首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Surfactant proteins (SPs), designated SP-A, SP-B, SP-C, and SP-D, play an important role in surfactant metabolism and host defense mechanisms in the lung. This study investigates expression of the different SP types in human nasal mucosa and cultured normal human nasal epithelial (NHNE) cells and whether the expression of SP mRNA is influenced by the degree of mucociliary differentiation. RT-PCR was performed with mRNA from cultured NHNE cells and nasal mucosa. Immunohistochemical staining for SPs was performed on nasal mucosa specimens. Western blot analysis was performed on cell lysates from cultured NHNE cells. SP-A2, SP-B, and SP-D mRNAs were expressed in normal NHNE cells and human nasal mucosa. SPs were localized in ciliated cells of the surface epithelium and serous acini of the submucosal glands. SP-A, SP-B, and SP-D proteins were expressed in cultured NHNE cells. The degree of mucociliary differentiation influenced expression of the SP gene. We demonstrate that SP-A, SP-B, and SP-D are expressed in human nasal mucosa and cultured NHNE cells. Further study of the functional role of SPs in the upper airway is required.  相似文献   

6.
BACKGROUND: Prostaglandin D2 (PGD2) is released from mast cells during the allergic response. OBJECTIVE: Since PGD2 has been shown to induce nasal congestion in humans, we investigated the distribution of hematopoietic prostaglandin D synthase (PGDS) and the two PGD2 receptors, DP and CRTH2 in human nasal mucosa from healthy subjects and subjects suffering from polyposis, a severe form of chronic rhinosinusitis. METHODS: DP mRNA expression was detected by in situ hybridization while PGDS, CRTH2 and various leukocyte markers expression were revealed by immunohistochemistry. RESULTS: In the normal mucosa, PGDS was only detected in few resident mast cells while CRTH2 was undetectable. In contrast, DP receptor mRNA was detected in epithelial goblet cells, serous glands and in the vasculature. In the nasal mucosa of subjects suffering from polyposis: (1) PGDS was detected in mast cells and other large infiltrating inflammatory cells, (2) both DP mRNA and CRTH2 were detected in eosinophils and (3) CRTH2 was detected on a subset of infiltrating T cells. Although DP mRNA could not be detected in the T cells invading the nasal mucosa, it was found to be expressed in the T cells present in the lymph node and the thymus from normal individuals. CONCLUSION: This study indicates that cells capable of producing PGD2 are present in the nasal mucosa and that both PGD2 receptors, DP and CRTH2, might play a role in inflammatory disease of the upper airways.  相似文献   

7.
8.
The extracellular domains of the thromboxane A2 receptor (TP receptor) were found to be involved in the specific ligand recognition. Determination of the three-dimensional (3D) structure of the extracellular loops would help to explain the mechanism of the ligand binding to its receptor with regard to the tertiary structure. Based on our previous studies on the extracellular loop of the human TP receptor, the synthetic loop peptides, whose termini are constrained to 10 to 14-A separations, are more likely to mimic the native structure of the extracellular loops. In this study, a peptide with the sequence of the third extracellular loop (eLP3, residues 271-289) of the TP receptor was synthesized, and its termini were constrained by the formation of a disulfide bond between the additional homocysteines located at both ends. Fluorescence spectroscopic studies showed that the fluorescence intensity of this constrained loop peptide could be increased by the addition of SQ29,548, a TP receptor antagonist, which indicated the interaction between the peptide and the ligand. The structure of this peptide was then studied by two-dimensional 1H nuclear magnetic resonance (NMR) spectroscopy. 1H NMR assignments of the peptide were obtained and structure constraints were derived from nuclear Overhauser effects and J-coupling constants. The solution structure of the peptide was then calculated based on these constraints. The overall structure shows a beta turn from residues 278 to 281. It also shows a distance of 9.45A between the ends of the N and C termini of the peptide, which agrees with the distance between the two residues at the ends of the transmembrane helices connecting the eLP3 on the TP receptor working model generated using molecular modeling, based on the crystal structure of bovine rhodopsin. These results provide valuable information for the characterization of the complete 3D structure of the extracellular domains of the human TP receptor.  相似文献   

9.
Ruan KH  So SP  Wu J  Li D  Huang A  Kung J 《Biochemistry》2001,40(1):275-280
Thromboxane A(2) receptor (TP receptor), a prostanoid receptor, belongs to the G protein-coupled receptor family, composed of three intracellular loops and three extracellular loops connecting seven transmembrane helices. The highly conserved extracellular domains of the prostanoid receptors were found in the second extracellular loop (eLP(2)), which was proposed to be involved in ligand recognition. The 3D structure of the eLP(2) would help to further explain the ligand binding mechanism. Analysis of the human TP receptor model generated from molecular modeling based on bacteriorhodopsin crystallographic structure indicated that about 12-14 A separates the N- and C-termini of the extra- and intracellular loops. Synthetic loop peptides whose termini are constrained to this separation are presumably more likely to mimic the native loop structure than the corresponding loop region peptide with unrestricted ends. To test this new concept, a peptide corresponding to the eLP(2) (residues 173-193) of the TP receptor has been made with the N- and C-termini connected by a homocysteine disulfide bond. Through 2D nuclear magnetic resonance (NMR) experiments, complete (1)H NMR assignments, and structural construction, the overall 3D structure of the peptide was determined. The structure shows two beta-turns at residues 180 and 185. The distance between the N- and C-termini of the peptide shown in the NMR structure is 14.2 A, which matched the distance (14.5 A) between the two transmembrane helices connecting the eLP(2) in the TP receptor model. This suggests that the approach using the constrained loop peptides greatly increases the likelihood of solving the whole 3D structures of the extra- and the intracellular domains of the TP receptor. This approach may also be useful in structural studies of the extramembrane loops of other G protein-coupled receptors.  相似文献   

10.
The human thromboxane A(2) (TP) receptor, a member of the G protein-coupled receptor superfamily, consists of seven transmembrane segments. Attempts to elucidate the specific segment(s) that define the receptor ligand-binding pocket have produced less than definitive and sometimes conflicting results. On this basis, the present work identified an amino acid sequence of the TP receptor that is directly involved in ligand binding. Mapping of this domain was confirmed by two separate approaches: photoaffinity labeling and site-specific antibodies. The newly synthesized, biotinylated photoaffinity probe, SQBAzide, was first shown to specifically label TP receptor protein. Sequential digestion of this protein with CNBr/trypsin revealed photolabeling of a 2.9-kDa peptide. Using anti-peptide antibodies directed against different regions of the receptor protein, it was established that this peptide represents the predicted cleavage product for CNBr/trypsin and corresponds to amino acids Arg(174)-Met(202) of the receptor protein. Furthermore, antibody screening revealed that inhibition of the amino acid region Cys(183)-Asp(193) was critical for radioligand binding and platelet aggregation, whereas inhibition of Gly(172)-Cys(183) was not. Collectively these findings provide evidence that ligands interact with amino acids contained within the C-terminal portion of the third extracellular domain (ED3) of the receptor protein. This information should be of significant value in the study of TP receptor structure and signaling.  相似文献   

11.
S-145 (5Z-7-(3-endo-phenylsulfonylamino-(2.2.1.)-bicyclohept -2-exo-yl) heptenoic acid) is a potent and selective antagonist for thromboxane A2/prostaglandin H2 receptor. Using this compound as an immobilized ligand for affinity chromatography and [3H]S-145 as a radioligand, we have purified the thromboxane A2/prostaglandin H2 receptor from the membranes of human blood platelets. The purification procedures consisted of solubilization of the receptor with 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), affinity chromatographies on columns of S-145 affinity gel, wheat germ agglutinin agarose and red agarose, and repeated gel filtration high performance liquid chromatography on a TSK gel G-3000SW column. On the second gel filtration high performance liquid chromatography, the [3H]S-145 binding activity was eluted as a symmetrical peak which overlapped exactly with a peak of ultraviolet absorption at 280 nm. By these procedures, the receptor was purified about 8700-fold from the solubilized extract with a recovery of 6%. The final preparation showed a broad protein band at Mr 57,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and maximally bound 19.2 nmol of [3H]S-145/mg protein with a Kd of 29.8 nM. The [3H]S-145 binding to the purified receptor was specifically displaced by several thromboxane A2/prostaglandin H2 analogues.  相似文献   

12.
A photoactive iodoarylazide derivative (I-APA-PhN3) of the competitive thromboxane A2/prostaglandin H2 (TXA2/PGH2) antagonist 13-azaprostanoic acid is evaluated. Upon photoactivation, the compound was found to inhibit specifically and irreversibly human platelet aggregation induced by the TXA2/PGH2 mimetic U46619. In receptor-binding studies using [3H]U46619, I-APA-PhN3 exhibited an IC50 of 300 nM for inhibition of U46619 binding. Photoactivation of I-APA-PhN3 resulted in an irreversible 58% reduction in specific binding of U46619. This compound and its corresponding ratio-iodinated form will prove to be useful tools for the isolation and purification of the TXA2/PGH2-binding protein in human platelets.  相似文献   

13.
The conformation of a constrained peptide mimicking the putative first intracellular domain (iLP1) of thromboxane A(2) receptor (TP) was determined by (1)H 2D NMR spectroscopy. Through completed assignments of TOCSY, DQF-COSY, and NOESY spectra, a NMR structure of the peptide showed a beta-turn in residues 56-59 and a short helical structure in the residues 63-66. It suggests that residues 63-66 may be part of the second transmembrane domain (TM), and that Arg60, in an exposed position on the outer surface of the loop, may be involved in signaling through charge contact with Gq protein. The sequence alignment of Lys residue in the same position of other prostanoid receptors mediates different G protein couplings, suggesting that the chemical properties of Arg and Lys may also affect the receptor signaling activity. These hypotheses were supported by mutagenesis studies, in which the mutant of Arg60Leu completely lost activity in increasing intracellular calcium level through Gq coupling, and the mutant of Arg60Lys retained only about 35% signaling activity. The difference between the side chain functions of Lys and Arg in effecting the signaling was discussed.  相似文献   

14.
鼻腔粘膜对净化空气,调节空气温度和湿度具有重要作用。本文采用甲基丙烯酸甲酯制作血管铸型,通过扫描电镜对人鼻粘膜微血管三维构筑进行观察。  相似文献   

15.
16.
17.
We identified the parathyroid type Ca(2+)-sensing receptor (CaR) in normal human colon mucosa and in cancerous lesions at the mRNA and protein level. Polymerase chain reaction produced an amplification product from reverse-transcribed large intestinal RNA which corresponded in size and length to a 537-bp sequence from exon 7 of the CaR gene. With a specific antiserum against its extracellular domain, the CaR could be detected by immunostaining in normal human colon mucosa in cells preferentially located at the crypt base. The CaR protein was also expressed in tumors of the large bowel in all 20 patients examined. However, the great majority of CaR-positive cells in the adenocarcinomas inspected were confined to more differentiated areas exhibiting glandular-tubular structures. Poorly or undifferentiated regions were either devoid of specific immunoreactivity or contained only isolated CaR-positive cells. In the normal mucosa and in glandular-tubular structures of cancerous lesions, the CaR was exclusively expressed in chromogranin A-positive enteroendocrine cells and in only a small fraction of PCNA-positive cells.  相似文献   

18.
The binding of the competitive thromboxane A2/prostaglandin H2 (TXA2/PGH2) antagonist (9,11-dimethylmethano-11, 12-methano-16-(3-aza-15 alpha beta-omega-tetranor-TXA2) ([125I]PTA-OH) to membranes prepared from human platelets was characterized. [125I]PTA-OH binding to membranes from human platelets was saturable, displaceable, and dependent on protein concentration. Scatchard analysis of equilibrium binding carried out at 30 degrees C revealed one class of binding sites with a Kd of 30 +/- 4 nM and a Bmax of 1.8 +/- 0.3 pmol/mg of protein (n = 5). Kinetic analysis of the binding of [125I]PTA-OH at 0 degrees C yielded a k1 of 1.35 X 10(6) M-1 min-1 and a k-1 of 0.032 min-1, Kd = k-1/k1 = 24 nM. The potencies of a series of TXA2/PGH2 antagonists as inhibitors of [125I]PTA-OH binding was correlated with their potencies as inhibitors of platelet aggregation induced by the TXA2/PGH2 mimetic, U46619 (1 microM) (r = 0.93, p less than 0.01). A series of TXA2/PGH2 mimetics also displaced [125I]PTA-OH from its binding site, and their potencies as inhibitors of [125I]PTA-OH binding were correlated with their potencies as stimulators of platelet aggregation (r = 0.91, p less than 0.05). The IC50 values for displacement of [125I]PTA-OH by PGF2 alpha, PGD2, and the stable PGI2 analog Iloprost were greater than 25 microM, suggesting that [125I]PTA-OH does not bind to other known platelet prostaglandin receptors. These data are consistent with the notion that this binding site may represent the platelet TXA2/PGH2 receptor.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号