首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The PI3K/Akt/mTOR signaling pathway plays a key regulatory function in cell survival, proliferation, migration, metabolism and apoptosis. Aberrant activation of the PI3K/Akt/mTOR pathway is found in many types of cancer and thus plays a major role in breast cancer cell proliferation. In our previous studies, benzo[b]furan derivatives were evaluated for their anticancer activity and the lead compounds identified were 26 and 36. These observations prompted us to investigate the molecular mechanism and apoptotic pathway of these lead molecules against breast cancer cells. Benzo[b]furan derivatives (26 and 36) were evaluated for their antiproliferative activity against human breast cancer cell lines MCF-7 and MDA MB-231. These compounds (26 and 36) have shown potent efficiency against breast cancer cells (MCF-7) with IC50 values 0.057 and 0.051 μM respectively. Cell cycle analysis revealed that these compounds induced cell cycle arrest at G2/M phase in MCF-7 cells. Western blot analysis revealed that these compounds inhibit the PI3K/Akt/mTOR signaling pathway and induced mitochondrial mediated apoptosis in human breast cancer cells (MCF-7).  相似文献   

2.
Magnolol (Mag), an effective natural compound isolated from the stem bark of Magnolia officinalis, was found to have the potential for antitumor activity by inducing apoptosis in tumor cells. However, the effect of Mag on renal carcinoma cells and its molecular mechanism are unexplored. Our study provided evidence that Mag induced apoptosis in 786-O and OS-RC-2?cell lines via the mitochondrial pathway and cell cycle arrest. In this work, we found that Mag induced morphological changes and inhibited the proliferation of 786-O and OS-RC-2?cells in a dose- and time-dependent manner but exerted no notable inhibitory effects on normal human renal proximal tubular (HK-2) cells. Treatment with Mag suppressed the migration and invasion ability of renal carcinoma cells. Moreover, Mag caused the openness of mPTP, the accumulation of intracellular ROS and decreased △Ψm, leading to mitochondrial dysfunction. However, pretreatment with the antioxidant N-acetyl cysteine (NAC) reversed the apoptosis induced by Mag and decreased the generation of ROS. In addition, the increased proportion of the G1/G0 phase indicated that Mag caused cell cycle arrest. Further analyses suggested that magnolol-induced apoptosis was related to the abnormal expression of p53, Bax, Bcl-2, cytochrome c and caspase activation. Together, the results above revealed that Mag had antitumor effects in renal carcinoma cells via ROS production as well as cell cycle arrest and the apoptotic mitochondrial pathway was suppressed in part by NAC.  相似文献   

3.
Studies have shown that polycystin-1, encoded by PKD1, the major ADPKD, may have a central role in regulating both apoptosis and proliferation, which could prevent the malignant transformation of affected cells. However, as a putative tumor suppressor, direct studies on the possibility that polycystin-1 may play a role in cancer cells' biological properties have not yet been reported. We have demonstrated that the apoptosis of cancer cells was induced by overexpression of polycystin-1. After transfection with polycystin-1, three cancer cell lines, HepG2, A549, and SW480, showed significantly increased apoptosis compared with the respective control groups. This was accompanied by cell cycle arrest at G(0)/G(1) phase, whereas cell proliferation was not significantly affected. Overexpression of polycystin-1 induces apoptosis in cancer cells, at least partially, through Wnt and a caspase-dependent pathway.  相似文献   

4.
Recent studies indicate that secondary bile acids promote colon cancer cell proliferation but their role in maintaining cell survival has not been explored. We found that deoxycholyltaurine (DCT) markedly attenuated both unstimulated and TNF-alpha-stimulated programmed cell death in colon cancer cells by a phosphatidylinositol 3-kinase (PI3K)-dependent mechanism. To examine the role of bile acids and PI3K signaling in maintaining colon cancer cell survival, we explored the role of signaling downstream of bile acid-induced activation of the epidermal growth factor receptor (EGFR) in regulating both apoptosis and proliferation of HT-29 and H508 human colon cancer cells. DCT caused dose- and time-dependent Akt (Ser(473)) phosphorylation, a commonly used marker of activated PI3K/Akt signaling. Both EGFR kinase and PI3K inhibitors attenuated DCT-induced Akt phosphorylation and Akt activation, as demonstrated by reduced phosphorylation of a GSK-3-paramyosin substrate. Transfection of HT-29 cells with kinase-dead EGFR (K721M) reduced DCT-induced Akt phosphorylation. In HT-29 cells, EGFR and PI3K inhibitors as well as transfection with dominant negative AKT attenuated DCT-induced cell proliferation. DCT-induced PI3K/Akt activation resulted in downstream phosphorylation of GSK-3 (Ser(21/9)) and BAD (Ser(136)), and nuclear translocation (activation) of NF-kappaB, thereby confirming that DCT-induced activation of PI3K/Akt signaling regulates both proproliferative and prosurvival signals. Collectively, these results indicate that DCT-induced activation of post-EGFR PI3K/Akt signaling stimulates both colon cancer cell survival and proliferation.  相似文献   

5.
In this study we determined the effects of Curcumin on human colon cancer cells line LoVo. We found that Curcumin significantly inhibited the proliferation, migration and invasion, and clone formation of LoVo cells in a dose-dependent manner. Curcumin also dose-dependently reduced the phosphorylation of proteins Akt and increased expression levels of the genes caspase-3, cytochrome-c, Bax mRNA in LoVo cells. In addition, Curcumin dose-dependently decreased gene Bcl-2 mRNA expression. Similar results were observed in LoVo cells treated with LY294002. These in vitro studies suggest that Curcumin may play its anti-cancer actions partly via suppressing PI3K/Akt signal pathway in LoVo cells.  相似文献   

6.
Increasing evidence suggests that aberrant activation of PI3K/Akt is involved in many human cancers, and that inhibition of the PI3K/Akt pathway might be a promising strategy for cancer treatment. Our investigation indicates that Rhabdastrellic acid-A, an isomalabaricane triterpenoid isolated from the sponge, Rhabdastrella globostellata, inhibits proliferation of HL-60 cells with an IC(50) value of 0.68mug/ml, and induces apoptosis. Rhabdastrellic acid-A also induces cleavage of the death substrate poly (ADP-ribose) polymerase (PARP) and caspase-3. Pretreatment of HL-60 cells with the caspase-3 specific inhibitor, DEVD-CHO, prevents Rhabdastrellic acid-A-induced DNA fragmentation and PARP cleavage. Activated PI3K and Akt significantly decreases after treatment with Rhabdastrellic acid-A in HL-60 cells. Expression levels of protein bcl-2, bax remain unchanged in response to Rhabdastrellic acid-A treatment in HL-60 cells. These results suggest that Rhabdastrellic acid-A inhibits PI3K/Akt pathway and induces caspase-3 dependent-apoptosis in HL-60 human leukemia cells.  相似文献   

7.

Background

We have investigated the potential anticancer effects of karanjin, a principal furanoflavonol constituent of the Chinese medicine Fordia cauliflora, using cytotoxic assay, cell cycle arrest, and induction of apoptosis in three human cancer cell lines (A549, HepG2 and HL-60 cells).

Results

MTT cytotoxic assay showed that karanjin could inhibit the proliferation and viability of all three cancer cells. The induction of cell cycle arrest was observed via a PI (propidium iodide)/RNase Staining Buffer detection kit and analyzed by flow cytometry: karanjin could dose-dependently induce cell cycle arrest at G2/M phase in the three cell lines. Cell apoptosis was assessed by Annexin V-FITC/PI staining: all three cancer cells treated with karanjin exhibited significantly increased apoptotic rates, especially in the percentage of late apoptosis cells.

Conclusion

Karanjin can induce cancer cell death through cell cycle arrest and enhance apoptosis. This compound may be effective clinically for cancer pharmacotherapy.  相似文献   

8.
BackgroundCoumarins occurs naturally across plant kingdoms exhibits significant pharmacological properties and pharmacokinetic activity. The conventional, therapeutic agents are often associated with poor stability, absorption and increased side effects. Therefore, identification of a drug that has little or no-side effect on humans is consequential. Here, we investigated the antiproliferative activity of styrene substituted biscoumarin against various human breast cancer cell lines, such as MCF-7, (ER-) MDA-MB-231 and (AR+) MDA-MB-453. Styrene substituted biscoumarin induced cell death by apoptosis in MDA-MB-231 cell line was analyzed.MethodsAntiproliferative activity of Styrene substituted biscoumarin was performed by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Styrene substituted biscoumarin induced apoptosis was assessed by Hoechst staining, Annexin V-fluorescein isothiocyanate/propidium iodide (Annexin V-FITC/PI) staining and flow cytometric analysis. Migratory and proliferating characteristic of breast cancer cell line MDA-MB-231 was also analyzed by wound healing and colony formation assay. Furthermore, mRNA expression of BAX and BCL-2 were quantified using qRT-PCR and protein expression level analyzed by Western blot.ResultsThe inhibition concentration (IC50) of styrene substituted biscoumarin was assayed against three breast cancer cell lines. The inhibition concentration (IC50) value of styrene substituted biscoumarin toward MDA-MB-231, MDA-MB-453 and MCF-7 cell lines was 5.63, 7.30 and 10.84 μg/ml respectively. Styrene substituted biscoumarin induced apoptosis was detected by Hoechst staining, DAPI/PI analysis and flow-cytometric analysis. The migration and proliferative efficiency of MDA-MB-231 cells were completely arrested upon styrene substituted biscoumarin treatment. Also, mRNA gene expression and protein expression of pro-apoptotic (BAX) and anti-apoptotic (BCL-2) genes were analyzed by qRT-PCR and western blot analysis upon styrene substituted biscoumarin treatment to MDA-MB-231 cells. Our results showed that styrene substituted biscoumarin downregulated BCL-2 gene expression and upregulated BAX gene expression to trigger apoptotic process.ConclusionStyrene substituted biscoumarin could induce apoptosis through intrinsic mitochondrial pathway in breast cancer cell lines, particularly in MDA-MB-231. Our data suggest that styrene substituted biscoumarin may act as a potential chemotherapeutic agent against breast cancer.  相似文献   

9.
Ho PJ  Chou CK  Kuo YH  Tu LC  Yeh SF 《Life sciences》2007,80(5):493-503
Taiwanin A, a lignan isolated from Taiwania cryptomerioides Hayata, has previously been reported to have cytotoxicity against human tumor cells, but the mechanisms are unclear. In this study, we examined the molecular mechanism of cell death of human hepatocellular carcinoma HepG2 cells induced by Taiwanin A. Taiwanin A has been found to induce cell cycle arrest at G2/M phase as well as caspase-3-dependent apoptosis within 24 h. We performed both in vitro turbidity assay and immunofluorescence staining of tubulin to show that Taiwanin A can inhibit microtubule assembly. Moreover, the tumor suppressor protein p53 in HepG2 cells was activated by Taiwanin A within 12 h. Inhibition of p53 by either pifithrin-alpha or by short hairpin RNA which blocks p53 expression attenuates Taiwanin A cytotoxicity. Our results demonstrate that Taiwanin A can act as a new class of microtubule damaging agent, arresting cell cycle progression at mitotic phase and inducing apoptosis through the activation of p53.  相似文献   

10.
Formononetin is one of the main components of red clover plants, and is considered as a typical phytoestrogen. This study further investigated that formononetin inactivated IGF1/IGF1R-PI3K/Akt pathways and decreased cyclin D1 mRNA and protein expression in human breast cancer cells in vitro and in vivo. MCF-7 cells were treated with different concentrations of formononetin. The proliferation of the cells treated with formononetin was tested by MTT assay. The cell cycle in the treated cells was examined by flow cytometry. The levels of p-IGF-1?R, p-Akt, and cyclin D1 protein expression and cyclin D1?mRNA expression in the treated cells were determined by Western blot and RT-PCR, respectively. In addition, the antitumor activity of formononetin was evaluated in nude mice bearing orthotopic tumor implants. Compared with the control, formononetin inhibited the proliferation of MCF-7 cells and effectively induced cell cycle arrest. The levels of p-IGF-1?R, p-Akt, cyclin D1 protein expression, and cyclin D1?mRNA expression were also downregulated. On the other hand, formononetin also prevented the tumor growth of human breast cancer cells in nude mouse xenografts. These results show that formononetin causes cell cycle arrest at the G0/G1 phase by inactivating IGF1/IGF1R-PI3K/Akt pathways and decreasing cyclin D1?mRNA and protein expression, indicating the use of formononetin in the prevention of breast cancer carcinogenesis.  相似文献   

11.
Rheumatoid arthritis (RA) is characterized by persistent joint synovial tissue inflammation. Leflunomide is an immunomodulatory agent that has been approved for treatment of active RA. In the past few years, uses other than RA treatment have appeared. Leflunomide has been reported to show antitumor potential through inhibition of cancer cell proliferation. We thus tested the antiproliferative potential of leflunomide on HEL and K562 erythroleukemia cells. The findings summarized in this report demonstrate for the first time that low dose leflunomide prolonged survival and reduced apoptosis induced by several anticancer agents in erythroleukemia cells. We showed that in treated cells, leflunomide reduced the signalling pathways involved in promoting apoptosis by reducing p38 MAPK and JNK basal activity. On the other hand, leflunomide transiently activated the ERK signalling pathway and induced a sustained activation of Akt. We also showed that leflunomide reduced caspase-3 activity and DNA fragmentation induced by anticancer agents. By using an inhibitory strategy, we showed that inhibition of Akt activation but not ERK abolished the protective effect of leflunomide. Thus our findings suggested that leflunomide reduced apoptosis induced by anticancer agents through PI3K/Akt signalling activation.  相似文献   

12.
In vitro expansion of neural stem cells (NSC) lentivirally transduced with human BDNF may serve as better cellular source for replacing degenerating neurons in disease, trauma and toxic insults. In this study, we evaluate the functional role of forced BDNF expression by means of NSC (M3GFP‐BDNF) obtained from cerebral cortex of 1‐day‐old mice respect to NSC‐control (M3GFP). We find that M3GFP‐BDNF induced to differentiate significantly accumulate BDNF and undergone to high potassium‐mediated depolarization, show rapid BDNF recycle and activation of Trk receptors signaling. Differentiated M3GFP‐BDNF exhibit neurons and oligodendrocytes with extended processes although quantitative analyses of NSC‐derived cell lineages show none statistical significance between both cell populations. Moreover, those cells show a significant induction of neuronal and oligodendroglial markers by RT‐PCR and Western blot respect to M3GFP, such as βIII‐Tubulin, microtubule associated protein 2 (MAP2), neurofilaments heavy (NF‐H), oligodendroglial myelin glycoprotein (OMG) and some molecules involved in glutamatergic synapse maturation, such as receptors tyrosine kinases (TRKs), post‐synaptic density (PSD‐95) and N‐methyl‐D ‐aspartate receptors 2 A/B (NMDA2A/B). After treatment with the neurotoxicant trimethyltin (TMT), differentiated M3GFP‐BDNF exhibit an attenuation of cellular damage which correlates with a significant activation of MAPK and PI3K/Akt signaling and delayed activation of death signals, while on M3GFP, TMT induces a significant reduction of cell survival, neuronal differentiation and concomitant earlier activation of cleaved caspase‐3. We demonstrate that overexpression of BDNF firmly regulate cell survival and differentiation of NSC and protects differentiated NSC against TMT‐induced neurotoxicity through the PI3K/Akt and MAPK signaling pathways. J. Cell. Physiol. 224: 710–721, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
One of the requisite of cancer chemopreventive agent is elimination of damaged or malignant cells through cell cycle inhibition or induction of apoptosis without affecting normal cells. In this study, employing normal human prostate epithelial cells (PrEC), virally transformed normal human prostate epithelial cells (PZ-HPV-7), and human prostate cancer cells (LNCaP, DU145, and PC-3), we evaluated the growth-inhibitory and apoptotic effects of tocotrienol-rich fraction (TRF) extracted from palm oil. TRF treatment to PrEC and PZ-HPV-7 resulted in almost identical growth-inhibitory responses of low magnitude. In sharp contrast, TRF treatment resulted in significant decreases in cell viability and colony formation in all three prostate cancer cell lines. The IC(50) values after 24h TRF treatment in LNCaP, PC-3, and DU145 cells were in the order 16.5, 17.5, and 22.0 microg/ml. TRF treatment resulted in significant apoptosis in all the cell lines as evident from (i) DNA fragmentation, (ii) fluorescence microscopy, and (iii) cell death detection ELISA, whereas the PrEC and PZ-HPV-7 cells did not undergo apoptosis, but showed modestly decreased cell viability only at a high dose of 80 microg/ml. In cell cycle analysis, TRF (10-40 microg/ml) resulted in a dose-dependent G0/G1 phase arrest and sub G1 accumulation in all three cancer cell lines but not in PZ-HPV-7 cells. These results suggest that the palm oil derivative TRF is capable of selectively inhibiting cellular proliferation and accelerating apoptotic events in prostate cancer cells. TRF offers significant promise as a chemopreventive and/or therapeutic agent against prostate cancer.  相似文献   

14.
Epigallocatechin-3-gallate (EGCG), the major polyphenolic constituent present in green tea, is a promising chemopreventive agent. We recently showed that green tea polyphenols exert remarkable preventive effects against prostate cancer in a mouse model and many of these effects are mediated by the ability of polyphenols to induce apoptosis in cancer cells [Proc. Natl. Acad. Sci. USA 98 (2001) 10350]. Earlier, we showed that EGCG causes a G0/G1 phase cell cycle arrest and apoptosis of both androgen-sensitive LNCaP and androgen-insensitive DU145 human prostate carcinoma cells, irrespective of p53 status [Toxicol. Appl. Pharmacol. 164 (2000) 82]. Here, we provide molecular understanding of this effect. We tested a hypothesis that EGCG-mediated cell cycle dysregulation and apoptosis is mediated via modulation of cyclin kinase inhibitor (cki)-cyclin-cyclin-dependent kinase (cdk) machinery. As shown by immunoblot analysis, EGCG treatment of LNCaP and DU145 cells resulted in significant dose- and time-dependent (i) upregulation of the protein expression of WAF1/p21, KIP1/p27, INK4a/p16, and INK4c/p18, (ii) down-modulation of the protein expression of cyclin D1, cyclin E, cdk2, cdk4, and cdk6, but not of cyclin D2, (iii) increase in the binding of cyclin D1 toward WAF1/p21 and KIP1/p27, and (iv) decrease in the binding of cyclin E toward cdk2. Taken together, our results suggest that EGCG causes an induction of G1 phase ckis, which inhibits the cyclin-cdk complexes operative in the G0/G1 phase of the cell cycle, thereby causing an arrest, which may be an irreversible process ultimately leading to apoptotic cell death. This is the first systematic study showing the involvement of each component of cdk inhibitor-cyclin-cdk machinery during cell cycle arrest and apoptosis of human prostate carcinoma cells by EGCG.  相似文献   

15.
The Escherichia coli verotoxin 1 (VT1) inhibits protein synthesis, cell proliferation, and damages endothelial cell in the hemolytic uremic syndrome. VT1 can specifically bind and act on endothelial cells as well as on many tumor cells because these cells express its high affinity receptor, globotriaosylceramide. This indicates that VT1 may have both antiangiogenic and antineoplastic activities. We investigated this potential of VT1 by incubating several colon cancer cell lines with VT1 for different time periods and found that HCT116 cells were especially sensitive to VT1. A combination of morphological studies, flow cytometry, DNA laddering and annexin V staining confirmed that VT1 irreversibly arrests these cells in S phase within 24 h and prolonged incubation triggers DNA fragmentation. Concomitant to the activation of the S phase checkpoint, increased levels of mRNA and proteins of growth arrest and DNA damage-inducible gene family that include GADD34, GADD45alpha, and GADD45beta was observed. Interestingly, no significant changes in expression of key cell cycle related proteins such as cdk2, cdk4, p21, p27, and p53 was found during the S phase arrest and apoptosis. We therefore suggest that GADD proteins might play an important role in VT1 induced S phase arrest and programmed cell death in HCT116 cells.  相似文献   

16.
Luteolin-7-O-glucoside (LUT7G), a flavone subclass of flavonoids, has been found to increase anti-oxidant and anti-inflammatory activity, as well as cytotoxic effects. However, the mechanism of how LUT7G induces apoptosis and regulates cell cycles remains poorly understood. In this study, we examined the effects of LUT7G on the growth inhibition of tumors, cell cycle arrest, induction of ROS generation, and the involved signaling pathway in human hepatocarcinoma HepG2 cells. The proliferation of HepG2 cells was decreased by LUT7G in a dose-dependent manner. The growth inhibition was due primarily to the G2/M phase arrest and ROS generation. Moreover, the phosphorylation of JNK was increased by LUT7G. These results suggest that the anti-proliferative effect of LUT7G on HepG2 is associated with G2/M phase cell cycle arrest by JNK activation. [BMB Reports 2013; 46(12): 611-616]  相似文献   

17.
Deoxyelephantopin (ESD), a naturally occurring sesquiterpene lactone present in the Chinese medicinal herb, Elephantopus scaber L. exerted anticancer effects on various cultured cancer cells. However, the cellular mechanisms by which it controls the development of the cancer cells are unavailable, particularly the human nasopharyngeal cancer CNE cells. In this study, we found that ESD inhibited the CNE cell proliferation. Cell cycle arrest in S and G2/M phases was also found. Western blotting analysis showed that modulation of cell cycle regulatory proteins was responsible for the ESD-induced cell cycle arrest. Besides, ESD also triggered apoptosis in CNE cells. Dysfunction in mitochondria was found to be associated with the ESD-induced apoptosis as evidenced by the loss of mitochondrial membrane potential (ΔΨm), the translocation of cytochrome c, and the regulation of Bcl-2 family proteins. Despite the Western blotting analysis showed that both intrinsic and extrinsic apoptotic pathways (cleavage of caspases-3, -7, -8, -9, and -10) were triggered in the ESD-induced apoptosis, additional analysis also showed that the induction of apoptosis could be achieved by the caspase-independent manner. Besides, Akt, ERK and JNK pathways were found to involve in ESD-induced cell death. Overall, our findings provided the first evidence that ESD induced cell cycle arrest, and apoptosis in CNE cells. ESD could be a potential chemotherapeutic agent in the treatment of nasopharyngeal cancer (NPC).  相似文献   

18.
We recently established that asparanin A, a steroidal saponin extracted from Asparagus officinalis L., is an active cytotoxic component. The molecular mechanisms by which asparanin A exerts its cytotoxic activity are currently unknown. In this study, we show that asparanin A induces G2/M phase arrest and apoptosis in human hepatocellular carcinoma HepG2 cells. Following treatment of HepG2 cells with asparanin A, cell cycle-related proteins such as cyclin A, Cdk1 and Cdk4 were down-regulated, while p21WAF1/Cip1 and p-Cdk1 (Thr14/Tyr15) were up-regulated. Additionally, we observed poly (ADP-ribose) polymerase (PARP) cleavage and activation of caspase-3, caspase-8 and caspase-9. The expression ratio of Bax/Bcl-2 was increased in the treated cells, where Bax was also up-regulated. We also found that the expression of p53, a modulator of p21WAF1/Cip1 and Bax, was not affected in asparanin A-treated cells. Collectively, our findings demonstrate that asparanin A induces cell cycle arrest and triggers apoptosis via a p53-independent manner in HepG2 cells. These data indicate that asparanin A shows promise as a preventive and/or therapeutic agent against human hepatoma.  相似文献   

19.
Diallyl disulfide (DADS) is the most prevalent oil‐soluble sulfur compound in garlic and inhibits cell proliferation in many cancer cell lines. Here we examined DADS cytotoxicity in a redox‐mediated process, involving reactive oxygen species (ROS) production. In the present study, p53‐independent cell cycle arrest at G2/M phase was observed with DADS treatment, along with time‐dependent increase of cyclin B1. In addition, apoptosis was also observed upon 24‐h DADS treatment accompanied by activation of p53. In HCT‐116 cells, DADS application induced a dose‐dependent increase and time‐dependent changes in ROS production. Scavenging of DADS‐induced ROS by N‐acetyl cysteine or reduced glutathione inhibited cell cycle arrest, apoptosis and p53 activation by DADS. These results suggest that ROS trigger the DADS‐induced cell cycle arrest and apoptosis and that ROS are involved in stress‐induced signaling upstream of p53 activation. Transfection of p53 small interfering RNA prevents the accumulation of cleaved poly(ADP‐ribose) polymerase and sub‐G1 cell population by 65% and 35%, respectively. Moreover, DADS‐induced apoptosis was also prevented by treatment with oligomycin, which is known to prevent p53‐dependent apoptosis by reducing ROS levels in mitochondria. These results suggest that mitochondrial ROS may serve as second messengers in DADS‐induced apoptosis, which requires activation of p53. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:71–79, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20266  相似文献   

20.
Recent developments in the literature have demonstrated that curcumin exhibit antioxidant properties supporting its anti-inflammatory, chemopreventive and antitumoral activities against aggressive and recurrent cancers. Despite the valuable findings of curcumin against different cancer cells, the clinical use of curcumin in cancer treatment is limited due to its extremely low aqueous solubility and instability, which lead to poor in vivo bioavailability and limited therapeutic effects. We therefore focused in the present study to evaluate the anti-tumor potential of curcumin analogues on the human breast carcinoma cell lines MDA-MB-231 and MCF-7, as well as their effects on non-tumorigenic normal breast epithelial cells (MCF-10). The IC50 values of curcumin analogue J1 in these cancer cell lines were determined to be 5 ng/ml and 10 ng/ml, in MDA-MB-231 and MCF-7 cells respectively. Interestingly, at these concentrations, the J1 did not affect the viability of non-tumorigenic normal breast epithelial cells MCF-10. Furthermore, we found that J1 strongly induced growth arrest of these cancer cells by modulating the mitochondrial membrane potentials without significant effect on normal MCF-10 cells using JC-1 staining and flow cytometry analysis. Using annexin-V/PI double staining assay followed by flow cytometry analysis, we found that J1 robustly enhanced the induction of apoptosis by increasing the activity of caspases in MDA-MB-231 and MCF-7 cancer cells. In addition, treatment of breast cancer cells with J1 revealed that, in contrast to the expression of cyclin B1, this curcumin analogue vigorously decreased the expression of cyclin A, CDK2 and cyclin E and subsequently sensitized tumor cells to cell cycle arrest. Most importantly, the phosphorylation of AKT, mTOR and PKC-theta in J1-treated cancer cells was markedly decreased and hence affecting the survival of these cancer cells. Most interestingly, J1-treated cancer cells exhibited a significant inhibition in the activation of RhoA followed by reduction in actin polymerization and cytoskeletal rearrangement in response to CXCL12. Our data reveal the therapeutic potential of the curcumin analogue J1 and the underlying mechanisms to fight breast cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号