首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Receptor editing in the bone marrow (BM) serves to modify the Ag receptor specificity of immature self-reactive B cells, while anergy functionally silences self-reactive clones. Here, we demonstrate that anergic B cells in hen egg lysozyme Ig (HEL-Ig)/soluble HEL double transgenic mice show evidence of having undergone receptor editing in vivo, as demonstrated by the presence of elevated levels of endogenous kappa light chain rearrangements in the BM and spleen. In an in vitro IL-7-driven BM culture system, HEL-Ig BM B cells grown in the presence of soluble HEL down-regulated surface IgM expression and also showed induction of new endogenous kappa light chain rearrangements. Using a panel of soluble protein ligands with reduced affinity for the HEL-Ig receptor, the editing response was shown to correlate in a dose-dependent fashion with the strength of signaling through the B cell receptor. The finding that the level of B cell receptor cross-linking sufficient to induce anergy in B cells is also capable of engaging the machinery required for receptor editing suggests an intimate relationship between these two mechanisms in maintaining B cell tolerance.  相似文献   

2.
To determine the effects of chronic Ag stimulation on B cell survival and phenotype, we compared survival and surface markers of hen egg lysozyme (HEL)-specific B cells in Ig transgenic (Tgn) mice, which lack HEL, and in HEL-Ig transgenic mice, which express soluble HEL. Serum HEL levels were maximized in HEL-Ig Tgn mice by feeding them zinc, which activates the metallothionein promoter that regulates HEL expression. B cell age was characterized by expression of heat-stable Ag, and B220 and B cell survival was studied by evaluating changes in B cell number when lymphopoiesis was suppressed with anti-IL-7 mAb and by identifying newly generated B cells through 5-bromo-2'-deoxyuridine incorporation. Our observations show that the mean B cell life span is considerably reduced in HEL-Ig Tgn compared with Ig Tgn mice, but also demonstrate that some HEL-Ig Tgn B cells survive to maturity. Some of these surviving B cells have undergone receptor editing (substitution of an endogenous Ig light chain for the transgenic Ig light chain), so that their ability to bind HEL is decreased or absent. Surviving HEL-Ig Tgn B cells that retain HEL specificity express decreased mIgD and little or no mIgM. mIgD expression progressively decreases with increasing HEL-Ig Tgn B cell age. These observations suggest that self Ag-specific B cells can survive in the presence of soluble self Ag by down-regulating mIg expression, which should limit B cell signaling by Ag that might otherwise cause deletion of these cells.  相似文献   

3.
BCR editing in the bone marrow contributes to B cell tolerance by orchestrating secondary Ig rearrangements in self-reactive B cells. We have recently shown that loss of the BCR or a pharmacologic blockade of BCR proximal signaling pathways results in a global "back-differentiation" response in which immature B cells down-regulate genes important for the mature B cell program and up-regulate genes characteristic of earlier stages of B cell development. These observations led us to test the hypothesis that self-Ag-induced down-regulation of the BCR, and not self-Ag-induced positive signals, lead to Rag induction and hence receptor editing. Supporting this hypothesis, we found that immature B cells from xid (x-linked immunodeficiency) mice induce re-expression of a Rag2-GFP bacterial artificial chromosome reporter as well as wild-type immature B cells following Ag incubation. Incubation of immature B cells with self-Ag leads to a striking reversal in differentiation to the pro-/pre-B stage of development, consistent with the idea that back-differentiation results in the reinduction of genes required for L chain rearrangement and receptor editing. Importantly, Rag induction, the back-differentiation response to Ag, and editing in immature and pre-B cells are inhibited by a combination of phorbol ester and calcium ionophore, agents that bypass proximal signaling pathways and mimic BCR signaling. Thus, mimicking positive BCR signals actually inhibits receptor editing. These findings support a model whereby Ag-induced receptor editing is inhibited by BCR basal signaling on developing B cells; BCR down-regulation removes this basal signal, thereby initiating receptor editing.  相似文献   

4.
In response to encounter with self-Ag, autoreactive B cells may undergo secondary L chain gene rearrangement (receptor editing) and change the specificity of their Ag receptor. Knowing at what differentiative stage(s) developing B cells undergo receptor editing is important for understanding how self-reactive B cells are regulated. In this study, in mice with Ig transgenes coding for anti-self (DNA) Ab, we report dsDNA breaks indicative of ongoing secondary L chain rearrangement not only in bone marrow cells with a pre-B/B cell phenotype but also in immature/transitional splenic B cells with little or no surface IgM (sIgM(-/low)). L chain-edited transgenic B cells were detectable in spleen but not bone marrow and were still found to produce Ab specific for DNA (and apoptotic cells), albeit with lower affinity for DNA than the unedited transgenic Ab. We conclude that L chain editing in anti-DNA-transgenic B cells is not only ongoing in bone marrow but also in spleen. Indeed, transfer of sIgM(-/low) anti-DNA splenic B cells into SCID mice resulted in the appearance of a L chain editor (Vlambdax) in the serum of engrafted recipients. Finally, we also report evidence for ongoing L chain editing in sIgM(low) transitional splenic B cells of wild-type mice.  相似文献   

5.
The ability to distinguish between self and foreign Ags is a central feature of immune recognition. For B cells, however, immune tolerance is not absolute, and factors that include Ag valency, the availability of T help, and polyclonal B cell stimuli can influence the induction of autoantibody responses. Here, we evaluated whether multivalent virus-like particle (VLP)-based immunogens could induce autoantibody responses in well-characterized transgenic (Tg) mice that express a soluble form of hen egg lysozyme (HEL) and in which B cell tolerance to HEL is maintained by anergy. Immunization with multivalent VLP-arrayed HEL, but not a trivalent form of HEL, induced high-titer Ab responses against HEL in both soluble HEL Tg mice and double Tg mice that also express a monoclonal HEL-specific BCR. Induction of autoantibodies against HEL was not dependent on coadministration of strong adjuvants, such as CFA. In contrast to previous data showing the T-independent induction of Abs to foreign epitopes on VLPs, the ability of HEL-conjugated VLPs to induce anti-HEL Abs in tolerant mice was dependent on the presence of CD4(+) Th cells, and could be enhanced by the presence of pre-existing cognate T cells. In in vitro studies, VLP-conjugated HEL was more potent than trivalent HEL in up-regulating surface activation markers on purified anergic B cells. Moreover, immunization with VLP-HEL reversed B cell anergy in vivo in an adoptive transfer model. Thus, Ag multivalency and T help cooperate to reverse B cell anergy, a major mechanism of B cell tolerance.  相似文献   

6.
To identify defects in B cell tolerance that may contribute to the production of autoantibodies in New Zealand Black (NZB) mice, we crossed soluble hen egg white lysozyme (sHEL) and anti-HEL Ig transgenes (Ig Tg) onto the NZB background. In this study, we have examined one of the first checkpoints involved in maintenance of peripheral B cell tolerance, follicular exclusion and elimination of self-reactive B cells in the absence of T cell help. Freshly isolated anti-HEL Ig Tg B cells were labeled with CFSE, adoptively transferred into sHEL recipients, and the fate of self-reactive anti-HEL Ig Tg B cells was followed using flow cytometry and immunofluorescence microscopy. Although anti-HEL Ig Tg B cells from NZB mice are appropriately excluded from B cell follicles in NZB sHEL recipient mice, they demonstrate aberrant survival, proliferation, and generation of anti-HEL Ab-producing cells. This abnormal response results from an intrinsic defect in NZB B cells, requires the presence of CD4(+) T cells, and is facilitated by the splenic environment in NZB mice. Thus, NZB mice have immune defects that interact synergistically to allow autoreactive B cells to become activated despite the presence of tolerizing autoantigens.  相似文献   

7.
Receptor editing is an important mechanism to modify the Ag specificity of newly developing B cells that are reactive with self-Ags. Previous studies have suggested that late immature B cells, bearing high levels of IgM on their cell surface, are unable to initiate receptor editing and instead are deleted by apoptosis. Using the hen egg lysozyme transgenic system, we show that IgM(high) late-immature B cells are fully capable of receptor editing to soluble self-Ag. This was demonstrated by the induction of new endogenous light chain locus rearrangements and by a single-cell flow cytometric assay using a recombination-activating gene 2-green fluorescence protein reporter transgene. These studies suggest that the developmental window available for immature B cells to edit their Ig receptors, at least in response to certain soluble Ags, extends through the IgM(high) late immature B cell stage.  相似文献   

8.
Persistent cross-linking of hen egg lysozyme (HEL)-specific B cell membrane Ig (mIg) in double transgenic mice that express soluble HEL as a self Ag (HEL-Ig mice) decreases B cell mIgM expression, responsiveness, and life span. Because in vitro treatment with IL-4 inhibits T cell apoptosis through a Stat6-independent mechanism, increases mIg expression, and suppresses activation-induced B cell death, we studied IL-4 effects on B cell mIg expression, survival, and Ab secretion in Stat6-sufficient and deficient HEL-Ig mice. IL-4 treatment nearly normalized B cell number and greatly increased the percentage of mature B cells in HEL-Ig mice, but failed to normalize mIgM expression or spontaneous LPS-induced IgM secretion. IL-4 effects on B cell survival and maturation were CD4(+) T cell independent, but Stat6 dependent, and did not involve receptor editing. IL-4 had to be present while B cells were generated to have a detectable effect on autoreactive B cell survival; however, the survival of B cells generated in the presence of IL-4 was substantially increased even after IL-4 was withdrawn. These observations suggest that: 1) activation-induced B cell death and anergy are independent processes; 2) B cells that survive to maturity develop increased resistance to Ag-induced deletion; and 3) IL-4 promotes B and T cell survival through different mechanisms.  相似文献   

9.
The editing of B cell Ag receptor (BCR) through successive rearrangements of Ig genes has been considered to be a major mechanism for the central B cell tolerance, which precludes appearance of self-reactive B cells, through studies using anti-self-Ig transgenic/knock-in mouse systems. However, contribution of the receptor editing in the development of the normal B cell repertoire remains unclear. In addition, the signaling pathway directing this event is unknown. In this study, we demonstrate that receptor editing in anti-DNA Ig knock-in mice is impaired in the absence of an adaptor protein BASH (BLNK/SLP-65) that is involved in BCR signaling. Remarkably, the supposed hallmarks of receptor editing such as Iglambda chain expression, recombination sequence rearrangements at Igkappa loci, and presence of in-frame VkappaJkappa joins in the Igkappa loci inactivated by the recombination sequence rearrangements, were all diminished in BASH-deficient mice with unmanipulated Ig loci. BCR ligation-induced Iglambda gene recombination in vitro was also impaired in BASH-deficient B cells. Furthermore, the BASH-deficient mice showed an excessive Ab response to a DNA carrier immunization, suggesting the presence of unedited DNA-reactive B cells in the periphery. These results not only define a signaling pathway required for receptor editing but indicate that the BCR-signaled receptor editing indeed operates in the development of normal B cell repertoire and contributes to establishing the B cell tolerance.  相似文献   

10.
Receptor editing is a major B cell tolerance mechanism that operates by secondary Ig gene rearrangements to change the specificity of autoreactive developing B cells. In the 3-83Igi mouse model, receptor editing operates in every autoreactive anti-H-2K(b) B cell, providing a novel receptor without additional cell loss. Despite the efficiency of receptor editing in generating nonautoreactive Ag receptors, we show in this study that this process does not inactivate the autoantibody-encoding gene(s) in every autoreactive B cell. In fact, receptor editing can generate allelically and isotypically included B cells that simultaneously express the original autoreactive and a novel nonautoreactive Ag receptors. Such dual Ab-expressing B cells differentiate into transitional and mature B cells retaining the expression of the autoantibody despite the high avidity interaction between the autoantibody and the self-Ag in this system. Moreover, we find that these high avidity autoreactive B cells retain the autoreactive Ag receptor within the cell as a consequence of autoantigen engagement and through a Src family kinase-dependent process. Finally, anti-H-2K(b) IgM autoantibodies are found in the sera of older 3-83Igi mice, indicating that dual Ab-expressing autoreactive B cells are potentially functional and capable of differentiating into IgM autoantibody-secreting plasma cells under certain circumstances. These results demonstrate that autoreactive B cells reacting with ubiquitous membrane bound autoantigens can bypass mechanisms of central tolerance by coexpressing nonautoreactive Abs. These dual Ab-expressing autoreactive B cells conceal their autoantibodies within the cell manifesting a superficially tolerant phenotype that can be partially overcome to secrete IgM autoantibodies.  相似文献   

11.
The present study was undertaken to examine whether oral administration of soluble antigen together with diesel exhaust particles (DEP) induced the systemic immune response in mice. Mice were orally given 1 mg of hen egg lysozyme (HEL) with varying doses of DEP every 3 days over a period of 15 days. The results showed that oral administration of HEL plus DEP produced anti-HEL IgG antibodies in serum in a dose-related fashion, while either HEL or DEP alone failed to show the antigen-specific IgG antibody production. Production of anti-HEL IgG2a and IgG1 antibodies, which are dependent on Th1 and Th2 CD4(+) T cells, respectively, was seen in mice fed with combined HEL and DEP, although anti-HEL IgG1 antibodies appeared to be more efficiently produced by lower doses of DEP than anti-HEL IgG2a antibodies. There was marked antigen-specific proliferation of spleen cells in mice treated with HEL and DEP. The anti-HEL antibody production and lymphoid cell proliferation to the antigen were associated with marked secretion of the Th1 cytokine IFN-gamma as well as the Th2 cytokine IL-4. These results suggest that DEP may act as a mucosal adjuvant in the gut enhancing systemic Th1 and Th2 immune responses and might play a role in oral immunization and food allergy.  相似文献   

12.
In recently generated B6.56R anti-DNA autoantibody-transgenic mice, it was noted that a substantial fraction of the B cells that had avoided DNA reactivity had done so through the rearrangement and usage of the endogenous, nontargeted H chain (HC) allele. This suggested that rearrangement at the second HC locus might be an important mechanism through which self-reactive B cells might successfully revise their initial Ag specificity. To test the importance of this mechanism in B cell tolerance, we generated B6.56R/56R mice that possessed the 56R anti-DNA H chain transgene inserted into both HC loci. These transgenic homozygotes developed higher titers of anti-DNA Abs, with an expanded population of B220(low)MHC class II(low) B cells, enriched for CD21(low)CD23(low) preplasmablasts. The analysis of hybridomas from these mice revealed that the only avenue by which these B cells could avoid DNA reactivity was through the use of the editor L chains, V(k)20 or V(k)21. Hence, in addition to LC editing, rearrangement and usage of the second HC locus/allele constitutes an important safety valve for B cells the primary BCR of which confers DNA reactivity. In contrast to these tolerance mechanisms, editing the first rearranged HC locus (through HC replacement) and somatic mutations appear to be less frequently used to edit/revise self-reactive B cells.  相似文献   

13.
Neoplastic B cells from H chain disease patients express a truncated B cell receptor (BCR), comprising a membrane Ig that lacks part of its extracellular domain. It has been speculated that deletion of the Ag binding domain would confer a constitutive activity on the BCR, as it has been shown for oncogenic growth factor receptors. A V region-less BCR has constitutive activity, because in transgenic mice it causes inhibition of endogenous H chain gene rearrangements and relieves the requirement for surrogate L chain in pre-B cell development. However, it has been speculated that normal Ag receptors also display constitutive activity. Here we show that transgenic B cells expressing a membrane H chain disease protein on their surface are phenotypically and functionally similar to B cells developing in the presence of their cognate Ag and that cells with normal levels of mutant BCR are eliminated in spleen via a bcl-2 sensitive pathway while progressing toward the mature stage. In contrast, cells with lower levels of mutant receptors develop as mature B cells. These findings support the view that the truncated BCR has a constitutive activity that mimics ligand binding, in analogy to what has been shown for oncogenic growth factor receptors.  相似文献   

14.
An NZM2410-derived lupus susceptibility locus on murine chromosome 4, Sle2(z), has previously been noted to engender generalized B cell hyperactivity. To study how Sle2(z) impacts B cell tolerance, two Ig H chain site-directed transgenes, 3H9 and 56R, with specificity for DNA were backcrossed onto the C57BL/6 background with or without Sle2(z). Interestingly, the presence of the NZM2410 "z" allele of Sle2 on the C57BL/6 background profoundly breached B cell tolerance to DNA, apparently by thwarting receptor editing. Whereas mAbs isolated from the spleens of B6.56R control mice demonstrated significant usage of the endogenous (i.e., nontargeted) H chain locus and evidence of vigorous L chain editing; Abs isolated from B6.Sle2(z).56R spleens were largely composed of the transgenic H chain paired with a spectrum of L chains, predominantly recombined to J(k)1 or J(k)2. In addition, Sle2(z)-bearing B cells adopted divergent phenotypes depending on their Ag specificity. Whereas Sle2(z)-bearing anti-DNA transgenic B cells were skewed toward marginal zone B cells and preplasmablasts, B cells from the same mice that did not express the transgene were skewed toward the B1a phenotype. This work illustrates that genetic loci that confer lupus susceptibility may influence B cell differentiation depending on their Ag specificity and potentially contribute to antinuclear autoantibody formation by infringing upon B cell receptor editing. Taken together with a recent report on Sle1(z), these studies suggest that dysregulated receptor-editing of nuclear Ag-reactive B cells may be a major mechanism through which antinuclear Abs arise in lupus.  相似文献   

15.
Transgenic (Tg) mice expressing a foreign Ag, hen egg lysozyme (HEL), under control of the alphaA-crystallin promoter ("HEL-Tg" mice) develop immunotolerance to HEL attributed to the expression of HEL in their thymus. In this paper we analyzed the immune response in double (Dbl)-Tg mice generated by mating the HEL-Tg mice with Tg mice that express HEL Abs on their B cells ("Ig-Tg" mice). The B cell compartment of the Dbl-Tg mice was unaffected by the HEL presence and was essentially identical to that of the Ig-Tg mice. A partial breakdown of tolerance was seen in the T cell response to HEL of the Dbl-Tg mice, i.e., their lymphocyte proliferative response against HEL was remarkably higher than that of the HEL-Tg mice. T-lymphocytes of both Dbl-Tg and Ig-Tg mice responded to HEL at concentrations drastically lower than those found stimulatory to lymphocytes of the wild-type controls. Cell mixing experiments demonstrated that 1) the lymphocyte response against low concentrations of HEL is due to the exceedingly efficient Ag presenting capacity of the Ab expressing B cells and 2) breakdown of tolerance in Dbl-Tg mice can also be attributed to the APC capacity of B cells, that sensitize in vivo and stimulate in vitro populations of T cells with low affinity toward HEL, assumed to be escapees of thymic deletion. These results thus indicate that T cell tolerance can be partially overcome by the highly potent Ag presenting capacity of Ab expressing B cells.  相似文献   

16.
Cytokines and growth factors are indispensable for the propagation and maintenance of factor-dependent mammalian cells. However, cytokines are often so expensive that the use of factor-dependent cells for industrial applications such as protein production is often not practical. Based on our previous design of a binary hen egg lysozyme (HEL)-specific receptor composed of portions of the anti-HEL antibody and the erythropoietin receptor, a new pair of chimeric receptors having the intracellular domain of gp130 were made and transfected to an interleukin-6 (IL-6)-dependent hybridoma, 7TD1. The clone expressing the two new receptors showed clear HEL dose-dependent cell growth and monoclonal antibody production in both serum-based and serum-free media without IL-6. These results establish the feasibility of applying receptor design to tailor cells for the inexpensive induction of cell growth for the purpose of producing therapeutic products.  相似文献   

17.
Bispecific heteroconjugate antibodies can bind soluble protein Ag to APC and thereby enhance Ag presentation. We used such antibodies to bind hen egg lysozyme (HEL) to various structures on the surface of normal splenic B cells to determine which structures would provide the best targets for enhanced presentation. We found that HEL was presented efficiently to hybridoma T cells if bound to sIgD, sIgM, or class I or II MHC molecules, but not at all if bound to Fc gamma RII, or B220 molecules on B cells. The efficiency of presentation of HEL was measured as a function of the amount of 125I-HEL bound per cell. HEL was presented with 5 to 10 times greater efficiency when bound to sIg, than when bound to MHC molecules. When compared on the basis of the amount of HEL bound, sIgD and sIgM functioned equally as target structures, as did class I and class II MHC molecules. Large amounts of HEL bound to B220, but no presentation resulted, indicating that focusing HEL to the APC surface was not sufficient for presentation to occur. HEL was internalized rapidly and in large amounts when bound to sIgD or sIgM, but slowly and in small amounts, when bound to class I or class II MHC molecules. Thus, a rapid rate of internalization may in part explain the high efficiency of Ag presentation after binding to sIg. However, the small amount of HEL internalized via MHC molecules was utilized efficiently for presentation. These results indicate that sIgM and sIgD serve equally on normal B cells to focus and internalize Ag and enhance Ag presentation, but that class I or class II MHC molecules can also be used to internalize Ag and enhance Ag presentation, perhaps by a separate intracellular processing pathway.  相似文献   

18.
B cell tolerance is maintained by active deletion and functional anergy of self-reactive B cells depending on the time, amount, and site of the self-antigen expression. To study B cell tolerance toward a transplacentally transmitted viral Ag, we crossed transgenic mice expressing the mu heavy and the kappa light chain of the lymphocytic choriomeningitis virus (LCMV)-neutralizing mAb KL25 (HL25-transgenic mice) with persistently infected LCMV carrier mice. Although HL25-transgenic LCMV carrier mice exhibited the same high virus titers as nontransgenic LCMV carrier mice, no evidence for B cell tolerance was found. In contrast, enhanced LCMV-neutralizing Ab titers were measured that, however, did not clear the virus. Instead, LCMV isolates from different tissues turned out to be neutralization resistant Ab escape variants expressing different substitutions of amino acid Asn119 of the LCMV-glycoprotein 1 that displays the neutralizing B cell epitope. Virus variants with the same mutations were also selected in vitro in the presence of the transgenic mAb KL25 confirming that substitutions of Asn119 have been selected by LCMV-neutralizing Abs. Thus, despite abundant expression of viral neo-self-antigen in HL25-transgenic LCMV carrier mice, transgenic B cells expressing LCMV-neutralizing Abs were rather stimulated than tolerized and neutralization resistant Ab escape variants were selected in vivo.  相似文献   

19.
We explored mechanisms involved in B cell self-tolerance in a double- and triple-transgenic mouse model bearing the LamH-C mu Ig H chain conventional transgene and a gene-targeted replacement for a functional V kappa 8J kappa 5 L chain gene. Whereas the H chain is known to generate anti-laminin Ig in combination with multiple L chains, the H + L Ig binds ssDNA in addition to laminin. Immune phenotyping indicates that H + L transgenic B cells are regulated by clonal deletion, receptor editing via secondary rearrangements at the nontargeted kappa allele, and anergy. Collectively, the data suggest that multiple receptor-tolerogen interactions regulate autoreactive cells in the H + L double-transgenic mice. Generation of H + LL triple-transgenic mice homozygous for the targeted L chain to exclude secondary kappa rearrangements resulted in profound B cell depletion with absence of mature B cells in the bone marrow. We propose that the primary tolerogen of dual reactive B cells in this model is not ssDNA, but a strongly cross-linking tolerogen, presumably basement membrane laminin, that triggers recombination-activating gene activity, L chain editing, and deletion.  相似文献   

20.
Suppressor T cells (Ts) induced by lysozyme-modified syngeneic lymphocytes were characterized. Hen egg-white lysozyme (HEL)-specific delayed-type hypersensitivity (DTH) was suppressed when HEL-induced Ts were transferred into naive mice. These HEL-induced Ts had surface markers of both Thy-1 antigen, and I-J gene products. The suppression of HEL-specific DTH was greatly increased, when these Ts had been enriched with HEL-coated petri dishes. Isolated anti-HEL antibodies from B10.BR or A/Sn mice were inoculated into rabbits to induce anti-cross-reactive idiotype (CRI) antibodies. The rabbit antisera were extensively absorbed with normal B10.BR or A/Sn immunoglobulins (Igs) and MOPC 104E ascites Igs to render them idiotype (Id) specific. Using these anti-CRI antibodies, we observed that these Ts possessed Id receptors on their cell surface. Results of both fluorescence techniques and cytotoxicity tests revealed that about 10% of the enriched T cells containing these Ts were Id positive. Moreover, these enriched T cells were substantially killed by anti-I-J antiserum plus complement. However, this killing was completely blocked by HEL antigen. These results suggest that both Id receptors and I-J gene products might be forming the same molecular complexes or might coexist in the vicinity of the molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号