首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
分子伴侣     
李强 《生物学通报》1995,30(3):16-17
分子伴侣是最近十几年才发现的一类非常保守的蛋白家庭。它与酶的作用方式类似,能和某些不同的多肽链非特异性结合,催化介导蛋白质特定构象的形成,参与体内蛋白质的折叠、装配和转运,但又不构成其结构的一部分。这类保守的蛋白家族大致可分为四类,广泛存在于生物体中。其中研究得最多的是热休克蛋白。实际上,分子伴侣是一种蛋白质分子构象的协助者,主要参与蛋白质次级结构的形成。  相似文献   

2.
分子伴侣在蛋白质折叠中的作用   总被引:2,自引:0,他引:2  
分子伴侣主要由三个高度保守的蛋白质家族组成,这三个家族的成员广泛分布于原核和真核细胞中。TCP1复合物是真核细胞细胞溶质内的伴侣蛋白。分子伴侣在蛋白质折叠过程中防止多肽链形成聚集物或无活性结构,提高正确折叠率。本文重点讨论Stress-70家族蛋白质和伴侣蛋白协助蛋白质折叠过程中的协同性以及伴侣蛋白GroEL和GroES的作用机理。  相似文献   

3.
蛋白质折叠和分子伴侣   总被引:7,自引:1,他引:7  
一个有活性的蛋白质分子不但有特定的氨基酸序列,还处于特定的由氨基酸序列决定的三维空间结构。三维结构的完整性受到干扰,生物活性也会发生变化:有时即使只是轻微的破坏,都可能导致其生物活性全部丧失。所以蛋白质的生物功能是与其三维空间结构密切联系在一起的。  相似文献   

4.
蛋白质的折叠问题一直是生物学研究的前沿之一,蛋白质稳态平衡的破坏与衰老及很多神经退行性疾病的发病机理密切相关,而蛋白质的正确折叠与蛋白质稳态在很大程度上取决于分子伴侣参与构建的复杂网络。许多研究表明,抗体可以作为分子伴侣促进蛋白质的正确折叠,并阻止蛋白质的异常聚集,抗体所具有的严格底物特异性使其具备了治疗特定蛋白质折叠病、帮助包涵体复性等应用潜力。本文简要介绍了分子伴侣的研究进展,详细阐述了具有分子伴侣功能的抗体及单链抗体的研究进展,最后重点讨论了可抑制蛋白质聚集的抗体的研究近况。  相似文献   

5.
我们自E.coli细胞中纯化出GroEL和GroES,对其有活性的分子状态和反应条件进行了探索,只有在等摩尔的GroEL和GroES以及1mmol/L ATP和适当浓度的K^+存在时,才会有较高的催化折叠效率,它可使1mg/ml的IL-2的正确折叠率由30%提高到58%,使IL-2和GM-CSF的比活性提高1倍以上,它提高重组蛋白质正确折叠率的关键是可以降低折叠过程中形成聚合体。  相似文献   

6.
席兴宇 《生命科学》2010,(10):991-994
分子伴侣介导的细胞自噬(chaperone-mediated autophagy,CMA)是通过溶酶体途径选择性降解胞质中带KFERQ-序列的蛋白质。CMA不仅为细胞在持久饥饿状态下提供能量,还在氧化性损伤保护、维持细胞内环境稳态等方面发挥作用。此外,CMA功能障碍还与某些疾病的发生有关。该文简要综述了这方面的研究进展。  相似文献   

7.
分子内分子伴侣--Pro肽在蛋白质折叠中的作用   总被引:7,自引:0,他引:7  
在体内,许多蛋白质,如很多胞外蛋白酶、某些多肽激素等都以含前导肽的前体形式合成,前导肽在蛋白质折叠中具有分子伴侣的功能。为了与一般意义上的分子伴侣相区别,人们将对蛋白质折叠有帮助的前导肽称为分子内分子伴侣,分子内分子伴侣帮助蛋白质在折叠过程中克服高的能量障碍,某些蛋白质的分子内分子伴侣甚至促进其在氧化性折叠中二硫键的正确配对。  相似文献   

8.
分子伴侣(Molecular Chaperones)与蛋白质的折叠   总被引:1,自引:0,他引:1  
  相似文献   

9.
双环结构Gro EL及其辅分子伴侣Gro ES是目前研究得最深入的分子伴侣.然而,Gro EL/Gro ES帮助蛋白质折叠的一些关键理化机制,尤其是水解ATP,Gro EL发生构象改变,能否主动调节蛋白质错误折叠中间体的构象,以促进错误折叠中间体的复性,仍然存在争议.结合本研究组近年的工作,作者着力介绍Gro EL促进蛋白质折叠的主动解折叠机制.  相似文献   

10.
在原核生物、真核生物及病毒中,一些蛋白质的折叠不符合Anfinsen原则,即依靠自身的氨基酸序列是不够的,还需一段被称为分子内分子伴侣(IMC)的肽段来协助折叠.根据机制不同,IMC可分为两类:第一类IMC引导成熟肽折叠为具有空间结构的蛋白质;第二类IMC协助成熟肽的多聚化而使其获得生物学功能.IMC能提供比分子伴侣更契合的结构,更有效地引导成熟肽折叠,是一种更优的折叠策略.研究IMC分子机制,不仅能够确定IMC上哪些残基的协同作用引导成熟肽折叠,而且可通过改变或修饰其侧链来改造成熟肽,拓展传统的蛋白质工程.  相似文献   

11.
Various human neurodegenerative disorders are associated with processes that involve misfolding of polypeptide chains. These so-called protein misfolding disorders include Alzheimer's and Parkinson's diseases and an increasing number of inherited syndromes that affect neurons involved in motor control circuits throughout the central nervous system. The reasons behind the particular susceptibility of neurons to misfolded proteins are currently not known. The main function of a class of proteins known as molecular chaperones is to prevent protein misfolding and aggregation. Although neuronal cells contain the major known classes of molecular chaperones, central-nervous-system-specific chaperones that maintain the neuronal proteome free from misfolded proteins are not well defined. In this study, we assign a novel molecular chaperone activity to the protein sacsin responsible for autosomal recessive spastic ataxia of Charlevoix-Saguenay, a degenerative disorder of the cerebellum and spinal cord. Using purified components, we demonstrate that a region of sacsin that contains a segment with homology to the molecular chaperone Hsp90 is able to enhance the refolding efficiency of the model client protein firefly luciferase. We show that this region of sacsin is highly capable of maintaining client polypeptides in soluble folding-competent states. Furthermore, we demonstrate that sacsin can efficiently cooperate with members of the Hsp70 chaperone family to increase the yields of correctly folded client proteins. Thus, we have identified a novel chaperone directly involved in a human neurodegenerative disorder.  相似文献   

12.
The study about apoptotic signal transductions has become a project to reveal the molecular mechanisms of apoptosis. Heat shock proteins (hsps), which play an important role in cell growth and apoptosis, have attracted great attentions. A lot of researches have showed there is a hsps superfamily including hsp90, hsp70, hsp60 and hsp27, etc., which regulates the biological behaviors of cells, particularly apoptotic signal transduction in Fas pathway, JNK/SAPK pathway and caspases pathway at different levels, partly by the function of molecular chaperone.  相似文献   

13.
  总被引:6,自引:0,他引:6  
With progressing recognition of apoptosis in bio-logical and medical sciences, the apoptotic signal transduction has rapidly become a dominant project to reveal the molecular mechanisms of apoptotic process. A lot of researches about apoptotic signal transduction have showed the expression of heat shock proteins was closely correlated with cell growth and differen-tiation, and involved in the regulation of apoptosis in different signal transduction pathways. Here we re-view the effects of hsps…  相似文献   

14.
15.
DafA is encoded by the dnaK operon of Thermus thermophilus and mediates the formation of a highly stable complex between the chaperone DnaK and its co-chaperone DnaJ under normal growth conditions. DafA(Tth) contains 87 amino acid residues and is the only member of the DnaK(Tth) chaperone system for which no corresponding protein has yet been identified in other organisms and whose particular function has remained elusive. Here, we show directly that the DnaK(Tth)-DnaJ(Tth)-DafA(Tth) complex cannot represent the active chaperone species since DafA(Tth) inhibits renaturation of firefly luciferase by suppressing substrate association. Since DafA(Tth) must be released before the substrate proteins can bind we hypothesized that free DafA(Tth) might have regulatory functions connected to the heat shock response. Here, we present evidence that supports this hypothesis. We identified the 70S ribosome as binding target of free DafA(Tth). Our results show that the association of DafA(Tth) and 70S ribosomes does not require the participation of DnaK(Tth) or DnaJ(Tth). On the contrary, the assembly of DnaK(Tth)-DnaJ(Tth)-DafA(Tth) and ribosome-DafA(Tth) complexes seems to be competitive. These findings strongly suggest the involvement of DafA(Tth) in regulatory processes occurring at a translational level, which could represent a new mechanism of heat shock response as an adaptation to elevated temperature.  相似文献   

16.
席德慧 《生命科学》2003,15(1):39-41,25
分子伴侣与病毒生命活动密切相关,从病毒复制的起始、转录的进行、翻译的完成到病毒粒子的装配成熟,甚至病毒在宿主体内的转运都有分子伴侣的参与。随着病毒与分子伴侣相互关系研究的深入,产生了抗病毒的又一可能途径。  相似文献   

17.
Exposure of Saccharomyces cerevisiae to high osmotic stress evokes a number of adaptive changes that are necessary for its survival. These adaptive responses are mediated via multiple mitogen-activated protein kinase pathways, of which the high-osmolarity glycerol (HOG) pathway has been studied most extensively. Yeast strains that bear the hsp82T22I or hsp82G81S mutant alleles are osmosensitive. Interestingly, the osmosensitive phenotype is not due to inappropriate functioning of the HOG pathway, as Hog1p phosphorylation and downstream responses including glycerol accumulation are not affected. Rather, the hsp82 mutants display features that are characteristic for cell-wall mutants, i.e. resistance to Zymolyase and sensitivity to Calcofluor White. The osmosensitivity of the hsp82T22I or hsp82G81S strains is suppressed by over-expression of the Hsp90 co-chaperone Cdc37p but not by other co-chaperones. Hsp90 is shown to be required for proper adaptation to high osmolarity via a novel signal transduction pathway that operates parallel to the HOG pathway and requires Cdc37p.  相似文献   

18.
19.
    
Chaperonins are versatile molecular machines that assist the folding of a wide range of substrate proteins. They harness an ATPase cycle to control access of non-native proteins to hydrophobic binding sites. ATP binding promotes large conformational changes that partially bury the hydrophobic sites and initiate the binding of a co-chaperonin, creating closed and open cavities. Non-native proteins progress towards the native fold during their confinement in these cavities, and are then released by the allosteric action of ATP.  相似文献   

20.
Abstract The periplasmic Yersinia pestis molecular chaperone Caf1M belongs to a superfamily of bacterial proteins for one of which (PapD protein of Escherichia coli ) the immunoglobulin-like fold was solved by X-ray analysis. The N-terminal domain of Caf1M was found to share a 20% amino acid sequence identity with an inclusion body-associated protein IbpB of Escherichia coli . One of the regions that was compared, was 32 amino acids long, and displayed more than 40% identity, probability of random coincidence was 1.2 × 10−4. IbpB is involved in a superfamily of small heat shock proteins which fulfil the function of molecular chaperone. On the basis of the revealed homology, an immunoglobulin-like one-domain model of IbpB three-dimensional structure was designed which could be a prototype conformation of sHsp's. The structure suggested is in good agreement with the known experimental data obtained for different members of sHsp's superfamily.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号