首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Deoxyelephantopin (ESD), a naturally occurring sesquiterpene lactone present in the Chinese medicinal herb, Elephantopus scaber L. exerted anticancer effects on various cultured cancer cells. However, the cellular mechanisms by which it controls the development of the cancer cells are unavailable, particularly the human nasopharyngeal cancer CNE cells. In this study, we found that ESD inhibited the CNE cell proliferation. Cell cycle arrest in S and G2/M phases was also found. Western blotting analysis showed that modulation of cell cycle regulatory proteins was responsible for the ESD-induced cell cycle arrest. Besides, ESD also triggered apoptosis in CNE cells. Dysfunction in mitochondria was found to be associated with the ESD-induced apoptosis as evidenced by the loss of mitochondrial membrane potential (ΔΨm), the translocation of cytochrome c, and the regulation of Bcl-2 family proteins. Despite the Western blotting analysis showed that both intrinsic and extrinsic apoptotic pathways (cleavage of caspases-3, -7, -8, -9, and -10) were triggered in the ESD-induced apoptosis, additional analysis also showed that the induction of apoptosis could be achieved by the caspase-independent manner. Besides, Akt, ERK and JNK pathways were found to involve in ESD-induced cell death. Overall, our findings provided the first evidence that ESD induced cell cycle arrest, and apoptosis in CNE cells. ESD could be a potential chemotherapeutic agent in the treatment of nasopharyngeal cancer (NPC).  相似文献   

2.
Liu Y  Luo W 《Molecules and cells》2012,33(5):517-524
Betulinic acid (BetA) is an effective and potential anticancer chemical derived from plants. BetA can kill a broad range of tumor cell lines, but has no effect on untransformed cells. The chemical also kills melanoma, leukemia, lung, colon, breast, prostate and ovarian cancer cells via induction of apoptosis, which depends on caspase activation. However, no reports are yet available about the effects of BetA on nasopharyngeal carcinoma (NPC), a widely spread malignancy in the world, especially in East Asia. In this study, we first showed that BetA can effectively kill CNE2 cells, a cell line derived from NPC. BetA-induced CNE2 apoptosis was characterized by typical apoptosis hallmarks: caspase activation, DNA fragmentation, and cytochrome c release. Overexpression of Bcl-2 and Bcl-xL could partially prevent apoptosis caused by BetA. Moreover, Bax was not activated during the induction of apoptosis. Bax/Bak knockdown and wild-type CNE2 cells showed the same kinetics of cytochrome c release. We then showed that BetA may impair mitochondrial permeability transition pores (mPTPs), which may partially contribute to cytochrome c release. These observations suggest that BetA may serve as a potent and effective anticancer agent in NPC treatment. Further exploration of the mechanism of action of BetA could yield novel breakthroughs in anti-cancer drug discovery.  相似文献   

3.
Radiation resistance and recurrent have become the major factors resulting in poor prognosis in the clinical treatment of patients with nasopharyngeal carcinoma (NPC). New strategies to enhance the efficacy of radiotherapy have been focused on the development of radiosensitizers and searching for directly targets that modulated tumor radiosensitivity. A novel potential radiosensitizer 1,8-Dihydroxy −3-(2′-(4″-methylpiperazin-1″-yl) ethyl-9,10-anthraquinone −3-carboxylate (RP-4) was designed and synthesized based on molecular docking technology, which was expected to regulate the radiosensitivity of tumor cells through targeting Rac1. In order to assess the radiosensitization activity of RP-4 on NPC cells, the highly differentiated CNE1 and poorly differentiated CNE2 cells NPC lines were employed. According to the results, RP-4 showed higher binding affinity toward the interaction with Rac1 than lead compounds. We found that RP-4 could inhibit cell viability and proliferation in CNE1 and CNE2 cells and significantly induced apoptosis after non-toxic concentration of RP-4 combined with 2Gy irradiation. RP-4 could effectively modulated the radiosensitivity both CNE1 cells and CNE2 cells through activating Rac1/NADPH signaling pathway and its downstream JNK/AP-1 pathway. What's more, Rac1/NADPH signaling pathway were significantly activated in Rac1-overexpressed CNE1 and CNE2 cells after treated with RP-4. Taken together, Rac1 and its downstream pathway may probably be the direct targets of RP-4 in regulating radiosensitivity of NPC cells, our finding provided a novel strategy for the development of therapeutic agents in response to tumorous radiation resistance.  相似文献   

4.
STGC3 is a novel candidate tumor suppressor gene that was found to be associated with nasopharyngeal carcinoma (NPC) via the cDNA cloning and RACE processes. The biological function of the STGC3 protein and its expression level in nasopharyngeal carcinoma remain unknown. This study aimed to evaluate the STGC3 protein expression level in NPC and to investigate the inhibitory function of STGC3 as a candidate tumor suppressor gene. We assessed the expression of the STGC3 protein in NPC biopsies and normal control specimens via Western blot and immunohistochemical analysis. The expression of STGC3 as induced by doxycycline (Dox) via a tetracycline (Tet)-regulated system in human nasopharyngeal carcinoma cell line CNE2 was also established, and the effect of STGC3 restoration on the biological behavior of CNE2 was observed. A reduced level of STGC3 expression (0.978 ± 0.213 versus 0.324 ± 0.185, P < 0.05) was detected in NPC versus normal nasopharyngeal tissue by Western blot assay. Immunohistochemical assays for STGC3 detected positive staining in the nuclei and cytoplasm of epithelial cells, and the positive expression rate in NPC, 8 of 21 (38%), was lower than that in normal nasopharynx samples, 16 of 22 (72%). After STGC3 expression was restored, the growth capacity and clone formation potential of CNE2 cells in soft agar were significantly suppressed, and the cell percentage in G0/G1 phase increased, while the percentage of cells entering the S and G2 phases decreased. This indicates that an abnormality in STGC3 expression is associated with nasopharyngeal carcinogenesis and that it may play an important role in controlling cell growth and regulating the cell cycle.  相似文献   

5.
GL331, a new homologue of etoposide (VP-16), was developed to cope with the multiple drug resistance occurring in certain malignant tumours. We previously indicated that GL331, like VP-16 and other major cancer chemotherapeutic agents, induced apoptosis in a variety of human cancer cell lines including nasopharyngeal carcinoma (NPC) NPC-TW01 and NPC-TW04 cells. In this study, we further explored the effect of GL331 on the cell cycle progression of NPC cells. Flow cytometric analysis of DNA content was first used to demonstrate the ability of GL331 to induce cell growth arrest at S-G2 phase in most NPC cells. Besides acting as a topoisomerase II inhibitor, GL331 inhibited cellular cyclin B1-associated CDC 2 kinase activity 6 h after treatment, accounting partly at least for its induction of the cell cycle arrest. As with cyclin A, D1, E, CDK 2 and PCNA, the levels of cyclin B1 and CDC 2 proteins were not changed after GL331 treatment; however, the ability to form complex between cyclin B1 and CDC 2 was obviously affected in GL331-treated NPC cells, which associates with the inhibition of cyclin B1/CDC 2 kinase activity elicited by GL331. These data could provide more principal bases for future therapeutic application of this potential anti-cancer agent.  相似文献   

6.
Oridonin was reported to induce L929 cell apoptosis via ROS-mediated mitochondrial and ERK pathways; however, the precise mechanisms by which oridonin induces cell death remain unclear. Herein, we found that oridonin treatment induced an increase in G2/M phase cell percentage. And, G2/M phase arrest was associated with down-regulation of cell cycle related cdc2, cdc25c and cyclinB levels, as well as up-regulation of p21 and p-cdc2 levels. In addition, we discovered that interruption of p53 activation decreased oridonin-induced apoptosis, and blocking ERK by specific inhibitors or siRNA suppressed oridonin-induced p53 activation. Moreover, inhibition of PTK, protein kinase C, Ras, Raf or JNK activation increased oridonin-induced apoptosis. Also, the level of Ras, Raf or JNK was down-regulated by oridonin, and the inhibition of PTK, Ras, Raf activation decreased p-JNK level. In conclusion, oridonin induces L929 cell G2/M arrest and apoptosis, which is regulated by promoting ERK-p53 apoptotic pathway and suppressing PTK-mediated survival pathway.  相似文献   

7.
Malignant mesothelioma is an aggressive tumor of serosal surfaces, which is refractory to current treatment options. Arsenic trioxide (As2O3) is used clinically to treat acute promyelocytic leukemia, and also to inhibit proliferation of several solid tumors including hepatoma, esophageal, and gastric cancer in vitro. Here we found that As2O3 inhibited cell viability of a mesothelioma cell line, NCI‐H2052. As2O3 induced apoptosis of NCI‐H2052 cells, which was accompanied by activation of c‐Jun NH2‐terminal kinase (JNK)1/2, extracellular signal‐regulated kinase (ERK)1/2, and caspase‐3. zVAD‐fmk, a broad‐spectrum caspase inhibitor, inhibited As2O3‐induced apoptosis and activation of caspase‐3, but not that of JNK1/2 and ERK1/2. Small interfering RNAs (siRNAs) targeting JNK1/2 suppressed As2O3‐induced caspase‐3 activation and apoptosis, indicating that JNK1/2 regulate As2O3‐induced apoptosis though caspase cascade. Furthermore, JNK1 siRNA abrogated As2O3‐induced JNK2 phosphorylation and JNK2 siRNA abrogated As2O3‐induced JNK1 phosphorylation, suggesting that JNK1 and JNK2 interact with each other. Moreover, JNK1 siRNA, but not JNK2 siRNA, abrogated As2O3‐induced ERK1/2 phosphorylation. JNK2 siRNA together with PD98059, a specific MAPK/ERK kinase inhibitor, suppressed As2O3‐induced apoptosis more significantly than JNK2 siRNA alone. These results indicated that As2O3 induces apoptosis of NCI‐H2052 cells mainly through JNK1/2 activation, and that ERK1/2 is involved in As2O3‐induced apoptosis when JNK1/2 are inactivated. J. Cell. Physiol. 226: 762–768, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
The radioresistance of tumor cells remains a major cause of treatment failure in nasopharyngeal carcinoma (NPC). Recently, several reports have highlighted the importance of epigenetic changes in radiation-induced responses. Here, we investigated whether the demethylating agent 5-azacytidine (5-azaC) enhances the radiosensitivity of NPC cells. The NPC cell lines CNE2 and SUNE1 were treated with 1 μmol/L 5-azaC for 24 h before irradiation (IR); clonogenic survival was then assessed. Tumor growth was investigated in a mouse xenograft model in vivo. The apoptosis, cell cycle progression and DNA damage repair were examined using flow cytometry, immunofluorescent staining and western blotting. Promoter methylation and the expression of four genes epigenetically silenced during the development of NPC were evaluated by pyrosequencing and real-time PCR. We found that pretreatment with 5-azaC significantly decreased clonogenic survival after IR compared to IR alone; the sensitivity-enhancement ratio of 5-azaC was 1.4 and 1.2 for CNE2 and SUNE1 cells, respectively. The combined administration of 5-azaC and IR significantly inhibited tumor growth in the mouse xenograft model, and enhanced radiation-induced apoptosis in vitro compared to 5-azaC alone or IR alone. 5-AzaC also decreased promoter methylation and upregulated the expression of genes which are epigenetically silenced both in vitro and in vivo in NPC. Thus, 5-azaC enhance the radiosensitivity of both the CNE2 and SUNE1 cell lines, possibly by altering DNA methylation levels and increasing the ability of irradiated cells to undergo apoptosis. The use of 5-azaC combined with IR maybe represent an attractive strategy for the treatment of NPC.  相似文献   

9.
Radiation and cisplatin-based chemotherapy are major treatments for nasopharyngeal carcinoma (NPC). However, a major impediment for further improving the cure rate is the development of treatment resistance with an undetermined molecular mechanism in metastatic NPC cells. Our established, highly metastatic NPC cells have been reported to be more resistant to cisplatin chemotherapy. In the present study, we found that Ras association domain family member 6 (RASSF6) was downregulated in highly metastatic cells but upregulated in low metastatic cells in comparison to their parental cell line. Ectopic-expression of RASSF6 enhanced the sensitivity of highly metastatic NPC cells to cisplatin or radiation by enhancing apoptosis. RASSF6 depletion conversely reduced treatment sensitivity by decreasing the apoptosis rate. Over-expression of RASSF6 in highly metastatic NPC cells could enhance the phosphorylation of JNK when exposed to cisplatin or radiation treatment, while knocking down RASSF6 in low metastatic NPC cells could reduce the level of phospho-JNK when exposed to the same treatments. The activation of JNK signaling by RASSF6 and its subsequent sensitivity to apoptosis in NPC cells could be inhibited by applying the JNK inhibitor SP600125. In conclusion, the downregulation of RASSF6 in highly metastatic NPC cells contributed to their treatment resistance, and over-expression of RASSF6 conferred treatment sensitivity to highly metastatic NPC cells by activating JNK signaling. RASSF6 could be a valuable molecular marker for identifying sensitive metastatic NPC tumors during cisplatin treatment or radiotherapy.  相似文献   

10.
EB病毒(EBV)编码小RNA(EBERs,包括EBER1和EBER2)的致癌作用已在多种细胞系中得到证实,我们前期研究发现在EBER2基因发生6处突变的EB-8m变异型可能与鼻咽癌(NPC)的发生相关。本研究探讨变异型EBER2对NPC细胞增殖和凋亡的影响,以进一步明确EBER2基因变异在NPC发生中的作用。分别以B95-8原型和EB-8m变异型EBER2稳定转染EBV阴性NPC细胞系,MTT法和平板克隆检测细胞增殖,流式细胞仪检测细胞凋亡。与转染原型EBER2细胞及转染载体的对照细胞比较,转染变异型EBER2细胞的MTT吸光度值和平板克隆形成率增高,细胞凋亡率降低(P均小于0.05),原型和对照之间细胞增殖无差异,但原型的细胞凋亡率亦低于对照(P0.05)。上述结果表明,EB-8m变异型EBER2可通过提高NPC细胞增殖及抗凋亡能力而增强其致癌作用。  相似文献   

11.
12.
2-Methoxyestradiol (2-ME), an endogenous derivative of 17β-estradiol, has been reported to elicit antiproliferative responses in various tumors. In this study, we investigated the effects of 2-ME on cell viability, proliferation, cell cycle, and apoptosis in human urothelial carcinoma (UC) cell lines. We used two high-grade human bladder UC cell lines (NTUB1 and T24). After treatment with 2-ME, the cell viability and apoptosis were measured by MTT assay and flow cytometry (fluorescence-activated cell sorting), with annexin V-FITC staining and propidium iodide (PI) labeling. DNA fragmentation was analyzed by agarose gel electrophoresis. Flow cytometry with PI labeling was used for the cell cycle analyses. The protein levels of caspase activations, poly (ADP-ribose) polymerase (PARP) cleavage, phospho-histone H2A.X, phospho-Bad, and cell cycle regulatory molecules were measured by Western blot. The effects of the drug combinations were analyzed using the computer software, CalcuSyn. We demonstrated that 2-ME effectively induces dose-dependent cytotoxicity and apoptosis in human UC cells after 24 h exposure. DNA fragmentation, PARP cleavage, and caspase-3, 7, 8, 9 activations can be observed with 2-ME-induced apoptosis. The decreased phospho-Bad (Ser136 and Ser155) and mitotic arrest of the cell cycle in the process of apoptosis after 2-ME treatment was remarkable. In response to mitotic arrest, the mitotic forms of cdc25C, phospho-cdc2, cyclin B1, and phospho-histone H3 (Ser10) were activated. In combination with arsenic trioxide (As2O3), 2-ME elicited synergistic cytotoxicity (combination index <1) in UC cells. We concluded that 2-ME significantly induces apoptosis through decreased phospho-Bad and arrests bladder UC cells at the mitotic phase. The synergistic antitumor effect with As2O3 provides a novel implication in clinical treatment of UC.  相似文献   

13.
Phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin inhibitor (mTOR) pathway is often constitutively activated in human tumor cells and thus has been considered as a promising drug target. To ascertain a therapeutical approach of nasopharyngeal carcinoma (NPC), we hypothesized NVP-BEZ235, a novel and potent imidazo[4,5-c] quinolone derivative, that dually inhibits both PI3K and mTOR kinases activities, had antitumor activity in NPC. Expectedly, we found that NVP-BEZ235 selectively inhibited proliferation of NPC cells rather than normal nasopharyngeal cells using MTT assay. In NPC cell lines, with the extended exposure, NVP-BEZ235 selectively inhibited proliferation of NPC cells harboring PIK3CA mutation, compared to cells with wild-type PIK3CA. Furthermore, exposure of NPC cells to NVP-BEZ235 resulted in G1 growth arrest by Propidium iodide uptake assay, reduction of cyclin D1and CDK4, and increased levels of P27 and P21 by Western blotting, but negligible apoptosis. Moreover, we found that cisplatin (CDDP) activated PI3K/AKT and mTORC1 pathways and NVP-BEZ235 alleviated the activation by CDDP through dually targeting PI3K and mTOR kinases. Also, NVP-BEZ235 combining with CDDP synergistically inhibited proliferation and induced apoptosis in NPC cells. In CNE2 and HONE1 nude mice xenograft models, orally NVP-BEZ235 efficiently attenuated tumor growth with no obvious toxicity. In combination with NVP-BEZ235 and CDDP, there was dramatic synergy in shrinking tumor volumes and inducing apoptosis through increasing Noxa, Bax and decreasing Mcl-1, Bcl-2. Based on the above results, NVP-BEZ235, which has entered phase I/II clinical trials in patients with advanced solid tumors, has a potential as a monotherapy or in combination with CDDP for NPC treatment.  相似文献   

14.
Nasopharyngeal carcinoma (NPC) is a malignancy with high incidence in Southern China and South-East Asia. Etiology studies indicate that chemical carcinogen promoters, such as 12-O-tetradecanoylphorbol-13-acetate (TPA), are important factors causing NPC development. However, the mechanism of the TPA effect on NPC remains unclear. In the present study, cells from a poorly differentiated squamous cell carcinoma NPC cell line, CNE2, were stimulated by TPA and proteomics technology was carried out to find protein discrepancies between control and TPA-treated cells. Results revealed that TPA treatment in CNE2 cells could upregulate the expression of ““““triosephosphate isomerase““““ and ““““14-3-3 protein sigma““““ and downregulate the expression of ““““reticulocalbin 1 precursor““““, ““““nucleophosmin““““, ““““mitochondrial matrix protein pl precursor““““, and ““““stathmin““““. The changes in the expression of these genes suggested that TPA induced CNE2 cells to antiproliferation and to apoptosis, which was confirmed by subsequent apoptosis detection. Therefore, the effects of TPA on nasopharyngeal carcinoma cells were distinct from the effects on primary epithelial cells and we suggest reasons for these differences.  相似文献   

15.
Paclitaxel (Taxol) is a microtubule-interfering agent that induced persistent and transient G2/M arrest before apoptosis in human nasopharyngeal carcinoma (NPC) cells at high and low concentrations, respectively. In this study, we intended to explore the underlying molecular events and found that cellular cyclin B1/CDC 2 kinase activity was increased and persisted for >6 h upon paclitaxel treatment both at high and low concentrations. Furthermore, activation of MAD 2 checkprotein could account for the loss of cyclin B1 ubiquitination and the persistence of cyclin B1/CDC 2 activation in the cases. To investigate the involvement of cyclin B1 and MAD 2 activation in paclitaxel-induced apoptosis, we introduced affinity-purified anti-cyclin B1 and MAD 2 antibodies into NPC cells by electroporation before the further paclitaxel treatment. The antibodies against cyclin B1 and MAD 2 indeed attenuated paclitaxel-induced cytotoxicity and DNA fragmentation. Our study suggests that activation of cyclin B1/CDC 2 and MAD 2 were the M-phase events required for paclitaxel-induced apoptosis in NPC cells. The dys-regulated cyclin B1/CDC 2 activation could enhance the prometaphase progression, but activation of MAD 2 rendered cells inable to exit from the metaphase. Under this circumstance, cells were probably going to mitotic catastrophe and ultimately, destined to apoptosis.  相似文献   

16.
Nedaplatin, a cisplatin analog, was developed to reduce the toxicity of cisplatin, whereas it can be cross-resistant with cisplatin in some circumstances. This study aimed to investigate the role of autophagy in nedaplatin induced cell death in cisplatin-resistant nasopharyngeal carcinoma cells. Here, we showed that HNE1/DDP and CNE2/DDP cells were resistant to nedaplatin-induced cell death with reduced apoptotic activity. Nedaplatin treatment resulted in autophagosome accumulation and increased expression of LC3-II, indicating the induction of autophagy by nedaplatin in HNE1/DDP and CNE2/DDP cells. Inhibition of autophagy by Bafilomycin A1 (Baf A1) and 3-Methyladenine (3-MA) remarkably enhanced the antitumor efficacy of nedaplatin in HNE1/DDP and CNE2/DDP cells, suggesting that the resistance to nedaplatin-induced cell death was caused by enhanced autophagy in nedaplatin-resistant NPC cells. Additionally, Baf A1 enhanced reactive oxygen species (ROS) generation and apoptosis induced by nedaplatin in HNE1/DDP cells. Mechanistically, nedaplatin treatment caused activation of ERK1/2 and suppression of Akt/mTOR signaling pathways. While inhibition of ERK1/2 by MEK1/2 inhibitor, U0126, could reduce the expression of LC3-II in nedaplatin-resistant NPC cells. Furthermore, suppression of ROS could inhibit nedaplatin-induced ERK activation in HNE1/DDP cells, indicating that ROS and ERK were involved in nedaplatin-induced autophagy. Together, these findings suggested that autophagy played a cytoprotective role in nedaplatin-induced cytotoxicity of HNE1/DDP and CNE2/DDP cells. Furthermore, our results highlighted a potential approach to restore the sensitivity of cisplatin-resistant nasopharyngeal cancer cells to nedaplatin in combination with autophagy inhibitors.  相似文献   

17.
Standardized extract from the leaves of the Ginkgo biloba tree, labeled EGb761, is one of the most popular herbal supplements, taken for its multivalent properties. In this study, dosage effects of EGb761 on hydrogen peroxide (H2O2)-induced apoptosis of human neuroblastoma SH-SY5Y cells were investigated. It was found that H2O2-induced apoptotic cell death in SH-SY5Y cells, which was revealed in DNA fragmentation, mitochondrial membrane potential depolarization, and activation of Akt, c-Jun N-terminal kinases (JNK) and caspase 3. Low doses of EGb761 (50–100 μg/ml) inhibited H2O2-induced cell apoptosis via inactivation of Akt, JNK and caspase 3 while high doses of EGb761 (250–500 μg/ml) enhanced H2O2 toxicities via inactivation of Akt and enhancement of activation of JNK and caspase 3. Additional experiments revealed that H2O2 decreased intracellular GSH content, which was also inhibited by low concentrations of EGb761 but enhanced after high concentrations of EGb761 treatment. This further suggests to us that dosage effects of EGb761 on apoptotic signaling proteins may be correlated with regulation of cell redox state. Therefore, treatment dosage may be one of the vital factors that determine the specific action of EGb761 on oxidative stress-induced cell apoptosis. To understand the mechanisms of dosage effects of EGb761 may have important clinical implications.  相似文献   

18.
We found that the deoxypodophyllotoxin derivative, 2,6-dimethoxy-4-(6-oxo-(5R,5aR,6,8,8aR,9-hexahydrofuro[3′,4′:6,7]naphtho[2,3-d][1,3]dioxol-5-yl)phenyl ((R)-1-amino-4-(methylthio)-1-oxobutan-2-yl)carbamate (DPMA), exhibited superior cytotoxicity compared with etoposide. In this study, we investigated the mechanism of action of DPMA. DPMA exhibited anti-proliferative activity and induced apoptosis in A549 cells in a dose- and time-dependant manner. DPMA inhibited microtubule formation and induced expression of Bax, cleaved caspase-3, p53 and ROS, and inhibited Bcl-2 expression. DPMA also affected cyclinB1, cdc2 and p-cdc2 expression, inducing cell cycle arrest. DPMA also inhibited tube formation of VEGF-induced human umbilical vein endothelial cells. These studies demonstrate that DPMA inhibits p53/cdc2/Bax signaling, thereby inhibiting cell growth/angiogenesis and inducing apoptosis.  相似文献   

19.
The apoptotic initiator caspase‐2 has been implicated in oocyte death, in DNA damage‐ and heat shock‐induced death, and in mitotic catastrophe. We show here that the mitosis‐promoting kinase, cdk1–cyclin B1, suppresses apoptosis upstream of mitochondrial cytochrome c release by phosphorylating caspase‐2 within an evolutionarily conserved sequence at Ser 340. Phosphorylation of this residue, situated in the caspase‐2 interdomain, prevents caspase‐2 activation. S340 was susceptible to phosphatase 1 dephosphorylation, and an interaction between phosphatase 1 and caspase‐2 detected during interphase was lost in mitosis. Expression of S340A non‐phosphorylatable caspase‐2 abrogated mitotic suppression of caspase‐2 and apoptosis in various settings, including oocytes induced to undergo cdk1‐dependent maturation. Moreover, U2OS cells treated with nocodazole were found to undergo mitotic catastrophe more readily when endogenous caspase‐2 was replaced with the S340A mutant to lift mitotic inhibition. These data demonstrate that for apoptotic stimuli transduced by caspase‐2, cell death is prevented during mitosis through the inhibitory phosphorylation of caspase‐2 and suggest that under conditions of mitotic arrest, cdk1–cyclin B1 activity must be overcome for apoptosis to occur.  相似文献   

20.
DNA-PK的活性与鼻咽癌细胞株CNE1/CNE2放射敏感性的关系   总被引:4,自引:0,他引:4  
He YX  Zhong PP  Yan SS  Liu L  Shi HL  Zeng MS  Xia YF 《生理学报》2007,59(4):524-533
本文主要研究DNA依赖的蛋白激酶(DNA-dependent protein kinase,DNA-PK)与鼻咽癌细胞放射敏感性之间的关系。克隆形成实验分析鼻咽癌细胞CNEI/CNE2的剂量存活曲线,Signa TECT DNA-PK试剂盒检测DNA-PK活性,免疫荧光及激光显微共聚焦分析放疗前及放疗后15min、1h、6h、12h和24hCNE1/CNE2细胞中Kus及DNA-PKcs的亚细胞定位,Western blot分析两株细胞中Kus蛋白的表达。结果显示:CNE1细胞在每个剂量点的存活分数均高于CNE2细胞;同时发现放疗前后CNE1细胞中的DNA-PK活性也均高于CNE2细胞,但两株细胞中Ku70/Ku80蛋白表达无明显差异;放疗可使DNA-PK活性增加,且各个检测时间点CNE1细胞增加的幅度大于CNE2细胞;DNA-PK亚基可同时定位于胞浆和胞核,但主要位于胞核,细胞照射后Ku70、Ku80和DNA-PKcs从胞浆转运到胞核。结果表明:DNA-PK活性更高可能是CNE1细胞较CNE2细胞更能抵抗放射的原因之一;放疗所致DNA-PK活性增高可能与DNA-PK亚基从胞浆转运到胞核有关,而与Ku蛋白表达的总量无关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号