of an individual’s circadian system is an important variable in predicting the degree of neurobehavioural performance impairment in the hours after waking following sleep restriction, and confirms that other factors influencing performance decrements require further investigation.  相似文献   

15.
Large-scale construction work often requires people to work longer daily hours and more than the ordinary five days in a row. In order to minimize transportation times and optimize the use of personnel, workers are sometimes asked to live in temporary building-site camps in the proximity of the work site. However, little is known about the biological and psychological effects of this experience. The objective of the present study was to investigate whether exposure to long work hours and extended workweeks while living in building-site camps in between work shifts was associated with a build-up of increased complaints of poor sleep, daytime sleepiness, physical exertion, and fatigue across a two-week work cycle. Two groups of construction workers were examined. The camp group of 13 participants (mean age: 42+/-11 S.D. yrs) lived in building-site camps and worked extended hours (between 07:00 and 18:00 h) and extended workweeks (six days in a row, one day off, five days in a row, nine days off). The home group of 16 participants (mean age 40+/-9 yrs) worked ordinary hours between 07:00 and 15:00 h and returned home after each workday. Self-ratings of daytime sleepiness (Karolinska Sleepiness Scale), physical exertion (Borg CR-10), and mood were obtained six or seven times daily during two workweeks. Fatigue ratings were obtained once daily in the evening, and ratings of sleep disturbances were obtained once daily in the morning with the Karolinska Sleep Diary. Data were evaluated in a repeated measures design. The results showed that both groups reported a similar level of daytime sleepiness, physical exertion, and mood across workdays and time points within a workday (all three-way interactions had p>0.898). Although the home group reported earlier wake-up times, the pattern of sleep disturbance ratings across the workdays did not differ between the groups. Both groups reported few sleep disturbances and good mood. However, the camp group reported higher physical exertion already at the start of work and showed a more gentle increase in ratings during the work shift and a smaller decline between the end of work and bedtime. The camp group also reported higher fatigue scores than the home group. However, none of the groups showed signs of increasing ratings in the progress of the two workweeks. For both groups, the ratings of daytime sleepiness formed a U-shaped pattern, with the highest scores at awakening and at bedtime. Yet, the camp group reported higher daytime sleepiness than the home group at lunch break and at the second break in the afternoon. In conclusion, there were no signs of fatigue build-up or accumulation of daytime sleepiness, physical exertion, or sleep disturbances in either group. Despite the fact that the camp group showed some signs of having trouble in recuperating in between work shifts, as indicated by the higher physical exertion ratings at the start of work, higher fatigue scores, and higher daytime sleepiness, the results constitute no real foundation for altering the camp group's current work schedule and living arrangements.  相似文献   

16.
《Chronobiology international》2013,30(10):1201-1208
Early shift start time and night shifts are associated with reduced sleep duration and poor sleep quality that often lead to increased fatigue levels, performance decrements and adverse safety and health outcomes. This study investigates the impact of shift starting time on sleep patterns, including the duration and quality of sleep and alertness/sleepiness at the time of injury, in a large epidemiological field study of hospitalized adults with severe work-related hand injury in the People’s Republic of China (PRC) from multiple industries with severe work-related traumatic hand injury were recruited from 11 hospitals in three industrially-developed cities in the PRC: Ningbo, Liuzhou and Wuxi. Analysis of covariance (ANCOVA) was used to compare sleep duration, sleep quality and alertness/sleepiness across 3?h increments of shift start time, while adjusting for age, gender, work hours, shift duration, day of injury and several transient work-related factors. Effect modification by gender was also evaluated. Seven-hundred and three hospitalized adults (96.4%) completed a face-to-face interview within 4 days of injury; 527 (75.0%) were male, with a mean (±SEM) age of 31.8?±?0.4 years. Overall, these adults worked relatively long weekly (55.7?±?0.6?h) and daily hours (8.6?±?0.07?h). Average sleep duration prior to injury was 8.5?h (±0.07), and showed significant variations (p value <0.05) across shift starting time increments. Overall mean prior sleep duration was shortest for individuals starting shifts from “21:00–23:59” (5.6±0.8?h) followed by midnight “00:00–02:59” (6.1?±?0.6?h). However, a statistically significant interaction (p?<?0.05) was observed between gender and shift starting time on mean sleep duration. For males the shortest sleep duration was 5.6?h (“21:00–23:59”) and for females the shortest was 4.3?h (“24:00–02:59” and “15:00–17:59”). Sleep quality (generally quite well) and alertness/sleepiness based on the KSS (generally alert) did not vary significantly across shift starting time. Results suggest that sleep duration is shortest among injured PRC adults starting shifts late night and early morning. However, with more than 8.5?h of sleep on average work days, Chinese slept much longer than typical US day workers (Sleep in America Poll, 2012, 6:44 on workdays, 7:35 on free days), and this may help to explain higher than expected alertness/sleepiness scores at the time of injury.  相似文献   

17.
《Chronobiology international》2013,30(9):1108-1115
Seafarer sleepiness jeopardizes safety at sea and has been documented as a direct or contributing factor in many maritime accidents. This study investigates sleep, sleepiness, and neurobehavioral performance in a simulated 4?h on/8?h off watch system as well as the effects of a single free watch disturbance, simulating a condition of overtime work, resulting in 16?h of work in a row and a missed sleep opportunity. Thirty bridge officers (age 30?±?6 yrs; 29 men) participated in bridge simulator trials on an identical 1-wk voyage in the North Sea and English Channel. The three watch teams started respectively with the 00–04, the 04–08, and the 08–12 watches. Participants rated their sleepiness every hour (Karolinska Sleepiness Scale [KSS]) and carried out a 5-min psychomotor vigilance test (PVT) test at the start and end of every watch. Polysomnography (PSG) was recorded during 6 watches in the first and the second half of the week. KSS was higher during the first (mean?±?SD: 4.0?±?0.2) compared with the second (3.3?±?0.2) watch of the day (p?<?0.001). In addition, it increased with hours on watch (p?<?0.001), peaking at the end of watch (4.1?±?0.2). The free watch disturbance increased KSS profoundly (p?<?0.001): from 4.2?±?0.2 to 6.5?±?0.3. PVT reaction times were slower during the first (290?±?6?ms) compared with the second (280?±?6?ms) watch of the day (p?<?0.001) as well as at the end of the watch (289?±?6?ms) compared with the start (281?±?6?ms; p?=?0.001). The free watch disturbance increased reaction times (p?<?0.001) from 283?±?5 to 306?±?7?ms. Similar effects were observed for PVT lapses. One third of all participants slept during at least one of the PSG watches. Sleep on watch was most abundant in the team working 00–04 and it increased following the free watch disturbance. This study reveals that—within a 4?h on/8?h off shift system—subjective and objective sleepiness peak during the night and early morning watches, coinciding with a time frame in which relatively many maritime accidents occur. In addition, we showed that overtime work strongly increases sleepiness. Finally, a striking amount of participants fell asleep while on duty.  相似文献   

18.
Seafaring is a hazardous occupation with high death and injury rates, but the role of seafarer fatigue in these events is generally not well documented. The International Maritime Organization has identified seafarer fatigue as an important health and safety issue. Most research to date has focused on more regularly scheduled types of operations (e.g., merchant vessels, ferries), but there is relatively little information on commercial fishing, which often involves high day‐to‐day and seasonal variability in work patterns and workload. The present study was designed to monitor the sleep and sleepiness of commercial fishermen at home and during extended periods at sea during the peak of the hoki fishing season, with a view to developing better fatigue management strategies for this workforce. Sleep (wrist actigraphy and sleep diaries) and sleepiness (Karolinska Sleepiness Scale [KSS] before and after each sleep period) of 20 deckhands were monitored for 4–13 days at home and for 5–9 days at sea while working a nominal 12 h on/6 h off schedule. On the 12 h on/6 h off schedule, there was still a clear preference for sleep at night. Comparing the last three days at home and the first three days at sea showed that fishermen were more likely to have split sleep at sea (Wilcoxon signed ranks p<0.001), but the median sleep/24 h did not differ significantly by location (5.9 h at sea vs. 6.7 h at home). However, on 23% of days at sea, fishermen obtained<4 h total sleep/24 h, compared to 3% of days at home (p2)<0.01). Sleep efficiency, mean activity counts/min sleep, and subjective ratings of sleep quality did not differ significantly between the last three days at home and the first three days at sea. However, sleepiness ratings remained higher after sleep at sea (Wilcoxon signed ranks p<0.05), with fishermen having post‐sleep KSS ratings ≥7 on 24% of days at sea vs. 9% of days at home (Wilcoxon signed ranks p<0.01). This work adds to the limited number of studies that objectively monitored the sleep of seafarers. It has the strength of operational fidelity but the weakness that large inter‐ and intra‐individual variability in sleep, combined with the small sample size, limited the power of the study to detect statistically significant differences between sleep at home and at sea. The clear preference for sleep at night during the 12 h on/6 h off schedule at sea is consistent with the expectation that this 18 h duty/rest cycle is outside the range of entrainment of the circadian pacemaker. High levels of acute sleep loss, and residual sleepiness after sleep, were much more common at sea than at home. The longer duration of trips during the peak of the fishing season increases the risk of performance impairment due to greater cumulative sleep loss than would be expected on typical three‐day trips. Key fatigue management strategies in this environment include that fishermen report to work as well rested as possible. Once at sea, the day‐to‐day variability in activities due to uncontrollable factors, such as fishing success, repairing gear, and weather conditions, mean that contingency planning is required for managing situations where the entire crew have experienced long periods of intensive work with minimum recovery opportunities.  相似文献   

19.
Night shift work is associated with a myriad of health and safety risks. Phase-shifting the circadian clock such that it is more aligned with night work and day sleep is one way to attenuate these risks. However, workers will not be satisfied with complete adaptation to night work if it leaves them misaligned during days off. Therefore, the goal of this set of studies is to produce a compromise phase position in which individuals working night shifts delay their circadian clocks to a position that is more compatible with nighttime work and daytime sleep yet is not incompatible with late nighttime sleep on days off. This is the first in the set of studies describing the magnitude of circadian phase delays that occurs on progressively later days within a series of night shifts interspersed with days off. The series will be ended on various days in order to take a "snapshot" of circadian phase. In this set of studies, subjects sleep from 23:00 to 7:00 h for three weeks. Following this baseline period, there is a series of night shifts (23:00 to 07:00 h) and days off. Experimental subjects receive five 15 min intermittent bright light pulses (approximately 3500 lux; approximately 1100 microW/cm2) once per hour during the night shifts, wear sunglasses that attenuate all visible wavelengths--especially short wavelengths ("blue-blockers")--while traveling home after the shifts, and sleep in the dark (08:30-15:30 h) after each night shift. Control subjects remain in typical dim room light (<50 lux) throughout the night shift, wear sunglasses that do not attenuate as much light, and sleep whenever they want after the night shifts. Circadian phase is determined from the circadian rhythm of melatonin collected during a dim light phase assessment at the beginning and end of each study. The sleepiest time of day, approximated by the body temperature minimum (Tmin), is estimated by adding 7 h to the dim light melatonin onset. In this first study, circadian phase was measured after two night shifts and day sleep periods. The Tmin of the experimental subjects (n=11) was 04:24+/-0.8 h (mean+/-SD) at baseline and 7:36+/-1.4 h after the night shifts. Thus, after two night shifts, the Tmin had not yet delayed into the daytime sleep period, which began at 08:30 h. The Tmin of the control subjects (n=12) was 04:00+/-1.2 h at baseline and drifted to 4:36+/-1.4 h after the night shifts. Thus, two night shifts with a practical pattern of intermittent bright light, the wearing of sunglasses on the way home from night shifts, and a regular sleep period early in the daytime, phase delayed the circadian clock toward the desired compromise phase position for permanent night shift workers. Additional night shifts with bright light pulses and daytime sleep in the dark are expected to displace the sleepiest time of day into the daytime sleep period, improving both nighttime alertness and daytime sleep but not precluding adequate sleep on days off.  相似文献   

20.
The aim of this study was to evaluate patterns of sleepiness, comparing working and non‐working students. The study was conducted on high school students attending evening classes (19:00–22:30 h) at a public school in São Paulo, Brazil. The study group consisted of working (n=51) and non‐working (n=41) students, aged 14–21 yrs. The students answered a questionnaire about working and living conditions and reported health symptoms and diseases. For seven consecutive days, actigraphy measurements were recorded, and the students also filled in a sleep diary. Sleepiness ratings were given six times per day, including upon waking and at bedtime, using the Karolinska Sleepiness Scale. Statistical analyses included three‐way ANOVA and t‐test. The mean sleep duration during weekdays was shorter among workers (7.2 h) than non‐workers (8.8 h) (t=4.34; p<.01). The mean duration of night awakenings was longer among workers on Tuesdays and Wednesdays (28.2 min) and shorter on Mondays (24.2 min) (t=2.57; p=.03). Among workers, mean napping duration was longer on Mondays and Tuesdays (89.9 min) (t=2.27; p=.03) but shorter on Fridays and Sundays (31.4 min) (t=3.13; p=.03). Sleep efficiency was lower on Fridays among non‐workers. Working students were moderately sleepier than non‐workers during the week and also during class on specific days: Mondays (13:00–15:00 h), Wednesdays (19:00–22:00 h), and Fridays (22:00–00:59 h). The study found that daytime sleepiness of workers is moderately higher in the evening. This might be due to a work effect, reducing the available time for sleep and shortening the sleep duration. Sleepiness and shorter sleep duration can have a negative impact on the quality of life and school development of high school students.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号