首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of pyridoxal depletion and supplementation on the intracellular level of mitochondrial and cytosolic aspartate aminotransferase in cultured chicken embryo fibroblasts was examined. No apoenzyme was detected in cells grown in the presence of pyridoxal, and the specific activity of total enzyme did not vary profoundly from primary to quaternary cultures. Under pyridoxal depletion, up to 40% apoenzyme was found in tertiary cultures which was entirely due to the mitochondrial isoenzyme. Cytosolic apoenzyme was never detected. Total aspartate aminotransferase relative to total protein was increased 2-fold in secondary cultures; only the mitochondrial isoenzyme contributed to the increased specific activity. The cytosolic isoenzyme decreased steadily and was below the limit of detection in quaternary cultures. The changes are attributed to an increased and decreased synthesis of mitochondrial and cytosolic isoenzyme, respectively. No induction of either isoenzyme was observed after incubating the cells with different hormones and substrates. In secondary cultures, no degradation of mitochondrial isoenzyme could be detected under pyridoxal deficiency or supplementation during 4.4 days, an interpassage duration. The cytosolic aspartate aminotransferase was degraded initially with an apparent half-life of approximately 0.9 day under both sets of conditions. The pronounced stability of mitochondrial aspartate aminotransferase, even though one-third of it was present as apoenzyme, excludes the formation of the apoform to be the rate-limiting step in its degradation. The present results show that pyridoxal affects the synthesis of mitochondrial and cytosolic aspartate aminotransferase, but differently.  相似文献   

2.
Both the precursor and the mature form of chicken mitochondrial aspartate aminotransferase were synthesized in Escherichia coli. The precursor was found to sediment quantitatively together with insoluble cell material. In contrast, mature mitochondrial aspartate aminotransferase could be readily extracted from the cells and was indistinguishable from the enzyme isolated from chicken heart in all respects tested: specific activity 230 units mg-1; Mr 2 X 45,000; pI greater than 9; NH2-terminal sequence SSWWSHVEMG, the initiator methionine having been removed by the bacteria. Thus, the polypeptide chain representing mature mitochondrial aspartate aminotransferase is an autonomous folding unit which attains its functional spatial structure independently of the presence of the prepiece, trans-membrane passage, and proteolytic processing.  相似文献   

3.
The import of the precursor of mitochondrial aspartate aminotransferase was reconstituted in vitro with isolated mitochondria thus corroborating the earlier conclusion of a post-translational uptake. The higher Mr precursor was synthesized in a reticulocyte lysate programmed with free polysomes from chicken liver. After incubation with intact mitochondria from chicken heart about 50% of the precursor was converted to the mature form in a time-dependent process, its rate being a function of the amount of mitochondria added. The same amount of precursor was processed to the mature form on addition of a mitochondrial extract. No conversion to the mature enzyme took place when the precursor was incubated with intact mitochondria in the presence of the uncoupling agent carbonyl cyanide m-chlorophenylhydrazone or of the chelator o-phenanthroline which penetrates the mitochondrial inner membrane. In contrast, the chelator bathophenanthroline disulfonate which does not diffuse into the mitochondrial matrix did not inhibit the appearance of the mature form. The results indicate that that precursor must pass through an energized inner mitochondrial membrane before it is processed by a chelator-sensitive protease in the mitochondrial matrix. Excess mature mitochondrial aspartate aminotransferase did not compete with the precursor for its uptake into mitochondria. Mature mitochondrial aspartate aminotransferase is an alpha 2-dimer with Mr = 2 X 45,000. Both the precursor synthesized in a rabbit reticulocyte lysate and the precursor accumulated in the cytosol of carbonyl cyanide m-chlorophenylhydrazone-treated chicken embryo fibroblasts were found to exist as homodimer or hetero-oligomer and high Mr complexes (Mr greater than 300,000).  相似文献   

4.
The kinetic behaviour of chicken liver and turkey liver aspartate aminotransferases (L-aspartate:2-oxoglutarate aminotransferase, EC 2.6.1.1) was studied. Steady-state data were obtained from a wide range of concentrations of substrates and product L-glutamate. The data were fitted by rational functions of degree 1:1, 1:2 and 2:2 with respect to substrates and 0:1, 1:1, 0:2 and 1:2 with regard to product (L-glutamate), by using a non-linear regression program that guarantees the fit. The goodness of fit was improved by the use of a computer program that combines model discrimination parameter refinement and sequential experimental design. It was concluded that aspartate aminotransferase requires a minimum velocity equation of degree 2:2 for L-aspartate, 2:2 for 2-oxoglutarate and 1:2 for L-glutamate. Finally, a plausible kinetic mechanism that justifies these experimental results is proposed.  相似文献   

5.
Pig mitochondrial aspartate aminotransferase has been crystallized from polyethylene glycol solutions (Mr = 4000) with the aid of small seed crystals of the chicken mitochondrial isoenzyme. The “hanging drop” vapour diffusion technique was used. The unit cells of the pig and chicken mitochondrial isoenzymes are roughly isomorphous. Diffraction data have been collected to a resolution of 2.8 Å.  相似文献   

6.
Mitochondrial aspartate aminotransferase is synthesized on free polysomes as a higher molecular weight precursor (Sonderegger, P., Jaussi, R., Christen, P., and Gehring, H. (1982) J. Biol. Chem. 257, 3339-3345). The present study examines whether the coenzyme pyridoxal phosphate or pyridoxamine phosphate is required for the uptake of the precursor into mitochondria. Chicken embryo fibroblasts were cultured in medium prepared with and without pyridoxal. In cells grown in the presence of pyridoxal only holoform of aspartate aminotransferase and no apoenzyme was detected. Cells cultured under pyridoxal deficiency contained about 30% of apoenzyme in secondary cultures. All of this apoform was identified as mitochondrial isoenzyme. In order to differentiate whether this apoenzyme corresponded to newly synthesized protein or originated from pre-existing holoenzyme, double isotope-labeling experiments were performed. Secondary cultures of chicken embryo fibroblasts grown under pyridoxal depletion were labeled with [3H]methionine, and then pulsed with [35S]methionine. In another series of experiments, the 3H-labeled cells were pulsed with [35S]methionine in the presence of the protonophore carbonyl cyanide m-chlorophenylhydrazone in order to accumulate the precursor. Subsequently, the accumulated precursor was chased into the mitochondria by addition of the carbonyl cyanide m-chlorophenylhydrazone antagonist cysteamine. The holo- and apoenzyme from the ultrasonic extract of the double-labeled cells were separated by affinity chromatography on a phosphopyridoxyl-AH-Sepharose column, immunoprecipitated, and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography. Under both experimental conditions, the 3H/35S ratio of the apoenzyme was less than half of that of the holoenzyme. Therefore, the apoenzyme and not the holoenzyme is the first product of the precursor in the mitochondria. Apparently, the precursor of mitochondrial aspartate aminotransferase is transported into mitochondria as apoprotein and is processed there independently of the coenzyme.  相似文献   

7.
One sulfhydryl group of the mitochondrial isoenzyme of aspartate aminotransferase from both chicken and pig heart exhibits syncatalytic reactivity changes similar to those found previously in the cytosolic isoenzyme from pig heart (Birchmeier, W., Wilson, K.J., and Christen, P. (1973) J. Biol. Chem. 248, 1751–1759). The reactivity of the only titratable sulfhydryl group toward 5,5′-dithiobis-(2-nitrobenzoate) is at a minimum in the free pyridoxal and pyridoxamine form of the enzyme and is increased by approximately one order of magnitude when covalent enzyme-substrate intermediates are formed. The modification of the sulfhydryl group does not affect enzymatic activity. This finding supports the earlier conclusion that the syncatalytic reactivity changes are not due to a direct participation of this group in the active site but rather to conformational adaptations of the enzyme-coenzyme-substrate compound occurring in the catalytic mechanism of aspartate aminotransferases.  相似文献   

8.
A 2.4 kilobase cDNA for rat mitochondrial aspartate aminotransferase (E.C. 2.6.1.1.) was isolated and sequenced. The predicted presequence is 93% homologous to the presequences of the enzyme from pig and mouse. The predicted amino acid sequence of the mature enzyme differs from that determined directly by amino acid sequencing (Huynh, Q.K., Sakakibara, R., Watanabe, T., and Wada, H. (1981) J. Biochem. (Tokyo) 90, 863-875) at 13 amino acids residues. The most important difference is at position 140 where the cDNA encodes a tryptophanyl residue rather than the previously reported glycine. This critical residue is now seen to be conserved in all aspartate aminotransferases. The coding region of this cDNA was inserted into the plasmid cloning vector pKK233-2 and used to stably express an unfused precursor in Escherichia coli JM105.  相似文献   

9.
10.
Mitochondrial aspartate aminotransferase was synthesized in a cell-free system using polysomal mRNA from chicken heart. Its primary translation product has a higher molecular weight than the subunit of the mature α2-dimer (ΔMW ~3000). The synthesis of a precursor most likely relates to the translocation of the protein from its site of synthesis, i.e., cytosolic ribosomes, into the mitochondrial matrix.  相似文献   

11.
The possible contribution of the mature portion of a mitochondrial precursor protein to its interaction with membrane lipids is unclear. To address this issue, we examined the interaction of the precursor to mitochondrial aspartate aminotransferase (pmAAT) and of a synthetic peptide corresponding to the 29-residue presequence peptide (mAAT-pp) with anionic phospholipid vesicles. The affinity of mAAT-pp and pmAAT for anionic vesicles is nearly identical. Results obtained by analyzing the effect of mAAT-pp or full-length pmAAT on either the permeability or microviscosity of the phospholipid vesicles are consistent with only a shallow insertion of the presequence peptide in the bilayer. Analysis of the quenching of Trp-17 fluorescence by brominated phospholipids reveals that this presequence residue inserts to a depth of approximately 9 A from the center of the bilayer. Furthermore, in membrane-bound pmAAT or mAAT-pp, both Arg-8 and Arg-28 are accessible to the solvent. These results suggest that the presequence segment lies close to the surface of the membrane and that the mature portion of the precursor protein has little effect on the affinity or mode of binding of the presequence to model membranes. In the presence of vesicles, mAAT-pp adopts considerable alpha-helical structure. Hydrolysis by trypsin after Arg-8 results in the dissociation of the remaining 21-residue C-terminal peptide fragment from the membrane bilayer, suggesting that the N-terminal portion of the presequence is essential for membrane binding. Based on these results, we propose that the presequence peptide may contain dual recognition elements for both the lipid and import receptor components of the mitochondrial membrane.  相似文献   

12.
Degradation of aspartate aminotransferase in rat liver lysosomes   总被引:1,自引:0,他引:1  
Highly purified lysosomes from the normal and leupeptin-treated rat livers were subjected to immunoblot analysis using antibodies against cytosolic and mitochondrial isozymes of aspartate aminotransferase (cAspAT and mAspAT). In the case of cAspAT (subunit M.W. = 46K), the leupeptin-treated lysosomes showed a major band of 46K and a minor band of 36K while normal lysosomes showed a major band of 36K and a minor band of 41K. In the case of mAspAT (subunit M.W. = 44K), the leupeptin-treated lysosomes showed a 44K band and the normal lysosomes showed a 40K band. These observations suggest that both cAspAT and mAspAT are sequestered into lysosomes with the original subunit molecular weights and are degraded in the lysosomes by way of sequential formation of relatively stable intermediates with distinct molecular weights.  相似文献   

13.
The subunits of the dimeric enzyme aspartate aminotransferase have two domains: one large and one small. The active site lies in a cavity that is close to both the subunit interface and the interface between the two domains. On binding the substrate the domains close together. This closure completely buries the substrate in the active site and moves two arginine side-chains so they form salt bridges with carboxylate groups of the substrate. The salt bridges hold the substrate close to the pyridoxal 5'-phosphate cofactor and in the right position and orientation for the catalysis of the transamination reaction. We describe here the structural changes that produce the domain movements and the closure of the active site. Structural changes occur at the interface between the domains and within the small domain itself. On closure, the core of the small domain rotates by 13 degrees relative to the large domain. Two other regions of the small domain, which form part of the active site, move somewhat differently. A loop, residues 39 to 49, above the active site moves about 1 A less than the core of the small domain. A helix within the small domain forms the "door" of the active site. It moves with the core of the small domain and, in addition, shifts by 1.2 A, rotates by 10 degrees, and switches its first turn from the alpha to the 3(10) conformation. This results in the helix closing the active site. The domain movements are produced by a co-ordinated series of small changes. Within one subunit the polypeptide chain passes twice between the large and small domains. One link involves a peptide in an extended conformation. The second link is in the middle of a long helix that spans both domains. At the interface this helix is kinked and, on closure, the angle of the kink changes to accommodate the movement of the small domain. The interface between the domains is formed by 15 residues in the large domain packing against 12 residues in the small domain and the manner in which these residues pack is essentially the same in the open and closed structures. Domain movements involve changes in the main-chain and side-chain torsion angles in the residues on both sides of the interface. Most of these changes are small; only a few side-chains switch to new conformations.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Crystals suitable for X-ray analysis of porcine mitochondrial aspartate aminotransferase in the closed conformation were obtained after the apoenzyme was reconstituted with N-5'-phosphopyridoxyl-L-aspartate, an inhibitor in which the cofactor is covalently bound to the substrate. This results in a crystal form that has not been encountered previously in studies of aspartate aminotransferases. The crystals belong to the trigonal space group P3121 (or the enantiomeric P3221) with unit cell dimensions alpha = b = 202.0 A, c = 58.0 A, alpha = beta = 90 degrees, gamma = 120 degrees and contain one dimer in the asymmetric unit.  相似文献   

15.
16.
The precursor to rat liver mitochondrial aspartate aminotransferase has been expressed in Escherichia coli JM105 using the pKK233-2 expression vector. This mammalian natural precursor has been isolated as a soluble dimeric protein. The amino-terminal sequence and the amino acid composition of the isolated protein correspond to those predicted from the inserted cDNA (Mattingly, J. R., Jr., Rodriguez-Berrocal, F. J., Gordon, J., Iriarte, A., and Martinez-Carrion, M. (1987) Biochem. Biophys. Res. Commun. 149, 859-865). The isolated precursor contains bound pyridoxal phosphate and shows catalytic activity with a specific activity equal to that of the mature form of the enzyme. This precursor can also be processed by mitochondria into a form with the sodium dodecyl sulfate-polyacrylamide gel electrophoresis mobility of mature enzyme. The isolation of this precursor as a stable and catalytically active entity indicates that the presequence peptide does not necessarily interfere with much of the folding and basic structural properties of the mature protein component.  相似文献   

17.
18.
19.
Chicken embryo fibroblasts in uridine-containing medium are inherently resistant to the growth-inhibitory effect of ethidium bromide. The drug was found to inhibit the incorporation of [3H]thymidine into mitochondrial DNA circular molecules. Mitochondrial DNA was quantitated by DNA-DNA reassociation kinetics with a probe of chicken liver mitochondrial DNA. A mean number of 604 copies of mitochondrial DNA per cell was found. This number decreased progressively in cells exposed to ethidium bromide, and by day 13 ca. one copy of mitochondrial DNA was detected per cell. When the cells were then transferred to drug-free medium, the number of copies increased very slowly as a function of time. On the other hand, analyses of DNA extracted from cell populations exposed to ethidium bromide for 20 or more days, with or without subsequent transfer to drug-free medium, revealed very little or no mitochondrial DNA by reassociation kinetics or by Southern blot hybridization of AvaI- or HindIII-digested total cellular DNA. As a result of the elimination of mitochondrial DNA molecules, the establishment of cell populations with a respiration-deficient phenotype was confirmed by measuring cytochrome c oxidase activity as a function of the number of cell generations and the absorption spectrum of mitochondrial cytochromes.  相似文献   

20.
Aspartate aminotransferase from the cytosolic fraction of chicken brain was isolated with acceptable yield and high degree of purity. The enzyme appeared in multiple molecular forms: , , , and ( predominates), as detected by polyacrylamide gel electrophoresis with specific staining. These different forms of the enzyme were separated by DEAE-Sephacel chromatography, and showed different isoelectric points and maximal velocities values, whereas their molecular weight, optimum pH and Michaelis constants were very similar. Generation process studies suggest that minors subforms of the enzyme could be raised from form by a mechanism in which the oxidation of particular amino acid groups are involved.Abbreviations used AAT aspartate aminotransferase - c-AAT cytosolic aspartate aminotransferase - IU international units - LDH Iactate dehydrogenase - MDH malate dehydrogenase - 2-ME 2-mercaptoethanol - PAGE polyacrylamide gel electrophoresis - PLP pyridoxal-5-phosphate - S.A. specific activity  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号