首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 318 毫秒
1.
Summary Two sandculture experiments were conducted with wheat (Triticum aestivum) to determine the effects of (1) osmotic potential (Ψπ) and (2) fluctuating boron (B) concentrations on B availability (toxicity), shoot growth and leaf concentrations of B of wheat. The first experiment consisted of growing wheat to the spike emergence stage in sandcultures irrigated with a complete nutrient solution containing 1.0, 7.5, and 15.0 mg Bl−1 and having Ψπ values of −0.02, −0.07, −0.12, and −0.17 MPa produced by CaCl2−NaCl additions. Statistically, shoot weight was independently influenced by the B and Ψπ treatments but not by their interaction. Only the B treatment had a significant effect on leaf boron concentrations; the B x Ψπ interaction was nonsignificant with respect to leaf B concentrations. The second experiment was designed to determine if growth and B uptake of wheat responds to the time integrated mean (TIM) concentration of B. This experiment consisted of four fixed-B concentrations and four fluctuating-B concentrations designed to produce two TIM concentrations (3.9 and 7.4 mg Bl−1) approached low to high and vice versa. With respect to shoot weight, there was no statistical difference among treatments having the same TIM concentration during the 10 week experiment. However, shoot B concentrations differed greatly; they were higher when the B concentration was progressively increased over the 10 week period. Leaf B concentrations (Y leaf at flowering), while not as high as the shoot B concentrations, were also higher under the treatment of increasing B concentration, indicating B uptake rates are higher for mature plants than for seedlings.  相似文献   

2.
A pot experiment was conducted to find out whether the foliar spray of salicylic acid (SA) could successfully ameliorate the adverse effects of salinity stress on periwinkle. Thirty-day-old plants were supplied with Control; 0 mM NaCl + 10−5 M SA (T1); 50 mM NaCl + 0 SA (T2); 100 mM NaCl + 0 SA (T3); 150 mM NaCl + 0 SA (T4); 50 mM NaCl + 10−5 M SA (T5); 100 mM NaCl + 10−5 M SA (T6); 150 mM NaCl + 10−5 M SA (T7). The plants were sampled 90 days after sowing to assess the effect of SA on stressed and unstressed plants. Salt stress significantly reduced the growth attributes including plant height, leaf-area index, shoot and root fresh weights, shoot and root dry weights. Increasing NaCl concentrations led to a gradual decrease in photosynthetic parameters and activities of nitrate reductase and carbonic anhydrase. Ascorbic acid, total alkaloids and antioxidants enzymes superoxide dismutase, catalase and peroxidase also declined in NaCl-treated plants. The plants, undergoing NaCl stress, exhibited a significant increase in electrolyte leakage and proline content. Foliar application of SA (10−5 M) reduced the damaging effect of salinity on plant growth and accelerated the restoration of growth processes. It not only improved the growth parameters but also reversed the effects of salinity. Total alkaloid content was improved by SA application both in unstressed and stressed plants. The highest level of total alkaloid content recorded in leaves of SA-treated stressed plants was 11.1%. Foliar spray of SA overcame the adverse effect of salinity by improving the content of vincristine (14.0%) and vinblastine (14.6%) in plants treated with 100 M NaCl.  相似文献   

3.
We have detected quantitative trait loci (QTLs) affecting vegetative propagation traits in Eucalyptus tereticornis and Eucalyptus globulus. Using amplified fragment length polymorphism (AFLP) genetic linkage maps, the inheritance of 199 markers was assessed in 94 F1 individuals with extreme adventitious rooting response, and in 221 randomly chosen F1 individuals. Phenotypes were scored in 1995 and 1996. QTL analyses were performed using chi-square tests (χ2), single-marker analysis (SMA), interval mapping (IM) and composite interval mapping (CIM). All approaches yielded similar QTL detection results. Three QTLs are hypothesized for mortality (MORT=% dead cuttings), nine for adventitious rooting (ROOT, RCT=% rooted cuttings relative to the surviving or total cuttings, respectively), four for petrification (PETR=% surviving unrooted cuttings), one for sprouting ability (SPR=number of stump sprout cuttings harvested in 1995) and four for the stability of adventitious rooting (STAB=absolute value of the difference ROOT95-ROOT96). All putative QTLs for MORT and PETR were located on the E. tereticornis map, and for SPR and STAB on the E. globulus map. We found different QTLs for MORT, ROOT, RCT, SPR and STAB. Putative QTLs accounted for 2.6–17.0% of the phenotypic variance of a trait (R2). Estimated standardized gene substitution effects varied between 0.13 and 0.49 phenotypic standard deviations (σp). These results indicate that the phenotypic variation in these traits has a meaningful genetic component and that stable QTLs can be found in a family of reasonable size where no previous knowledge of the trait was available. Received: 1 September 1998 / Accepted: 24 February 1999  相似文献   

4.
The spatial pattern of foliar stable carbon isotope compositions (δ13C) of dominant species and their relationships with environmental factors in seven sites, Yangling, Yongshou, Tongchuan, Fuxian, Ansai, Mizhi and Shenmu, standing from south to north in the Loess Plateau of China, was studied. The results showed that in the 121 C3 plant samples collected from the Loess Plateau, the foliar δ13C value ranged from −22.66‰ to −30.70‰, averaging −27.04‰. The foliar δ13C value varied significantly (P<0.01) among the seven sites, and the average δ13C value increased by about 1.69‰ from Yangling in the south to Shenmu in the north as climatic drought increased. There was a significant difference in foliar δ13C value among three life-forms categorized from all the plant samples in the Loess Plateau (P<0.001). The trees (−26.74‰) and shrubs (−26.68‰) had similar mean δ13C values, both significantly (P<0.05) higher than the mean δ13C value of herbages (−27.69‰). It was shown that the trees and shrubs had higher WUEs and employed more conservative water-use patterns to survive drier habitats in the Loess Plateau. Of all the C3 species in the Loess Plateau, the foliar δ13C values were significantly and negatively correlated with the mean annual rainfall (P<0.001) and mean annual temperature (P<0.05), while being significantly and positively correlated with the latitude (P<0.001) and the annual solar radiation (P<0.01). In general, the foliar δ13C values increased as the latitude and solar radiation increased and the rainfall and temperature decreased. The annual rainfall as the main influencing factor could explain 13.3% of the spatial variations in foliar δ13C value. A 100 mm increment in annual rainfall would result in a decrease by 0.88‰ in foliar δ13C values.  相似文献   

5.
We assessed the effect of salinity on plant growth and leaf expansion rates, as well as the leaf life span and the dynamics of leaf production and mortality in seedlings of Avicennia germinans L. grown at 0, 170, 430, 680, and 940 mol m−3 NaCl. The relative growth rates (RGR) after 27 weeks reached a maximum (10.4 mg g−1 d−1) in 170 mol m−3 NaCl and decreased by 47 and 44% in plants grown at 680 and 940 mol m−3 NaCl. The relative leaf expansion rate (RLER) was maximal at 170 mol m−3 NaCl (120 cm m−2 d−1) and decreased by 57 and 52% in plants grown at 680 and 940 mol m−3 NaCl, respectively. In the same manner as RGR and RLER, the leaf production (P) and leaf death (D) decreased in 81 and 67% when salinity increased from 170 to 940 mol m−3 NaCl, respectively. Since the decrease in P with salinity was more pronounced than the decrease in D, the net accumulation of leaves per plant decreased with salinity. Additionally, an evident increase in annual mortality rates (λ) and death probability was observed with salinity. Leaf half-life (t 0.5) was 425 days in plants grown at 0 mol m−3 NaCl, and decreased to 75 days at 940 mol m−3 NaCl. Thus, increasing salinity caused an increase in mortality rate whereas production of new leaves and leaf longevity decreased and, finally, the leaf area was reduced.  相似文献   

6.
Copper (Cu) deficiency in eucalypts is associated with tree deformation and reduced wood production from plantations. Presently, diagnosis of the early stages of Cu deficiency is unreliable as critical tissue Cu concentrations for tree growth have not been defined. Since wood quality is usually impaired in advance of tree growth, a biochemical test for Cu deficiency was sought for three Eucalyptus species commonly used in plantation forestry (E. globulus Labill., E. grandis Hill ex Maiden and E. urophylla Blake). Foliar Cu requirements for catechol oxidase activity were determined in a glasshouse sand culture study with 10 rates of Cu supply (0, 10-15, 10-14, 10-13, 10-12, 10-11, 10-10, 10-9, 10-7 and 10-5 M). In contrast to shoot dry weight, which only responded to Cu supply in E. urophylla, foliar Cu concentration and catechol oxidase activity, in 140-day-old seedlings, increased with the addition of Cu in all species. Stem lignification also responded to Cu supply in parallel to the activity of catechol oxidase. Functional Cu requirements of 2.4, 2.1 and 2.6 mg kg-1 dry weight for catechol oxidase activity in E. globulus, E. grandis and E. urophylla, respectively, were derived from statistical models fitted to the relationship between catechol oxidase activity and Cu concentrations in recently matured leaves.  相似文献   

7.
We studied the effects of foliar application of urea or methyl-jasmonate (MeJA) on the salinity tolerance of broccoli plants (Brassisca oleracea L. var. italica). Plant dry weight, leaf CO2 assimilation, and root respiration were reduced significantly under moderate saline stress (40 mM NaCl) but application of either urea or MeJA maintained growth, gas exchange parameters, and leaf N–NO3 concentrations at values similar to those of non-salinized plants. Additionally, when these two foliar treatments were applied leaf Na+ concentration was reduced compared with control plants grown at 40 mM NaCl. However, at a higher salt concentration (120 mM NaCl), no effect of the foliar applications was found on these parameters. Salinity also decreased leaf δ15N but increased δ13C. Our study shows the feasibility of using foliar urea or MeJA to improve tolerance under moderate saline stress.  相似文献   

8.
Fish in the embryo-larval stage of development have been shown to be sensitive to boron (B) at both ends of the dose-response curve (1,2). The present study evaluated the health effects of low and high B concentrations on rainbow trout (Oncorhynchus mykiss), a cold water species, and zebrafish (Danio rerio), a warm water species. Rainbow trout embryos were incubated from day 1 until 2 wk posthatch in Type 1 ASTM ultrapure-grade water (12.5°C) supplemented with only B (0-500 μM) as boric acid, or together with CaCO3 (0–2 mM) to increase water hardness. Embryonic growth was stimulated by B in a dose-dependent manner at all Ca concentrations (p < 0.001). Chronic exposures below 9 μmol B/L impaired embryonic growth and above 10 mmol B/L caused death (p < 0.001). Thus, the safe range of exposure for the rainbow trout was between the adverse effect concentrations of 9 μmol B/L and 10 mmol B/L. Zebrafish were maintained for 6 mo in ultrapure water containing <0.2 μmol B/L to determine the effect of low-level exposure. High-level exposure was assessed by exposing zygotes, derived from parents maintained at 46 μmol B/L, to graded concentrations of boric acid up to a concentration of 75 mmol B/L from fertilization until they were free feeding (96 h). Fertilization occurred, but zygotes failed to survive when water contained <0.2 umol B/L (p < 0.001). Death occurred at and above 9.2 mmol B/L. Thus, the safe range of B exposure for zebrafish was between the adverse effect concentrations of 0.2 μmol B/L and 9.2 mmol B/L. The dose-response for both species was thus U-shaped. Part of this work was previously published in abstract form and presented at Experimental Biology 97, April 6–9, New Orleans, LA (Eckhert, C. [1997] Embryonic trout growth and boron exposure,FASEB J. 11, A406 [abstract]).  相似文献   

9.
AFLP genetic maps of Eucalyptus globulus and E. tereticornis   总被引:8,自引:0,他引:8  
 Amplified fragment length polymorphism (AFLP) analysis is a rapid and efficient technique for detecting large numbers of DNA markers in eucalypts. We have used AFLP markers in a two-way pseudo-testcross strategy to generate genetic maps of two clones of different Eucalyptus species (E. tereticornis and E. globulus). Of 606 polymorphic fragments scored, 487 segregated in a 1 : 1 ratio, corresponding to DNA polymorphisms heterozygous in one parent and null in the other. In the maternal E. tereticornis map, 268 markers were ordered in 14 linkage groups (919 cM); the paternal E. globulus map had 200 markers in 16 linkage groups (967 cM). Results from PGRI software were compared with MAPMAKER. The average density of markers was approximately 1 per 3.9 cM. Framework markers were ordered with an average confidence level of 90%, covering 80–100% of the estimated Eucalyptus genome size. In order to investigate the homologies between the E. tereticornis and the E. globulus genetic linkage maps, we included 19 markers segregating 3 : 1 in the analysis. Some homeologous linkage groups were recognized. The linkage data developed in these maps will be used to detect loci controlling commercially important traits. Received: 17 July 1997 / Accepted: 13 October 1997  相似文献   

10.
The foliar stable carbon isotope compositions (δ13C) of nine dominant species in seven sites, Yangling, Yongshou, Tongchuan, Fuxian, Ansai, Mizhi, and Shenmu, standing from the south to the north in the Loess Plateau of China were studied. The results showed that foliar δ13C values ranged from −22.61 to −30.73 ‰ with an average of −27.23 ‰ in 141 C3 plant samples collected from the Loess Plateau. Foliar δ13C values varied significantly (p<0.001) among the nine C3 species, which were Pinus tabulaeformis Carr., Robinia pseudoacacia L., Zizyphus jujuba Mill. var. spinosus Hu., Rubus parvifolius L., Hippophae rhamnoides L., Caragana korshinskii Kom., Lespedeza davurica (Laxm.) Schindl., Artemisia sacrorum Ledeb. var. incana Mattf., and Agropyron cristatum Gaertn. Comparatively, R. pseudoacacia, H. rhamnoides, and C. korshinskii had much higher δ13C values than the other six species, while A. sacrorum had the lowest δ13C value. There was no significant difference in foliar δ13C value among five species, P. tabulaeformis, Z. jujuba, R. parvifolius, L. davurica, and A. cristatum. Considering the life forms categorized from nine C3 species, trees and shrubs had significantly higher δ13C values than herbs (p<0.001). The deciduous tree R. pseudoacacia had much higher δ13C value than the evergreen tree P. tabulaeformis (p<0.01). Among the four shrubs, foliar δ13C values in H. rhamnoides and C. korshinskii were markedly higher (p<0.01) than those in Z. jujuba and R. parvifolius. Among the three herbs, L. davurica and A. cristatum had significantly higher δ13C values than A. sacrorum (p<0.01). Leguminous species such as R. pseudoacacia, C. korshinskii, and L. davurica as well as a non-leguminous species with nitrogen-fixation capacity, H. rhamnoides, had higher δ13C values than other non-leguminous species with same life-form. The mean δ13C value increased by about 7 % from Yangling in the south to Shenmu in the north as climatic drought increased, and foliar δ13C values differed much (p<0.001) among the seven sites. For nine species in the Loess Plateau, foliar δ13C values were significantly and negatively (p<0.001) correlated with the mean annual precipitation, moreover, an increase of 100 mm in annual precipitation would result in a decrease of 1.2 ‰ in δ13C value.  相似文献   

11.
Sakya  A.T.  Dell  B.  Huang  L. 《Plant and Soil》2002,246(1):87-95
Although boron (B) deficiency limits the productivity of eucalypts in plantations in many parts of the world, the concentrations of foliar B used in the diagnosis of B deficiency vary greatly among studies. There has been a lack of reliable diagnosis standards for B deficiency in Eucalyptus species. Therefore, the present study investigated the relationship between internal and external B concentrations and growth of Eucalyptus globulus, the main commercial temperate eucalypt species. Seedlings were grown in a B-buffered solution culture (Amberlite IRA 743) from 0.03 to 8.35 M B. Boron deficiency symptoms appeared at day 5 in the nutrient solution containing less than 0.27 M B. The external critical B concentrations, estimated for the growth of shoots and roots, were 1.08 and 0.99 M B, respectively. The internal critical B concentration range in the youngest fully expanded leaf (YFEL) for shoot growth was 12–16 mg B kg–1 dry weight. The internal critical B concentrations estimated in the present study have been successfully used in the diagnosis of B deficiency in E. globulus trees up to three years of age in south-east Asia.  相似文献   

12.
Foliar δ13C values of Calligogum kozlovi and Haloxylon ammodendron ranged from −13.13 to −15.11 ‰, while those of the rest 11 species were in the range of −22.22 to −27.73 ‰. This indicates that two of 13 dominant plant species in the Qaidam Basin possess a C4 photosynthetic pathway. Significant differences were observed for the average foliar δ13C values between C3 or C4 plant communities, between grass and shrub communities, even between the same species derived from different sites. Precipitation accounted for the major part of the differences.  相似文献   

13.
Summary Foliar nutrition has been conceived as a possible means of overcoming the recalcitrance of Prosopis chilensis (Molina) Stuntz explants to standard in vitro culture. The foliar uptake of cations (K from 20 gl−1 KNO3 and Ca from 50 gl−1 CaCl2), anions (NO3 from 50 gl−1 KNO3 and PO4 from 50 gl−1 NaH2PO4), and glucose from a 100 mg l−1 solution studied. All of the nutrients examined were absorbed. The efficacy of foliar nutrition in prolonging the vigor of micropropagated P. chilensis shoot tips was compared with nutrients supplied as a liquid to the base of the stem (liquid) or as an agar-solidified medium (agar). A foliar-feeding apparatus was constructed that employed pressurization of the medium reservoir to drive the medium into the culture vessel with a passive return by a siphoning effect. The medium used was Murashige and Skoog with 30 gl−1 sucrose, 0.1 mgl−1 benzylaminopurine, and 1 mgl−1 indole-3-butyric acid. Over a 9-wk test period it was found that explants cultured by foliar nutrition performed significantly better than those grown on agar for shoot length, nodal production, and leaf retention; and better than liquid MS for node production. There was no significant difference among the three treatments in percentage survival, percentage rooting, or the mean number of roots.  相似文献   

14.
There is substantial information concerning the effects of continuous exposure to supratherapeutic or therapeutic concentrations of doxorubicin on human molar pulpal cells; the effects of continuous exposure to subtherapeutic concentrations of this agent are undetermined. To this end, we studied the proliferation of human fibroblasts and pulpal cells and their pattern of mineralized nodule deposition in vitro. Cell proliferation was assessed at 1, 3, 5, and 7 days from populations with either no exposure (control) or exposure to 10−6–10−9 mol/L doxorubicin. Mineralized nodule deposition and calcium-45 incorporation were assessed at 7 and 21 days of culture. Data were compared by factorial ANOVA and a post-hoc Tukey test. 10−6 and 10−7 mol/L doxorubicin significantly reduced the total number of viable pulpal cells in cultures from days 1 to 3 (p < 0.05); doxorubicin 10−6–10−9 mol/L significantly inhibited cell proliferation (p < 0.05) and DNA synthesis 5 days after plating (p < 0.001). After 21 days, doxorubicin 10−6–10−8 mol/L significantly decreased calcium-45 incorporation into pulpal cultures (p < 0.001); all dilutions significantly reduced the number of mineralized nodules within the 21-day pulpal cultures (p < 0.05). In addition, all dilutions of doxorubicin significantly inhibited fibroblast cell proliferation and incorporation of [3H]thymidine. In contrast, the fibroblast cultures did not produce mineralized nodules, suggesting that the mineralized nodules within the pulpal cell cultures did not result from dystrophic calcification. Thus, exposure to subtheraputic doxorubicin concentrations has potential adverse effects on mineralized tissue formation within the pulp, which could affect the rates of reparative dentin deposition within the tooth pulps of patients receiving this chemotherapeutic agent.  相似文献   

15.
Summary Osmotic and specific ion effect are the most frequently mentioned mechanisms by which saline substrates reduce plant growth. However, the relative importance of osmotic and specific ion effect on plant growth seems to vary depending on the drought and/or salt tolerance of the plant under study. We studied the effects of several single salts of Na+ and Ca2+−NaCl, NaNO3, Na2SO4, NaHCO3, Na2CO3, and Ca(NO3)2—on the germination and root and coleoptile growth of two wheat (Triticum aestivum L.) cultivars, TAM W-101 and Sturdy, the former being more drought tolerant than the latter. The concentrations used were: 0, 0.02, 0.04, 0.08, 0.16, and 0.32 mol L−1. Significant two- and three-way interactions were observed between cultivar, kind of salt, and salt concentration for germination, growth of coleoptile and root, and root/coleoptile ratio. Salts differed significantly (P<0.001) in their effect on seed germination, coleoptile and root growth of both cultivars. Germination of TAM W-101 seeds was consistently more tolerant than that of Sturdy to NaCl, CaCl2, Ca(NO3)2, and NaHCO3 salts at concentrations of 0.02, 0.04, 0.08, 0.16 mol L−1. The osmotic potential, at which the germination of wheat seeds was reduced to 50% of that of the control, was different depending on the kind of salt used in the germination medium. NaCl at low concentrations (0.02 and 0.04 mol L−1) stimulated the germination of both wheat cultivars. At concentrations of 0.02 to 0.16 mol L−1, Ca2+ salts (CaCl2 and Ca(NO3)2) were consistently more inhibitory than the respective Na+ salts (NaCl and NaNO3) for germination of Sturdy. This did not consistently hold true for TAM W-101. Among the Na+ salts, NaCl was the least toxic and NaHCO3 and Na2CO3 were the most toxic for seed germination. Root and coleoptile (in both wheat cultivars) differed in their response to salts. This differential response of coleoptile and root to each salt resulted in seedlings with a wide range of root/coleoptile ratios. For example, the root/coleoptile ratio of cultivar TAM W-101 changed from 2.09 (in the control) to 3.77, 3.19, 2.8, 2.44, 1.31, 0.32, and 0.0 when subjected to 0.08 mol L−1 of Na2SO4, NaCl, CaCl2, NaNO3, Ca(NO3)2, NaHCO3, and Na2CO3, respectively. Na2CO3 at 0.08 mol L−1 inhibited root growth to such an extent that germinated wheat seeds contained coleoptile but no roots. The data indicate that, apart from the clear and more toxic effects of NaHCO3 and Na2CO3 and lesser toxic effect of NaCl on germination and seedling growth, any toxicity-ranking of other salts done at a given concentration and for a given tissue growth may not hold true for other salt concentrations, other tissues and/or other cultivars. The more drought-tolerant TAM W-101, when compared to the less drought tolerant Sturdy, showed higher tolerance (at most concentrations) to NaCl, CaCl2, Ca(NO3)2 and NaHCO3 during its seed germination and to Na2SO4 and CaCl2 for its root growth. This supports other reports that some drought-tolerant wheat cultivars are more tolerant to NaCl. In contrast, the coleoptile growth of drought-sensitive Sturdy was noticeably more tolerant to NaNO3, Ca(NO3)2 and NaHCO3 than that of drought-tolerant TAM W-101. Based on the above and the different root/coleoptile ratios observed in the presence of various salts, it is concluded that in these wheat cultivars: a) coleoptile and root tissues are differently sensitive to various salts, and b) at the germination stage, tolerance to certain salts is higher in the more drought-tolerant cultivar.  相似文献   

16.
Tesfay Teklay 《Plant and Soil》2004,267(1-2):297-307
Foliar inputs from indigenous agroforestry trees and shrubs could provide sufficient nutrients and organic matter to sustain crop growth. However, concentrations of foliar nutrients and organic constituents show considerable seasonal, inter- and/or intra-species variations. To determine this variability, green and senesced leaves were sampled during dry and wet seasons from Cordia africana, Albizia gummifera and Milletia ferruginea trees at Wondo Genet, southern Ethiopia. Cordia is a deciduous, non-leguminous tree, while Albizia and Milletia are semi-deciduous and leguminous trees. Leaves were analyzed for concentrations of ash, N, P, K, cellulose, lignin, soluble polyphenols, and condensed tannins. Results from statistical analyses showed significant seasonal variations (P < 0.001) in concentrations of all leaf constituents, except for P and cellulose. Foliar concentrations of ash, N, soluble polyphenols, and condensed tannins were higher during the wet season while those of K and lignin were higher during the dry season. Green leaves had significantly higher (p < 0.001) N and P concentrations than senesced leaves, while senesced leaves had higher concentrations of K, cellulose, soluble polyphenols, and condensed tannins. The ‘ Relative Percentage Changes’ in concentration of N and P in senesced leaves, i.e., their enrichment or depletion with such nutrients relative to those in green leaves, were significantly higher (P < 0.001) for Cordia than Albizia and Milletia. On the other hand, there was no consistent pattern in the enrichment or depletion of senesced leaves with organic constituents, but these leaves were in most cases more enriched with organic constituents than green leaves. Over all, the percentage depletion or enrichment ranged from about 8% to 38% for N; 24% to 63% for P; −141% to 48% for K; −44% to 15% for cellulose; −44% to 51% for lignin; −203% to −61% for soluble polyphenols; and −290% to 11% for condensed tannins. It was concluded that variations in species and life-form (legume versus non-legume), season, and developmental stage of leaves could affect the quality of organic material from agroforestry species, which has important implications for management of organic residues in tropical agricultural systems.  相似文献   

17.
Gao P  Wu X  Shui H  Jia R 《Molecular biology reports》2012,39(4):4719-4725
3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors has been shown to reduce the progression of renal disease independent of cholesterol-lowering effect, but the mechanism of potential protective effect remains unclear. Here, we investigate the effect of fluvastatin on activation of nuclear factor-κB (NF-κB) induced by angiotensin II (AngII) in rat kidney tubule epithelial cells (NRK-52E). Electrophoretic mobility shift assays (EMSA) was used to detect NF-κB activation. Phosphorylation of cellular p38 mitogen-activated protein kinase (p38MAPK) was determined by western blot analysis. AngII stimulated the DNA-binding activity of NF-κB and phosphorylation of p38MAPK in cultured NRK-52E cells in a dose-dependent (10−9–10−6 mol/l) manner (P < 0.01). AngII (10−6 mol/l) induced a rapid (5 min) increase of the p38MAPK phosphorylation. NF-κB DNA-binding activity was increased at as early as 30 min, peaked at 2 h after AngII treatment. This stimulatory effect of AngII on NF-κB was blocked by SB203580 (a specific inhibitor of p38MAPK). Incubation of cells with fluvastatin significantly inhibited the AngII-induced NF-κB activation in a dose-dependent (10−7–10−5 mol/l) manner (P < 0.05). Exogenous mevalonate (10−4mol/l) prevented the effect of fluvastatin on NF-κB activation. These results suggest the fluvastatin reduced AngII-induced NF-κB activation via the p38MAPK pathway in NRK-52E cells. The effect is at least partly due to blocking the biosynthesis of mevalonate.  相似文献   

18.
In four species of salt-tolerant eucalypts (Eucalyptus raveretiana, E. spathulata, E. sargentii and E. loxophleba), we found substantial concentrations of quercitol – a cyclitol known for its accumulation in seeds of Quercus. Quercitol was absent in old foliage of E. globulus, a species noted for greater susceptibility to salinity, and also absent in the moderately tolerant E. camaldulensis, but, relative to other species, both had higher foliar concentrations of inositol. Simple sugars and cyclitols accumulated to osmotically significant concentrations in all species. The osmotic potential of expressed sap was always less than that of the external ‘soil’ solution and increasing salinity produced predictable reductions in growth and increases in ion concentrations in foliage of saplings of four eucalypt species. The more salt-tolerant species, E. spathulata, E. loxophleba and E. sargentii, were able to maintain well-regulated leaf Na+ concentrations even at 300 mol m−3 NaCl. These more salt-tolerant species also showed an apparent increase in net selectivity for K+ over Na+ as salinity increased, irrespective of the Na+ : Ca2+ ratio of the external medium (range 25 : 1 to 75 : 1; Ca2+ always ≥ 4.0 mol m−3). By contrast, E. globulus was unable to exclude Na+ when exposed to higher NaCl concentrations (e.g. 200 and 300 mol m−3). Carbon isotope signatures of foliage reflected imposed salinity but were not strongly enough correlated with growth to support previous suggestions that isotope discrimination be a means of evaluating salt tolerance. On the other hand, patterns of sugar and cyclitol accumulation should be further explored in eucalypts as traits contributing to salt tolerance, and with potential use as markers in breeding programmes.  相似文献   

19.
Eva Ritter 《Plant and Soil》2007,295(1-2):239-251
Afforestation has become an important tool for soil protection and land reclamation in Iceland. Nevertheless, the harsh climate and degraded soils are growth-limiting for trees, and little is know about changes in soil nutrients in maturing forests planted on the volcanic soils. In the present chronosequence study, changes in C, N and total P in soil (0–10 and 10–20 cm depth) and C and N in foliar tissue were investigated in stands of native Downy birch (Betula pubescens Enrh.) and the in Iceland introduced Siberian larch (Larix sibirica Ledeb.). The forest stands were between 14 and 97 years old and were established on heath land that had been treeless for centuries. Soils were Andosols derived from basaltic material and rhyolitic volcanic ash. A significant effect of tree species was only found for the N content in foliar tissue. Foliar N concentrations were significantly higher and foliar C/N ratios significantly lower in larch needles than in birch leaves. There was no effect of stand age. Changes in soil C and the soil nutrient status with time after afforestation were little significant. Soil C concentrations in 0–10 cm depth in forest stands older than 30 years were significantly higher than in heath land and forest stands younger than 30 years. This was attributed to a slow accumulation of organic matter. Soil N concentrations and soil Ptot were not affected by stand age. Nutrient pools in the two soil layers were calculated for an average weight of soil material (400 Mg soil ha−1 in 0–10 cm depth and 600 Mg soil ha−1 in 10–20 cm depth, respectively). Soil nutrient pools did not change significantly with time. Soil C pools were in average 23.6 Mg ha−1 in the upper soil layer and 16.9 Mg ha−1 in the lower soil layer. The highest annual increase in soil C under forest compared to heath land was 0.23 Mg C ha−1 year−1 in 0–10 cm depth calculated for the 53-year-old larch stand. Soil N pools were in average 1.0 Mg N ha−1 in both soil layers and did not decrease with time despite a low N deposition and the uptake and accumulation of N in biomass of the growing trees. Soil Ptot pools were in average 220 and 320 kg P ha−1 in the upper and lower soil layer, respectively. It was assumed that mycorrhizal fungi present in the stands had an influence on the availability of N and P to the trees. Responsible Editor: Hans Lambers.  相似文献   

20.
Metrosideros polymorpha, a dominant tree species in Hawaiian ecosystems, occupies a wide range of habitats. Complementary field and common-garden studies of M. polymorpha populations were conducted across an altitudinal gradient at two different substrate ages to ascertain if the large phenotypic variation of this species is determined by genetic differences or by phenotypic modifications resulting from environmental conditions. Several characteristics, including ecophysiological behavior and anatomical features, were largely induced by the environment. However, other characteristics, particularly leaf morphology, appeared to be mainly determined by genetic background. Common garden plants exhibited higher average rates of net assimilation (5.8 μmol CO2 m−2 s−1) and higher average stomatal conductance (0.18 mol H2O m−2 s−1) than their field counterparts (3.0 μmol CO2 m−2 s−1, and 0.13 mol H2O m−2 s−1 respectively). Foliar δ13C of most common-garden plants was similar among sites of origin with an average value of −26.9‰. In contrast, mean values of foliar δ13C in field plants increased substantially from −29.5‰ at low elevation to −24.8‰ at high elevation. Leaf mass per unit area increased significantly as a function of elevation in both field and common garden plants; however, the range of values was much narrower in common garden plants (211–308 g m−2 for common garden versus 107–407 g m−2 for field plants). Nitrogen content measured on a leaf area basis in common garden plants ranged from 1.4 g m−2 to 2.4 g m−2 and from 0.8 g m−2 to 2.5 g m−2 in field plants. Photosynthetic nitrogen use efficiency (PNUE) decreased 50% with increasing elevation in field plants and only 20% in plants from young substrates in the common garden. This was a result of higher rates of net CO2 assimilation in the common garden plants. Leaf tissue and cell layer thickness, and degree of leaf pubescence increased significantly with elevation in field plants, whereas in common garden plants, variation with elevation of origin was much narrower, or was entirely absent. Morphological characteristics such as leaf size, petiole length, and internode length decreased with increasing elevation in the field and were retained when grown in the common garden, suggesting a potential genetic basis for these traits. The combination of environmentally induced variability in physiological and anatomical characteristics and genetically determined variation in morphological traits allows Hawaiian M. polymorpha to attain and dominate an extremely wide ecological distribution not observed in other tree species. Received: 12 March 1997 / Accepted: 27 August 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号