首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Proteins that are required for anchorage-independent survival of tumor cells represent attractive targets for therapeutic intervention since this property is believed to be critical for survival of tumor cells displaced from their natural niches. Anchorage-independent survival is induced by growth factor receptor hyperactivation in many cell types. We aimed to identify molecules that critically regulate IGF-1-induced anchorage-independent survival.

Methods and Results

We conducted a high-throughput siRNA screen and identified PTK6 as a critical component of IGF-1 receptor (IGF-1R)-induced anchorage-independent survival of mammary epithelial cells. PTK6 downregulation induces apoptosis of breast and ovarian cancer cells deprived of matrix attachment, whereas its overexpression enhances survival. Reverse-phase protein arrays and subsequent analyses revealed that PTK6 forms a complex with IGF-1R and the adaptor protein IRS-1, and modulates anchorage-independent survival by regulating IGF-1R expression and phosphorylation. PTK6 is highly expressed not only in the previously reported Her2+ breast cancer subtype, but also in high grade ER+, Luminal B tumors and high expression is associated with adverse outcomes.

Conclusions

These findings highlight PTK6 as a critical regulator of anchorage-independent survival of breast and ovarian tumor cells via modulation of IGF-1 receptor signaling, thus supporting PTK6 as a potential therapeutic target for multiple tumor types. The combined genomic and proteomic approaches in this report provide an effective strategy for identifying oncogenes and their mechanism of action.  相似文献   

2.

Background

Studies from our laboratory and others have shown that cysteine-rich 61 (Cyr61) may be involved in tumor proliferation and invasion. In earlier studies, we demonstrated increased insulin-like growth factor-I (IGF-1) is associated with breast tumor formation and poor clinical outcomes. In our current study we have investigated IGF-1 regulation of Cyr61 and whether targeting IGF-1 could inhibit Cyr61 induced tumor growth and proliferation.

Methods

Several ATCC derived normal and breast cancer cell lines were used in this study: MDA-MB231, BT474, MCF-7, and SKBR3. We also tested cells stably transfected in our laboratory with active Akt1 (pAkt; SKBR3/AA and MCF-7/AA) and dominant negative Akt1 (SKBR3/DN and MCF-7/DN). In addition, we used MCF-7 cells transfected with full length Cyr61 (CYA). Monolayer cultures treated with IGF-1 were analyzed for Cyr61 expression by RT-PCR and immunohistochemical staining. Migration assays and MTT based proliferation assays were used to determine invasive characteristics in response to IGF-1/Cyr61 activation.

Results

Cells with activated Akt have increased levels of Cyr61. Conversely, cells with inactive Akt have decreased levels of Cyr61. IGF-1 treatment increased Cyr61 expression significantly and cells with high level of Cyr61 demonstrate increased invasiveness and proliferation. Cyr61 overexpression and activation led to decrease in E-cadherin and decrease in FOXO1. Inhibition of the PI3K and MAPK pathways resulted in significant decrease in invasiveness and proliferation, most notably in the PI3K pathway inhibited cells.

Conclusion

The findings of this study show that IGF-1 upregulates Cyr61 primarily through activation of the Akt-PI3K pathway. IGF-1 induced MAPK plays a partial role. Increase in Cyr61 leads to increase in breast cancer cell growth and invasion. Hence, targeting Cyr61 and associated pathways may offer an opportunity to inhibit IGF-1 mediated Cyr61 induced breast cancer growth and invasion.  相似文献   

3.
4.

Background

Age-dependent neuroimmune modulation following traumatic stress is accompanied by discordant upregulation of Fyn signaling in the frontal cortex, but the mechanistic details of the potential cellular behavior regarding IGF-1R/Fyn have not been established.

Methods

Trans-synaptic IGF-1R signaling during the traumatic stress was comparably examined in wild type, Fyn (?/?) and MOR (?/?) mice. Techniques included primary neuron culture, in vitro kinase activity, immunoprecipitation, Western Blot, sucrose discontinuous centrifugation. Besides that, [3?H] incorporation was used to assay lymphocyte proliferation and NK cell activity.

Results

We demonstrate robust upregulation of synaptic Fyn activity following traumatic stress, with higher amplitude in 2-month mice than that in 1-year counterpart. We also established that the increased Fyn signaling is accompanied by its molecular connection with IGF-1R within the synaptic zone. Detained analysis using Fyn (?/?) and MOR (?/?) mice reveal that IGF-1R/Fyn signaling is governed to a large extent by mu opioid receptor (MOR), and with age-dependent manner; these signaling cascades played a central role in the modulation of lymphocyte proliferation and NK cell activity.

Conclusions

Our data argued for a pivotal role of synaptic IGF-1R/Fyn signaling controlled by MOR downstream signaling cascades were crucial for the age-dependent neuroimmune modulation following traumatic stress. The result here might present a new quality of synaptic cellular communication governing the stress like events and have significant potential for the development of therapeutic approaches designed to minimize the heightened vulnerability during aging.  相似文献   

5.

Background  

Apoptosis occurs frequently for blastocysts cultured in vitro, where conditions are suboptimal to those found in the natural environment. Insulin-like growth factor-1 (IGF-1) plays an important role in preventing apoptosis in the early development of the embryo, as well as in the progressive regulation of organ development. We hypothesize that IGF-1 and its dephosphorylated binding protein (IGFBP-1) may be able to improve embryo culture with an associated reduced cell death, and that the resultant increase in the total cell number of the embryo could increase the chances of establishing an embryonic stem-cell line.  相似文献   

6.

Background

The insulin-like growth factor (IGF) system was documented to play a predominant role in neoplasia. As lung cancer is one of the most malignant cancers, we conducted a meta-analysis in order to investigate the strength of association between circulating IGF-1 and IGFBP-3 levels and lung cancer.

Methodology/Principal Findings

A systematic literature search was conducted to identify all prospective case-control studies and case-control studies on circulating IGFs and IGFBPs levels. Six nested case-control studies (1 043 case subjects and 11 472 control participants) and eight case-control studies (401 case subjects and 343 control participants) were included in this meta-analysis. Pooled measure was calculated as the inverse variance-weighted mean of the natural logarithm of multivariate adjusted OR with 95% CIs for highest vs. lowest levels to assess the association of circulating IGF-1 and IGFBP-3 concentrations and lung cancer. Standard mean difference (SMD) was also calculated to indicate the difference of the circulating IGF-1 and IGFBP-3 concentrations between the lung cancer case group and the control group. Of the nested case-control studies, ORs for the highest vs. lowest levels of IGF-1 and IGFBP-3 were 1.047 (95% CI: [0.802,1.367], P = 0.736) and 0.960 (95%CI: [0.591,1.559], P = 0.868) respectively; and SMDs were −0.079 (95%CI:[ −0.169, 0.011], P = 0.086) and −0.097 (95%CI:[ −0.264,0.071], P = 0.258) for IGF-1 and IGFBP-3 respectively. As to the case-control studies, SMDs were 0.568 (95%CI:[ −0.035, 1.171], P = 0.065) and −0.780 (95%CI:[ −1.358, −0.201], P = 0.008) for IGF-1 and IGFBP-3 respectively.

Conclusions/Significance

Inverse association was shown between IGFBP-3 and lung cancer in the case-control studies,and the circulating level of IGFBP-3 underwent a decline during tumorogenesis and development of lung cancer, which suggested IGFBP-3 a promising candidate for the biomarker of lung cancer.  相似文献   

7.

Background

Treatment of metastatic prostate cancer (PCa) with single agents has shown only modest efficacy. We hypothesized dual inhibition of different pathways in PCa results in improved tumor inhibition. The Src family kinases (SFK) and insulin-like growth factor-1 (IGF-1) signaling axes are aberrantly activated in both primary PCa and bone metastases and regulate distinct and overlapping functions in PCa progression. We examined the antitumor effects of combined inhibition of these pathways.

Materials and Methods

Src andIGF-1 receptor (IGF-1R) inhibition was achieved in vitro by short hairpin (sh)RNA and in vitro and in vivo by small molecule inhibitors (dasatinib and BMS-754807, against SFK and IGF-1R/Insulin Receptor(IR), respectively).

Results

In vitro, inhibition of IGF-1 signaling affected cell survival and proliferation. SFK blockade alone had modest effects on proliferation, but significantly enhanced the IGF-1R blockade. These findings correlated with a robust inhibition of IGF-1-induced Akt1 phophorylation by dasatinib, whereas Akt2 phosphorylation was SFK independent and only inhibited by BMS-754807. Thus, complete inhibition of both Akt genes, not seen by either drug alone, is likely a major mechanism for the decreased survival of PCa cells. Furthermore, dasatinib and BMS-754807 inhibited in vivo growth of the primary human xenograft MDA PCa 133, with corresponding inhibition of Akt in tumors. Also, both orthotopic and intratibial tumor growth of PC-3 cells were more potently inhibited by dual SFK and IGF-1R/IR blockade compared to either pathway alone, with a corresponding decrease in bone turnover markers.

Conclusions

Dual IGF-1R/IR and SFK inhibition may be a rational therapeutic approach in PCa by blocking both independent and complementary processes critical to tumor growth.  相似文献   

8.

Objective

To explore the underlying mechanisms of Hrd1/sema3a/IGF-1R on cardiomyocyte apoptosis.

Methods

AMI model was established by the left-anterior descending coronary artery (LAD) ligation. The expressions of Hrd1, sema3a and IGF-1R were examined by western blot. The activity of caspase-3 and caspase-8 was measured using the corresponding activity detection kit. Cardiomyocyte apoptosis was detected by flow cytometry assay. Co-immunoprecipitation and ubiquitination assay were used to test the relationship among Hrd1, sema3a and IGF-1R.

Results

Hrd1 expression and the activity of caspase-3 and caspase-8 were increased in cardiac tissues of AMI rats and hypoxia-induced cardiomyocytes, while IGF-1R expression was decreased. Hrd1 overexpression promoted IGF-1R degradation, whereas knockdown of sema3a suppressed this degradation. Moreover, knockdown of Hrd1 or sema3a could inhibit the decrease of IGF-1R expression induced by hypoxia, and reverse the enhanced activity of caspase-3 and caspase-8 and the increase of cardiomyocytes apoptosis induced by hypoxia, while si-IGF-1R countered these effects. In AMI rat experiments, interfering Hrd1 or sema3a reduced the infarct size and increased IGF-1R expression, but these could be abolished by si-IGF-1R.

Conclusion

Hrd1 might mediate the ubiquitination of IGF-1R through sema3a and then participate in the regulation of cardiomyocyte apoptosis.  相似文献   

9.

Background

Psoriasis is a complex disease at the cellular, genomic and genetic levels. The role of microRNAs in skin development was shown in a keratinocyte-specific Dicer knockout mouse model. Considering that two main characteristics of psoriasis are keratinocytes hyperproliferation and abnormal skin differentiation, we hypothesized that aberrant microRNA expression contributes to the psoriatic phenotype. Here, we describe the differential expression of miRNAs in psoriatic involved and uninvolved skin as compared to normal skin, revealing an additional aspect of this complex disorder.

Methodology/Principal Findings

Expression arrays were used to compare microRNA expression in normal skin versus psoriatic involved and uninvolved skin. Fourteen differentially expressed microRNAs were identified, including hsa-miR-99a, hsa-miR-150, hsa-miR-423 and hsa-miR-197. The expression of these microRNAs was reevaluated by qPCR. IGF-1R, which is involved in skin development and the pathogenesis of psoriasis, is a predicted target of hsa-miR-99a. In an in situ hybridization assay, we found that IGF-1R and miR-99a are reciprocally expressed in the epidermis. Using a reporter assay, we found that IGF-1R is targeted by hsa-miR-99a. Moreover, over expression of miR-99a in primary keratinocytes down-regulates the expression of the endogenous IGF-1R protein. Over expression of miR-99a also inhibits keratinocyte proliferation and increases Keratin 10 expression. These findings suggest that overexpression of hsa-miR-99a in keratinocytes drives them towards differentiation. In primary keratinocytes grown in high Ca++, miR-99a expression increases over time. Finally, we found that IGF1 increases the expression of miR-99a.

Conclusions/Significance

We identified several microRNAs that are expressed differentially in normal and psoriatic skin. One of these miRNAs is miR-99a that regulates the expression of IGF-1R. Moreover, miR-99a seems to play a role in the differentiation of keratinocytes. We suggest that miR-99a is one of the regulators of the IGF-1R signaling pathway in keratinocytes. Activation of IGF1 signaling results in elevation of miR-99a which represses the expression of IGF-1R.  相似文献   

10.

Background

The IGF receptor type 1 (IGF-1R) pathway is frequently deregulated in human tumors and has become a target of interest for anti-cancer therapy.

Methodology/Principal Findings

We used a panel of 22 non-small cell lung cancer (NSCLC) cell lines to investigate predictive biomarkers of response to R1507, a fully-humanized anti-IGF-1R monoclonal antibody (Ab; Roche). 5 lines were moderately sensitive (25–50% growth inhibition) to R1507 alone. While levels of phospho-IGF-1R did not correlate with drug sensitivity, 4 out of 5 sensitive lines displayed high levels of total IGF-1R versus 1 out of 17 resistant lines (p = 0.003, Fisher''s Exact). Sensitive lines also harbored higher copy numbers of IGF-1R as assessed by independent SNP array analysis. Addition of erlotinib or paclitaxel to R1507 led to further growth inhibition in sensitive but not resistant lines. In one EGFR mutant lung adenocarcinoma cell line (11–18), R1507 and erlotinib co-treatment induced apoptosis, whereas treatment with either drug alone induced only cell cycle arrest. Apoptosis was mediated, in part, by the survival-related AKT pathway. Additionally, immunohistochemical (IHC) staining of total IGF-1R with an anti-total IGF-1R Ab (G11;Ventana) was performed on tissue microarrays (TMAs) containing 270 independent NSCLC tumor samples. Staining intensity was scored on a scale of 0 to 3+. 39.3% of tumors showed medium to high IGF-1R IHC staining (scores of 2+ or 3+, respectively), while 16.7% had scores of 3+.

Conclusions/Significance

In NSCLC cell lines, high levels of total IGF-1R are associated with moderate sensitivity to R1507. These results suggest a possible enrichment strategy for clinical trials with anti-IGF-1R therapy.  相似文献   

11.

Background

The hedgehog (Hh) pathway has been implicated in the pathogenesis of cancer including pancreatic ductal adenocarcinoma (PDAC). Recent studies have suggested that the oncogenic function of Hh in PDAC involves signaling in the stromal cells rather than cell autonomous effects on the tumor cells. However, the origin and nature of the stromal cell type(s) that are responsive to Hh signaling remained unknown. Since Hh signaling plays a crucial role during embryonic and postnatal vasculogenesis, we speculated that Hh ligand may act on tumor vasculature specifically focusing on bone marrow (BM)-derived cells.

Methodology/Principal Findings

Cyclopamine was utilized to inhibit the Hh pathway in human PDAC cell lines and their xenografts. BM transplants, co-culture systems of tumor cells and BM-derived pro-angiogenic cells (BMPCs) were employed to assess the role of tumor-derived Hh in regulating the BM compartment and the contribution of BM-derived cells to angiogenesis in PDAC. Cyclopamine administration attenuated Hh signaling in the stroma rather than in the cancer cells as reflected by decreased expression of full length Gli2 protein and Gli1 mRNA specifically in the compartment. Cyclopamine inhibited the growth of PDAC xenografts in association with regression of the tumor vasculature and reduced homing of BM-derived cells to the tumor. Host-derived Ang-1 and IGF-1 mRNA levels were downregulated by cyclopamine in the tumor xenografts. In vitro co-culture and matrigel plug assays demonstrated that PDAC cell-derived Shh induced Ang-1 and IGF-1 production in BMPCs, resulting in their enhanced migration and capillary morphogenesis activity.

Conclusions/Significance

We identified the BMPCs as alternative stromal targets of Hh-ligand in PDAC suggesting that the tumor vasculature is an attractive therapeutic target of Hh blockade. Our data is consistent with the emerging concept that BM-derived cells make important contributions to epithelial tumorigenesis.  相似文献   

12.

Introduction

Biomarkers indicating trait, progression and prediction of pathology and symptoms in Parkinson''s disease (PD) often lack specificity or reliability. Investigating biomarker variance between individuals and over time and the effect of confounding factors is essential for the evaluation of biomarkers in PD, such as insulin-like growth factor 1 (IGF-1).

Materials and Methods

IGF-1 serum levels were investigated in up to 8 biannual visits in 37 PD patients and 22 healthy controls (HC) in the longitudinal MODEP study. IGF-1 baseline levels and annual changes in IGF-1 were compared between PD patients and HC while accounting for baseline disease duration (19 early stage: ≤3.5 years; 18 moderate stage: >4 years), age, sex, body mass index (BMI) and common medical factors putatively modulating IGF-1. In addition, associations of baseline IGF-1 with annual changes of motor, cognitive and depressive symptoms and medication dose were investigated.

Results

PD patients in moderate (130±26 ng/mL; p = .004), but not early stages (115±19, p>.1), showed significantly increased baseline IGF-1 levels compared with HC (106±24 ng/mL; p = .017). Age had a significant negative correlation with IGF-1 levels in HC (r = -.47, p = .028) and no correlation in PD patients (r = -.06, p>.1). BMI was negatively correlated in the overall group (r = -.28, p = .034). The annual changes in IGF-1 did not differ significantly between groups and were not correlated with disease duration. Baseline IGF-1 levels were not associated with annual changes of clinical parameters.

Discussion

Elevated IGF-1 in serum might differentiate between patients in moderate PD stages and HC. However, the value of serum IGF-1 as a trait-, progression- and prediction marker in PD is limited as IGF-1 showed large inter- and intraindividual variability and may be modulated by several confounders.  相似文献   

13.

Aims

Insulin-like growth factor-1 (IGF-1) is a polypeptide protein hormone, similar in molecular structure to insulin, which plays an important role in cell migration, cell cycle progression, cell survival and proliferation. In this study, we investigated the possible mechanisms of IGF-1 mediated cell cycle redistribution and apoptosis of vascular endothelial cells.

Method

Human umbilical vein endothelial cells (HUVECs) were pretreated with 0.1, 0.5, or 2.5 μg/mL of IGF-1 for 30 min before the addition of Ang II. Cell cycle redistribution and apoptosis were examined by flow cytometry. Expression of Ang II type 1 (AT1) mRNA and cyclin E protein were determined by RT-PCR and Western blot, respectively.

Results

Ang II (1 μmol/L) induced HUVECs arrested at G0/G1, enhanced the expression level of AT1 mRNA in a time-dependent manner, reduced the enzymatic activity of nitric oxide synthase (NOS) and nitric oxide (NO) content as well as the expression level of cyclin E protein. However, IGF-1 enhanced NOS activity, NO content, and the expression level of cyclin E protein, and reduced the expression level of AT1 mRNA. L-NAME significantly counteracted these effects of IGF-1.

Conclusions

Our data suggests that IGF-1 can reverse vascular endothelial cells arrested at G0/G1 and apoptosis induced by Ang II, which might be mediated via a NOS-NO signaling pathway and is likely associated with the expression levels of AT1 mRNA and cyclin E proteins.  相似文献   

14.
《Endocrine practice》2012,18(6):817-825
ObjectiveTo report the utility of insulin-like growth factor-1 (IGF-1) as a single biomarker for establishing the diagnosis of acromegaly and to examine the clinical and biochemical profile of patients with an elevated IGF-1 in whom a diagnosis of acromegaly could not be confirmed by means of the oral glucose tolerance test (OGTT).MethodsBetween the years 1999 and 2010, we identified 101 patients who underwent pituitary surgery and had histologically proven somatotroph adenomas (Group 1, Gr 1). We selected 149 patients with non- growth hormone (GH) secreting pituitary macroadenomas (Gr 2, n = 97) and microadenomas (Gr 3, n = 52) to serve as control subjects. In addition, we identified 34 patients with elevated IGF-1values in whom acromegaly could not subsequently be proven by the OGTT (Gr 4).ResultsIGF-1 was elevated in all patients with acromegaly prior to therapy with a median (range) standard deviation score (SDS) of + 9.52 (+ 2.34 to + 9.2), compared to SDS − 1.46 (− 2.91 to + 2.17) and − 1.22 (− 2.8 to + 1.58) in Gr 2 and 3, respectively (P < 0.001). IGF- 1 SDS values were + 3.28 (+ 2.05 to + 6.1), and IGF-1 was less than twice the upper limit of normal in all patients in Gr 4. OGTT was performed in 51 of the 101 acromegalic patients. The nadir GH in these patients was 4.01 (0.2 to 46.7) in comparison with 0.2 (< 0.05 to 0.6) in Gr 4 (P < 0.001).ConclusionElevated IGF-1 levels, alone, are sufficient to establish a diagnosis of acromegaly in the majority of clinically suspected cases. The OGTT may be useful to obtain corroborative evidence when there is modest elevation of IGF-1 with absent or equivocal clinical features. (Endocr Pract. 2012;18:817-825)  相似文献   

15.
16.
IGFs (Insulin like growth factors) are important regulators of pancreatic β cell development, growth and maintenance. Mutations in the IGF genes have been found to be associated with diabetes mellitus, myocardial infarction obesity. These associations could result from changes in insulin secretion. We aimed to investigate IGF-1 gene polymorphism in obese patients with insulin resistance. We included 100 obese patients with insulin resistance 30 healthy subjects to study. At baseline examinations, antropometric measurements were done. Genomic DNA from the patients and controls were prepared. Thyroid function tests and serum IGFBP3 levels were similar between patients and controls whereas IGF, GH levels were significantly lower in obese patients. We categorized the IGF-1 (CA)19 polymorphism area into 3 groups as lower than 192 bp (group 1), 192–194 bp (group 2), and higher than 194 bp(group 3). Group 3 was more frequent in both obese and control groups. IGF-1 levels were also significantly lower in obese group (138.51 ± 49.3) in than controls (218.14 ± 69.15). IGF-1 levels were significantly lower in obese patients. The most frequent IGF-1 gen polymorphism allel is >194 bp in both obese insulin resistant patients and controls. IGF-1 levels and the other biochemical and hormonal parameters were similar in different genotype groups. The cause of lower IGF-1 levels in obese patients might be different from IGF-1 gene polymorphism and it may be insulin resistance.  相似文献   

17.
Insulin-like growth factor-1 (IGF-1) signaling system exerts a broad antiapoptotic function and plays a crucial role in resistance to anticancer therapies. Exposure of MCF-7 breast cancer cells to IGF-1 rapidly and transiently induced tyrosine phosphorylation and activation of phosphoinositide-dependent kinase-1 (PDK1). This was paralleled by Akt/protein kinase B and protein kinase C-ζ phosphorylation, at Thr308 and Thr410, respectively. IGF-1 treatment also enhanced PDK1 interaction with IGF-1 receptor (IGF-1R) in intact MCF-7 cells. Pulldown assays revealed that PDK1 bound IGF-1R in vitro and that the region encompassing amino acids 51–359 of PDK1 was necessary for the interaction. Synthetic peptides corresponding to IGF-1R C terminus amino acids 1295–1337 (C43) and to PDK1 amino acids 114–141 reduced in vitro IGF-1R/PDK1 interaction in a concentration-dependent manner. Loading of fluoresceinated-C43 (fluorescein isothiocyanate (FITC)-C43) into MCF-7 cells significantly reduced IGF-1R/PDK1 interaction and phosphorylation of PDK1 substrates. Moreover, FITC-C43 intracellular loading reverted the protective effect of IGF-1 on growth factor deprivation-induced cell death. Finally, the inhibition of IGF-1R/PDK1 interaction and signaling by FITC-C43 was accompanied by 2-fold enhanced killing capacity of cetuximab in human GEO colon adenocarcinoma cells and was sufficient to restore cell death in cetuximab-resistant cell clones. Thus, disruption of PDK1 interaction with IGF-1R reduces IGF-1 survival effects in cancer cells and may enhance cell death by anticancer agents.  相似文献   

18.

Background

Exposure to inorganic arsenic (As) through drinking water during pregnancy is associated with lower birth size and child growth. The aim of the study was to assess the effects of As exposure on child growth parameters to evaluate causal associations.

Methodology/Findings

Children born in a longitudinal mother-child cohort in rural Bangladesh were studied at 4.5 years (n=640) as well as at birth (n=134). Exposure to arsenic was assessed by concurrent and prenatal (maternal) urinary concentrations of arsenic metabolites (U-As). Associations with plasma concentrations of insulin-like growth factor 1 (IGF-1), calcium (Ca), vitamin D (Vit-D), bone-specific alkaline phosphatase (B-ALP), intact parathyroid hormone (iPTH), and phosphate (PO4) were evaluated by linear regression analysis, adjusted for socioeconomic factor, parity and child sex. Child U-As (per 10 µg/L) was significantly inversely associated with concurrent plasma IGF-1 (β=-0.27; 95% confidence interval: -0.50, -0.0042) at 4.5 years. The effect was more obvious in girls (β=-0.29; -0.59, 0.021) than in boys, and particularly in girls with adequate height (β=-0.491; -0.97, -0.02) or weight (β=-0.47; 0.97, 0.01). Maternal U-As was inversely associated with child IGF-1 at birth (r=-0.254, P=0.003), but not at 4.5 years. There was a tendency of positive association between U-As and plasma PO4 in stunted boys (β=0.27; 0.089, 0.46). When stratified by % monomethylarsonic acid (MMA, arsenic metabolite) (median split at 9.7%), a much stronger inverse association between U-As and IGF-1 in the girls (β=-0.41; -0.77, -0.03) was obtained above the median split.

Conclusion

The results suggest that As-related growth impairment in children is mediated, at least partly, through suppressed IGF-1 levels.  相似文献   

19.
Adams, G. R., and F. Haddad. The relationships amongIGF-1, DNA content, and protein accumulation during skeletal muscle hypertrophy. J. Appl. Physiol. 81(6):2509-2516, 1996.Insulin-like growth factor-1 (IGF-1) is known tohave anabolic effects on skeletal muscle cells. This study examined thetime course of muscle hypertrophy and associated IGF-1 peptide and mRNAexpression. Data were collected at 3, 7, 14, and 28 days after surgicalremoval of synergistic muscles of both normal and hypophysectomized(HX) animals. Overloading increased the plantaris (Plant) mass,myofiber size, and protein-to-body weight ratio in both groups (normaland HX; P < 0.05). Muscle IGF-1peptide levels peaked at 3 (normal) and 7 (HX) days of overloading withmaximum 4.1-fold (normal) and 6.2-fold (HX) increases. Increases inmuscle IGF-1 preceded the hypertrophic response. Total DNA content ofthe overloaded Plant increased in both groups. There was a strongpositive relationship between IGF-1 peptide and DNA content in theoverloaded Plant from both groups. These results indicate that1) the muscles from rats with bothnormal and severely depressed systemic levels of IGF-1 respond tofunctional overload with an increase in local IGF-1 expression and2) this elevated IGF-1 may becontributing to the hypertrophy response, possibly via the mobilizationof satellite cells to provide increases in muscle DNA.

  相似文献   

20.
Background: A dysregulated growth hormone (GH)/insulin-like growth factor 1 (IGF-1) axis is well-recognized in children and adolescents with type 1 diabetes mellitus (T1DM). Decreased IGF-1 levels can also be found in chronic inflammatory diseases, while hyperglycemia promotes inflammatory cytokine production. Therefore, inflammatory cytokines may link poor metabolic control with GH/IGF-1 axis changes. This study examined the relationship between serum inflammatory cytokines and IGF-1 in adolescents (age 13–18) with TIDM in chronic poor (n = 17) or favorable (n = 19) glucose control. Poor control (PC) was defined as 3, consistent HbA1C > 9% during the previous 2 years, while favorable control (FC) was consistent levels of HbA1C < 9%. Results: HbA1C (FC: 7.5 ± 0.6%; PC: 10.5 ± 0.9%, p < 0.001) and interleukin (IL)-8 (FC: 3.7 ± 4.0 pg/ml; PC: 7.4 ± 4.3 pg/ml, p = 0.01) were increased and IGF-1 (FC: 536.5 ± 164.3 ng/ml; PC: 408.9 ± 157.1 ng/ml, p = 0.03) was decreased in patients with poor control compared to patients with favorable control. Moreover, IL-8 was inversely correlated with IGF-1 (r = −0.40, p = 0.03) and positively correlated with HbA1C (r = 0.36, p = 0.03). Conclusions: In adolescents with T1DM and chronic, poor glucose control, increased serum IL-8 is associated with reduced IGF-1 suggesting a pro-inflammatory milieu that may contribute to alterations in the GH/IGF-1 axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号