首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Nagawa F  Yoshihara S  Tsuboi A  Serizawa S  Itoh K  Sakano H 《Gene》2002,292(1-2):73-80
Genomic analysis was performed for the murine odorant receptor (OR) genes. The MOR28 cluster on chromosome 14 was extensively studied. It contains six OR genes, MOR28, 10, 83, 29A, 29B and 30. The human homolog of this cluster is located on the human chromosome 14, and contains five OR genes, HOR28/10, 83, 29A, 29B and 30. Sequence comparison of these OR gene paralogs and orthologs suggests that the coding homologies are accounted for not only by recent gene duplication, but also by gene conversion among the coding sequences within the cluster. A possible role of gene conversion in the olfactory system is discussed in the context of the olfactory map.  相似文献   

2.
3.
Fuss SH  Omura M  Mombaerts P 《Cell》2007,130(2):373-384
From the approximately 1,200 odorant receptor (OR) genes in the mouse genome, an olfactory sensory neuron is thought to express only one gene. The mechanisms of OR gene choice are not understood. A 2.1 kilobase region (the H element) adjacent to a cluster of seven OR genes has been proposed as a trans- and pan-enhancer for OR gene expression. Here, we deleted the H element by gene targeting in mice. The deletion abolishes expression of a family of three OR genes proximal to H, and H operates in cis on these genes. Deletion of H has a graded effect on expression of a distal group of four OR genes, commensurate with genomic distance. There is no demonstrable effect on expression of OR genes located outside the cluster. Our findings are not consistent with the hypothesis of H as an essential trans-acting enhancer for genome-wide regulation of OR gene expression.  相似文献   

4.
Hoppe R  Breer H  Strotmann J 《Genomics》2003,82(3):355-364
We report a comprehensive comparative analysis of human and mouse olfactory receptor (OR) genes encoding OR37 subtypes to determine the repertoire, chromosomal organization, and relatedness of these genes. Two OR37 clusters were found in both mouse (chromosome 4) and human (chromosome 9); with five genes in cluster I and three (mouse) and seven genes (human) in cluster II. The pronounced diversity of noncoding sequence regions in both genomic loci indicates a long-term coexistence of the two clusters and the genes within the clusters. In contrast, the coding regions, particularly of genes in cluster I, showed remarkably high sequence identity, a feature quite unique for OR genes. The conservation of only the coding sequences indicates that OR37 may be under negative selection pressure and suggests that the OR37 receptor family may be tuned to recognize distinct sets of signaling molecules. A comparison of mouse and human OR37 gene clusters revealed that genes in cluster I are highly related within each species whereas genes in cluster II are highly related across species. These data reflect a unique and complex evolutionary history of the OR37 family.  相似文献   

5.
6.
Sharon D  Gilad Y  Glusman G  Khen M  Lancet D  Kalush F 《Gene》2000,260(1-2):87-94
Single-nucleotide polymorphisms (SNPs) were studied in 15 olfactory receptor (OR) coding regions, one control region and two noncoding sequences all residing within a 412 kb OR gene cluster on human chromosome 17p13.3, as well as in other G-protein coupled receptors (GPCRs). A total of 26 SNPs were identified in ORs, 21 of which are coding SNPs (cSNPs). The mean nucleotide diversity of OR coding regions was 0.078% (ranging from 0 to 0.16%), which is about twice higher than that of other GPCRs, and similar to the nucleotide diversity levels of noncoding regions along the human genome. The high polymorphism level in the OR coding regions might be due to a weak positive selection pressure acting on the OR genes. In two cases, OR genes have been found to share the same cSNP. This could be explained by recent gene conversion events, which might be a part of a concerted evolution mechanism acting on the OR superfamily. Using the genotype data of 85 unrelated individuals in 15 SNPs, we found linkage disequilibrium (LD) between pairs of SNPs located on the centromeric part of the cluster. On the other hand, no LD was found between SNPs located on the telomeric part of the cluster, suggesting the presence of several hot-spots for recombination within this cluster. Thus, different regions of this gene cluster may have been subject to different recombination rates.  相似文献   

7.
The olfactory receptor (OR) subgenome harbors the largest known gene family in mammals, disposed in clusters on numerous chromosomes. One of the best characterized OR clusters, located at human chromosome 17p13.3, has previously been studied by us in human and in other primates, revealing a conserved set of 17 OR genes. Here, we report the identification of a syntenic OR cluster in the mouse and the partial DNA sequence of many of its OR genes. A probe for the mouse M5 gene, orthologous to one of the OR genes in the human cluster (OR17-25), was used to isolate six PAC clones, all mapping by in situ hybridization to mouse chromosome 11B3-11B5, a region of shared synteny with human chromosome 17p13.3. Thirteen mouse OR sequences amplified and sequenced from these PACs allowed us to construct a putative physical map of the OR gene cluster at the mouse Olfr1 locus. Several points of evidence, including a strong similarity in subfamily composition and at least four cases of gene orthology, suggest that the mouse Olfr1 and the human 17p13.3 clusters are orthologous. A detailed comparison of the OR sequences within the two clusters helps trace their independent evolutionary history in the two species. Two types of evolutionary scenarios are discerned: cases of "true orthologous genes" in which high sequence similarity suggests a shared conserved function, as opposed to instances in which orthologous genes may have undergone independent diversification in the realm of "free reign" repertoire expansion.  相似文献   

8.
9.
10.
11.
12.
13.
With ∼1000 genes, the odorant receptor (OR) gene repertoire is the largest gene family in the mouse genome. Here we have established a 129/Sv BAC contig for mouse OR gene cluster 7 (Olfr7) on Chromosome (Chr) 9. The assembled ∼2-Mb contig consists of 75 BACs and may contain as many as 100 OR genes, or ∼10% of the mouse repertoire. Facilitated by the lack of introns in the coding region, we have determined the nucleotide sequence of 37 full-length, 2 partial, and 3 pseudo coding regions. These 42 OR genes and 3 additional OR genes previously mapped to the mouse Olfr7 cluster can be organized into 13 classes based on OR probe cross-hybridizations with 129/Sv mouse genomic DNA. OR genes belonging to the same class tend to be located next to each other within the cluster. Comparison of published full-length mouse and rat OR coding sequences with those identified here shows that the Olfr7 OR genes are highly related to each other, clustering on two major branches of an unrooted phylogenetic tree. Eight ORs contain an unusual NXC sequon at the amino-terminal extracellular domain that may represent a novel N-linked glycosylation site. The BAC contig presented here provides the substrate for sequencing of the cluster. Received: 27 June 2000 / Accepted: 17 August 2000  相似文献   

14.
Transcription of Rhodospirillum rubrum atp operon.   总被引:1,自引:1,他引:0       下载免费PDF全文
  相似文献   

15.
16.
17.
CD1 is an MHC class I-like protein that presents lipid antigens to T cell receptors. We determined 470,187 bp of the genomic sequence encompassing the region encoding porcine CD1 genes. We identified 16 genes in this region and newly identified CD1A2, CD1B, CD1C, CD1D, and CD1E. Porcine CD1 genes were located in clusters between KIRREL and olfactory receptor (OR) genes, as observed in humans, although they were divided into two regions by a region encoding OR genes. Comparison of the genomic sequences of CD1 gene loci in pigs with other mammals showed that separation of the CD1 gene cluster by ORs was observed only in pigs. CD1A duplication in the porcine genome was estimated to have occurred after the divergence of the human and porcine. This analysis of the genomic sequence of the porcine CD1 family will contribute to our understanding of the evolution of mammalian CD1 genes.  相似文献   

18.
19.
The olfactory receptor (OR) gene cluster on human chromosome 17p13.3 was subjected to mixed shotgun automated DNA sequencing. The resulting 412 kb of genomic sequence include 17 OR coding regions, 6 of which are pseudogenes. Six of the coding regions were discovered only upon genomic sequencing, while the others were previously reported as partial sequences. A comparison of DNA sequences in the vicinity of the OR coding regions revealed a common gene structure with an intronless coding region and at least one upstream noncoding exon. Potential gene control regions including specific pyrimidine:purine tracts and Olf-1 sites have been identified. One of the pseudogenes apparently has evolved into a CpG island. Four extensive CpG islands can be discerned within the cluster, not coupled to specific OR genes. The cluster is flanked at its telomeric end by an unidentified open reading frame (C17orf2) with no significant similarity to any known protein. A high proportion of the cluster sequence (about 60%) belongs to various families of interspersed repetitive elements, with a clear predominance of LINE repeats. The OR genes in the cluster belong to two families and seven subfamilies, which show a relatively high degree of intermixing along the cluster, in seemingly random orientations. This genomic organization may be best accounted for by a complex series of evolutionary events.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号