首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The molecular size and conformation of the chloroplast DNA from higher plants.   总被引:50,自引:0,他引:50  
Covalently closed circular choloroplast DNA (ctDNA) molecules have been isolated from pea, bean, spinach, lettuce, corn and oat plants by ethidium bromide/cesium choloride density-gradient entrifugation. As much as 30-40% of the total ctDNA could be isolated as closed circular DNA molecules and up to 80% of the total ctDNA was found in the form of circular molecules. The size of pea, spinach, lettuce, corn and oat ctDNA relative to an internal standard (phiX174 replicative form II monomer DNA) was determined by electron microscopy. The ctDNAs showed significant differences in their sizes, and their molecular weights ranged from 85.4 - 10(6) for corn ctDNA to 96.7 - 10(6) for lettuce ctDNA. Each of these ctDNAs contained 3-4% of the circular molecules as circular dimers and 1-2% of the circular molecules as catenated dimes. The molecular complexity of these ctDNAs was studied by renaturation kinetics using T4 DNA as a standard. The molecular weights of the unique sequences of the ctDNAs ranged from 83.7 - 10(6) for oat ctDNA to 93.1 - 10(6) for lettuce ctDNA, which are in excellent agreement with the sizes of the circular ctDNA molecules...  相似文献   

2.
Localization of replication origins in pea chloroplast DNA.   总被引:7,自引:0,他引:7       下载免费PDF全文
The locations of the two replication origins in pea chloroplast DNA (ctDNA) have been mapped by electron microscopic analysis of restriction digests of supercoiled ctDNA cross-linked with trioxalen. Both origins of replication, identified as displacement loops (D-loops), were present in the 44-kilobase-pair (kbp) SalI A fragment. The first D-loop was located at 9.0 kbp from the closest SalI restriction site. The average size of this D-loop was about 0.7 kbp. The second D-loop started 14.2 kbp in from the same restriction site and ended at about 15.5 kbp, giving it a size of about 1.3 kbp. The orientation of these two D-loops on the restriction map of pea ctDNA was determined by analyzing SmaI, PstI, and SalI-SmaI restriction digests of pea ctDNA. One D-loop has been mapped in the spacer region between the 16S and 23S rRNA genes. The second D-loop was located downstream of the 23S rRNA gene. Denaturation mapping of recombinants pCP 12-7 and pCB 1-12, which contain both D-loops, confirmed the location of the D-loops in the restriction map of pea ctDNA. Denaturation-mapping studies also showed that the two D-loops had different base compositions; the one closest to a SalI restriction site denatured readily compared with the other D-loop. The recombinants pCP 12-7 and pCB 1-12 were found to be highly active in DNA synthesis when used as templates in a partially purified replication system from pea chloroplasts. Analysis of in vitro-synthesized DNA with either of these recombinants showed that full-length template DNA was synthesized. Recombinants from other regions of the pea chloroplast genome showed no significant DNA synthesis activity in vitro.  相似文献   

3.
Single-stranded scissions are induced in the covalently closed circular chloroplast (ct-) DNAs from peas, spinach, and lettuce plants by treatment with alkali or by incubation with a mixture of ribonucleases A and T1. These scissions are due to the presence of covalently linked ribonucleotides in these closed circular DNAs. By comparing the scission rates of these ctDNAs to the scission rate of RNA, it has been estimated that pea and spinach ctDNAs contain a maximum of 18 +/- 2 ribonucleotides/molecule, while lettuce ctDNA contains a maximum of 12 +/- 2 ribonucleotides/molecule. Further studies with pea ctDNA by electron microscopic methods have shown that pea ctDNA contains 19 alkali-labile sites at specific locations. A map of the relative positions of the alkali-labile sites has been constructed. These alkali-labile sites are presumably due to the insertion of individual ribonucleotides.  相似文献   

4.
The size and structure of the covalently closed circular chloroplast DNAs (ctDNA) from pea, lettuce, and spinach plants, have been studied by analytical ultracentrifugation. The values of so20,w,Na+ of the native and denatured forms of the open and closed circular DNAs from these plants have been determined. The absolute molecular weight of purified closed circular pea ctDNA monomers has been determined by buoyant equilibrium sedimentation to be 89.1 (S.D. +/- 0.7)-10(6). The value of the so20,w,Na+ of open circular pea ctDNA and its molecular weight, in conjunction with corresponding values for other sizes of circular DNA, has been used to derive an empirical relationship between so20,w,Na+ and molecular weight for open circular DNAs. Using this relationship, the molecular weights of lettuce and spinach ctDNAs have been determined to be 98.2 (S.D. +/- 1.5)-10(6) and 97.2 (S.D. +/- 1.5)-10(6), respectively. At pH values 12.7 and 13, closed circular lettuce and pea ctDNAs have been found to exist as mixtures of reversibly and irreversibly denatured closed circular DNAs.  相似文献   

5.
The saturation hybridization between spinach chloroplast (ct) DNA and spinach 125I-labelled chloroplast tRNA has shown that about 1.1% of the spinach ctDNA codes for tRNAs. The observed hybridization is a result of specific base-pairing as shown by competition hybridization experiments and thermal stability of the ctDNA-tRNA hybrids. The amount of hybridization shows that spinach ctDNA contains about 40 tRNA genes. Similar hybridization studies have shown that corn ctDNA contains about 28 tRNA genes. The cross-hybridizations between ctDNA and tRNAs of corn, spinach and pea have shown that tRNAs in chloroplasts of higher plants have undergone significant divergence. The pea and spinach tRNAs have been found to have 50% of the base sequences in common. The corn tRNAs have been found to have only about 30% of the base sequences in common with pea and spinach. These data have been confirmed by extensive heterologous competition experiments and thermal stability of the heterologous DNA-tRNA hybrids. The experiments have also shown that the base sequences of tRNAs common in all three plants are the same.  相似文献   

6.
The structure of circular pea chloroplast DNA (ctDNA) has been analyzed by denaturation mapping. All of the pea ctDNA molecules that were examined had identical gross base sequences. Denaturation maps were constructed at denaturation levels of 2.5%, 22%, and 44%. These denaturation maps showed that the circular pea ctDNA contained six small AT-rich regions on one-half of the DNA molecule, and two small GC-rich regions on the other half of the DNA molecule. The structure of pea ctDNA circular dimers was also examined. The results showed that the pea ctDNA circular dimers consisted of two monomer length units integrated in tandem repeat.  相似文献   

7.
Summary A restriction endonuclease fragment map of sugar beet chloroplast DNA (ctDNA) has been constructed with the enzymes SmaI, PstI and PvuII. The ctDNA was found to be contained in a circular molecule of 148.5 kbp. In common with many other higher plant ctDNAs, sugar beet ctDNA consists of two inverted repeat sequences of about 20.5 kbp separated by two single-copy regions of different sizes (about 23.2 and 84.3 kbp). Southern hybridization analyses indicated that the genes for rRNAs (23S+16S) and the large subunit of ribulose 1,5-bisphosphate carboxylase were located in the inverted repeats and the large single-copy regions, respectively.  相似文献   

8.
Hepatitis B Viral DNA Molecules Have Cohesive Ends   总被引:5,自引:2,他引:5  
  相似文献   

9.
One of the two origins of replication in pea chloroplast DNA (oriA) maps in the rRNA spacer region downstream of the 16S rRNA gene, and further characterization of this origin is presented here. End-labeling of nascent DNA strands from in vivo replicating ctDNA was used to generate probes for Southern hybridization. Hybridization data identified the same region that was previously mapped to contain D-loops by electron microscopy. Subclones of the ori A region were tested for their ability to support in vitro DNA replication using a partially purified pea ctDNA replication system. Two-dimensional agarose gel electrophoresis identified replication intermediates for clones from the region just downstream of the 16S rRNA gene, with a 450-bp SacI-EcoRI clone showing the strongest activity. The experiments presented in this paper identify the 940 base pair region in the rRNA spacer between the 3′ end of the 16S rRNA gene and the Eco RI site as containing oriA. Previous studies by electron microscopy localized the D-loop in the spacer region just to the right of the Bam HI site, but the experiments presented here show that sequences to the left of the BamHI site are required for replication initiation from ori A. DNA sequence analysis of this region of pea ctDNA shows the presence of characteristic elements of DNA replication origins, including several direct and inverted repeat sequences, an A + T rich region, and dna A-like binding sites, most of which are unique to the pea ctDNA ori A region when compared with published rRNA spacer sequences from other chloroplast genomes.  相似文献   

10.
Summary Clone banks of PvuII, BamHI and XhoI fragments were generated of the Solanum tuberosum cv Katahdin plastome. These clone banks, in conjunction with molecular hybridization to tobacco ctDNA probes, were used to construct a physical map of potato ctDNA. The potato plastome was found to be a circular molecule of 155–156 Kbp containing two inverted repeat regions of 23–27 Kbp. The arrangement of restriction sites is very similar to that of other Solanaceae plastomes. Heterologous hybridization to known ctDNA encoded gene probes from tobacco allowed us to establish a genetic map of the potato chloroplast genome. The arrangement of these genes on the potato plastome resembles that on most higher plant ctDNAs.  相似文献   

11.
Nuclear and chloroplast DNA differentiation in Andean potatoes.   总被引:5,自引:0,他引:5  
Over 3500 accessions of Andean landraces have been known in potato, classified into 7 cultivated species ranging from 2x to 5x (Hawkes 1990). Chloroplast DNA (ctDNA), distinguished into T, W, C, S, and A types, showed extensive overlaps in their frequencies among cultivated species and between cultivated and putative ancestral wild species. In this study, 76 accessions of cultivated and 19 accessions of wild species were evaluated for ctDNA types and examined by ctDNA high-resolution markers (ctDNA microsatellites and H3 marker) and nuclear DNA restriction fragment length polymorphisms (RFLPs). ctDNA high-resolution markers identified 25 different ctDNA haplotypes. The S- and A-type ctDNAs were discriminated as unique haplotypes from 12 haplotypes having C-type ctDNA and T-type ctDNA from 10 haplotypes having W-type ctDNA. Differences among ctDNA types were strongly correlated with those of ctDNA high-resolution markers (r = 0.822). Differentiation between W-type ctDNA and C-, S-, and A-type ctDNAs was supported by nDNA RFLPs in most species except for those of recent or immediate hybrid origin. However, differentiation among C-, S-, and A-type ctDNAs was not clearly supported by nDNA RFLPs, suggesting that frequent genetic exchange occurred among them and (or) they shared the same gene pool owing to common ancestry.  相似文献   

12.
R S Lloyd  C W Haidle  D L Robberson 《Gene》1979,7(3-4):303-316
Electron microscopy of purified full-length linear duplex molecules produced by bleomycin reaction with PM2 DNA revealed low frequencies of closed circular duplex molecules as well as linear duplex molecules with opposed ends (cyclized molecules which have dissociated to yield a gap between the termini). The occurrence of these latter forms indicates that double-strand scissions produced by bleomycin reaction consist of two single-strand scissions which are physically staggered on the complementary strands. Analysis of the temperature dependence for cyclization led to the estimate that an average of 1.7 +/- 0.44 base-pairs (2.6 +/- 0.5 base pairs without base-stacking energies) occur between the staggered breaks. The reassociated termini cannot be ligated with T4 ligase. When PM2 DNA was fragmented at several sites within each molecule, circular duplexes and linear duplexes with opposed ends with a range of sizes from 350 base pairs up to full-length PM2 DNA were observed. Analysis of the frequency distribution of lengths of these fragments indicates that most, if not all, of the specific sites for bleomycin-directed double-strand scissions in PM2 DNA contain representatives of the same two base single-stranded termini.  相似文献   

13.
Summary The interrelationships of Beta chloroplast genomes have been investigated on the basis of the analysis of Fraction I protein and chloroplast (ct) DNA. Three groups of the chloroplast genomes could be demonstrated by the difference in isoelectric points of the large subunit of Fraction I protein. Restriction enzyme analysis revealed inter- and intra-specific variations among the ctDNAs, which enabled us to detect seven distinct ctDNA types. In Vulgares and Corollinae species, the observed differences were physically mapped taking advantage of the restriction fragment map available for sugar beet (B. vulgaris) ctDNA. The DNA variations were found to result either from gains or losses of restriction sites or from small deletions/ insertions, and most of them were located in the large single-copy region of the genome. Moreover, the ctDNAs from Patellares species are more diverged from those of other Beta taxa. Our results also indicate that there is a close correlation between the chloroplast genome diversity and the accepted taxonomic classification of the species included in this survey.  相似文献   

14.
Detection of circulating tumor DNAs (ctDNAs) in cancer patients is an important component of cancer precision medicine ctDNAs. Compared to the traditional physical and biochemical methods, blood-based ctDNA detection offers a non-invasive and easily accessible way for cancer diagnosis, prognostic determination, and guidance for treatment. While studies on this topic are currently underway, clinical translation of ctDNA detection in various types of cancers has been attracting much attention, due to the great potential of ctDNA as blood-based biomarkers for early diagnosis and treatment of cancers. ctDNAs are detected and tracked primarily based on tumor-related genetic and epigenetic alterations. In this article, we reviewed the available studies on ctDNA detection and described the representative methods. We also discussed the current understanding of ctDNAs in cancer patients and their availability as potential biomarkers for clinical purposes. Considering the progress made and challenges involved in accurate detection of specific cell-free nucleic acids, ctDNAs hold promise to serve as biomarkers for cancer patients, and further validation is needed prior to their broad clinical use.  相似文献   

15.
In a previous study, we mapped replication origin regions of the plastid DNA around the 3 end of the 23S rRNA gene in rice suspension-cultured cells. Here, we examined initiation of the plastid DNA replication in different rice cells by two-dimensional agarose gel electrophoresis. We show for the first time, to our knowledge, that the replication origin region of the plastid DNA differs among cultured cells, coleoptiles and mature leaves. In addition, digestion of the replication intermediates from the rice cultured cells with mung bean nuclease, a single-strand-specific nuclease, revealed that both two single strands of the double-stranded parental DNA were simultaneously replicated in the origin region. This was further confirmed by two-dimensional agarose gel analysis with single-stranded RNA probes. Thus, the mode of plastid DNA replication presented here differs from the unidirectional replication started by forming displacement loops (D-loops), in which the two D-loops on the opposite strands expand toward each other and only one parental strand serves as a template.  相似文献   

16.
The relative arrangement of two tRNAPhe molecules bound to the A and P sites of poly(U)-programmed Escherichia coli ribosomes was determined from the spatial separation of various parts of the two molecules. Intermolecular distances were calculated from the fluorescence energy transfer between fluorophores in the anticodon and D loops of yeast tRNAPhe. The energy donors were the natural fluorescent base wybutine in the anticodon loop or proflavine in both anticodon (position 37) and D loops (positions 16 and 17). The corresponding energy acceptors were proflavine or ethidium, respectively, at the same positions. Four distances were measured: anticodon loop-anticodon loop, 24(+/- 4) A; anticodon loop (A site)-D loop (P site), 46(+/- 12) A: anticodon loop (P site)-D loop (A site), 38(+/- 10) A: D loop-D loop, 35(+/- 9) A. Assuming that both tRNAs adopt the conformation present in the crystal and that the CCA ends are close to each other, the results are consistent with the two anticodons being bound to contiguous codons and suggest an asymmetric arrangement in which the planes of the two L-shaped molecules enclose an angle of 60 degrees +/- 30 degrees.  相似文献   

17.
Formation of D-loops during the exchange of strands between a circular single-stranded DNA and a completely homologous linear duplex proceeds optimally when the duplex DNA is added to the complex of recA protein and single-stranded DNA formed in the presence of single-stranded DNA-binding protein and ATP. D-loops are undetectable when 200 microM adenosine 5'-O-(thiotriphosphate) is substituted for ATP. D-loops can be formed in the presence of adenosine 5'-O-(thiotriphosphate) if recA protein is the last component added to the reaction. However, these D-loops, which depend upon homologous sequences, are unstable upon deproteinization and are formed to a more limited extent than the structures formed with ATP. This finding indicates that D-loops formed under these conditions may be largely nonintertwined paranemic structures rather than plectonemic structures in which two of the strands are interwoven. When adenosine 5'-O-(thiotriphosphate) is added to an ongoing reaction containing ATP, formation of plectonemic structures and ATP hydrolysis is inhibited to an equivalent extent. We, therefore, conclude that ATP hydrolysis is required for the formation of plectonemic structures.  相似文献   

18.
In a previous study, we compared chloroplast DNAs (ctDNAs) from four species ofOryza and detected two independent deletions of DNA fragments in the ctDNAs (Kanno and Hirai 1992a). These deletions were genotype-specific variations. Since short direct-repeat sequences were detected at the borders of both deletions, the deletions were apparently the result of intramolecular recombination mediated by these direct-repeat sequences. In the present study, we examined whether or not this type of variation exists within a single species. Ishii et al. demonstrated three types of ctDNA inO. Sativa (1988), and the source of the variations that they identified seemed to be deletions. We determined the precise locations of the deletions and the sequences around them. As expected, our results showed that these variations were the results of deletions that were mediated by short direct-repeat sequences. While the deletions that had been found previously were located on spacer regions, those found in this study were located within open reading frames (ORFs). Northern hybridization analysis showed that one of the ORFs was-transcribed. In the case of this deletion, the amino acid sequence encoded by the C-terminal region of the ORF was altered and the short inverted-repeat sequences downstream of the ORF were deleted. In addition, there were other short inverted-repeat sequences downstream of the altered ORF.  相似文献   

19.
D M Gray  T Cui    R L Ratliff 《Nucleic acids research》1984,12(19):7565-7580
We have studied the coil-to-helix transition of the DNA oligomer d(C4A4T4C4), using circular dichroism measurements to monitor the formation of A.T base pairs within the central self-complementary A4T4 region and the formation of protonated C.C+ base pairs at the ends of the oligomer. We found that both A.T and C.C+ base pairs formed in a coordinated fashion as the temperature and pH were lowered. The CD data of the helix form of the oligomer were consistent with the presence of paired oligomers, but not with hairpin loops. The pKa for formation of C.C+ base pairs between the C4 ends of the oligomer was higher than the pKa for formation of C.C+ base pairs in d(C8), indicating that the formation of C.C+ base pairs in the oligomer was influenced by the presence of a paired A4T4 region. We conclude that A.T and C.C+ base pairs coexist in the self-complex of the oligomer and, therefore, that C.C+ base pairs can form between antiparallel DNA strands.  相似文献   

20.
Summary Labelled chloroplast rRNAs from Spinacia oleracea were hybridized to restriction endonuclease digests of chloroplast DNA from Oenothera hookeri and Euglena gracilis, to mitochondrial DNA of Acanthamoeba castellanii, and to DNA of the E. coli rrn B operon in the transducing phage lambda rifd18. The degree of homology is greatest for the 16S rRNA gene. Greater than 90% occurs between the two higher plant genes, 80% homology to the lower plant gene, 60%–70% homology to the bacterial gene, and 20% homology to the mitochondrial gene. The degree of hybridization varied considerably for the 23S and the 5S rRNA genes. Very high homology exists between the two higher plant genes, only about 50% homology for both the Euglena and bacterial genes, and no significant homology for the mitochondrial genes. These results show that any chloroplast (or E. coli) rRNA may be used as a probe to identify rRNA genes in other ctDNAs.Two RNA populations, each enriched for a different ctDNA-encoded mRNA, proved useful in the location of these genes on both higher plant ctDNAs. No significant hybridization was obtained using these probes to the Euglena ctDNA which seems to be too distantly related.Abbreviations Md megadalton, 106 dalton - bp, kbp base pair, kilo base pair - SSC Standard saline citrate, 1 times SSC is 0.15M sodium, chloride, 0.015 M trisodium citrate, pH, 6.8 - mtDNA mitochondrial DNA - ctDNA chloroplast DNA - ctrRNA chloroplast ribosomal RNA  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号