首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
关于肝纤维化形成的复杂的细胞和分子联系已经有了相当多的研究进展。最近的数据表明,纤维化进程的终止和纤维分解途径的恢复可以逆转晚期肝纤维化甚至肝硬化。因此,需要更好地阐明参与肝纤维化的细胞和分子机制。HSC(肝星状细胞)的激活是肝纤维化发生的中心事件,此外还有产生基质的其他细胞来源,包括肝门区的成纤维细胞,纤维细胞和骨髓来源的肌纤维母细胞。这些细胞与其邻近细胞通过多种联系聚集产生纤维疤痕并造成持续性损伤。阐明不同类型的细胞的相互作用,揭示细胞因子对这些细胞的影响,理清活化HSC基因表达的调控,将有助于我们探索新的肝纤维化治疗靶点。此外,不同的病因有不同的致病途径,弄清这一点有助于针对特异性疾病治疗方法的发现。本文概述了肝纤维化的细胞和分子机制的最新研究进展,可能为未来治疗方法带来新的突破。  相似文献   

2.
Liver fibrosis is an adaptive response to various injuries and may eventually progress to cirrhosis. Although there are several non-invasive methods available to monitor the progression of liver fibrogenesis, they cannot reliably detect fibrosis in its early stages, when the process can be stopped or reversed by removing or eliminating the underlying etiological agent that cause the hepatic injury. In this study, early fibrosis alterations were characterized biochemically, morphologically, and spectroscopically in a rat bile duct ligation (BDL) model. Progressive elevations in serum alanine transaminase (ALT), aspartate transaminase (AST), and bilirubin levels in the BDL rats were found indicating the dynamic deterioration of hepatocellular function. Immunofluorescence microscopy using monoclonal anti-collagen III antibody further revealed abnormal intertwined networks of collagen fibres surrounding the portal areas and extending into the lobules towards the central veins in all BDL samples starting from week one. Synchrotron infrared microspectroscopy of liver sections was exploited to generate false color spectral maps based upon a unique and strong collagen absorption at 1340 cm− 1, revealing a collagen distribution that correlated very well with corresponding images provided by immunofluorescence imaging. We therefore suggest that infrared microspectroscopy may provide an additional and sensitive means for the early detection of liver fibrosis.  相似文献   

3.
4.
The mechanisms that initiate and perpetuate the fibrogenic response, during liver injury, are unclear. Animal studies, however, strongly support a role for the autonomic nervous system (ANS) in wound healing. Therefore, the ANS may also mediate the development of cirrhosis. Hepatic stellate cells (HSC), the liver's major matrix-producing cells, are activated by injury to become proliferative, fibrogenic myofibroblasts. HSC respond to sympathetic neurotransmitters by changing phenotype, suggesting that HSC may be the cellular effectors of ANS signals that modulate hepatic fibrogenesis during recovery from liver damage. We show here that the parasympathetic neurotransmitter acetylcholine markedly stimulates the proliferation of myofibroblastic HSC and induces HSC collagen gene expression in these cells. By extending evidence that HSC are direct targets of the ANS, these results support the proposed neuroglial role of HSC in the liver and suggest that interrupting ANS signalling may be useful in constraining the fibrogenic response to liver injury.  相似文献   

5.
6.
Current liver transplantation strategies face severe shortcomings owing to scarcity of donors, immunogenicity, prohibitive costs and poor survival rates. Due to the lengthy list of patients requiring transplant, high mortality rates are observed during the endless waiting period. Tissue engineering could be an alternative strategy to regenerate the damaged liver and improve the survival and quality of life of the patient. The development of an ideal scaffold for liver tissue engineering depends on the nature of the scaffold, its architecture and the presence of growth factors and recognition motifs. Biomimetic scaffolds can simulate the native extracellular matrix for the culture of hepatocytes to enable them to exhibit their functionality both in vitro and in vivo. This review highlights the physiology and pathophysiology of liver, the current treatment strategies, use of various scaffolds, incorporation of adhesion motifs, growth factors and stem cells that can stabilize and maintain hepatocyte cultures for a long period.  相似文献   

7.
The purpose of this in situ study is to quantify the inflammatory cell subsets and the area fraction (AA%) occupied by collagen fibers in human healthy and diseased (four different stages) gingival connective tissue in order to establish a possible correlation between periodontal disease resulting in collagen breakdown and specific inflammatory cell subsets.Paraffin gingival tissue sections from eight healthy controls (group 0), 10 patients with gingivitis (group 1), 10 patients with moderate periodontitis (group 2) and 10 patients with severe periodontitis (group 3) were immunohistochemically investigated using antibodies against CD-45+, CD-3+, CD-8+, CD-20+, CD-68+, and EMA+ (plasma cells).The AA% occupied by gingival collagen fibers significantly decreased from 54.12% in group (0) to 38.58% in group (1), to 31.87% in group (2), and to 25.46% in group (3). In progressive lesions of periodontal disease, CD-3+ and CD-8+ cell numbers were increased in early stages within the connective tissue, while CD-20+ cell numbers were increased only in late stages. On the other hand, EMA+, CD-68+ and CD-45+ cell numbers were progressively increased from group (0) to group (3). We demonstrated that CD-68+ monocyte/macrophages, CD-45+ leukocyte common antigen and notably EMA+ plasma cells are pertinently correlated with the severity of periodontal disease and related collagen breakdown.  相似文献   

8.
Primordial germ cells (PGCs) are the progenitor cells of the vertebrate germ line. These cells originate outside of the embryo and, through separation, migration, and colonization, arrive at the genital ridge, contributing to gonad development. Diverse extracellular matrix molecules are present along the PGC migratory pathway, permitting or inhibiting PGC displacement. Collagens and tenascin form the substratum for in vitro migration of neural crest cells and PGCs. However, little is known about the expression and distribution of these molecules during in situ PGC migration. Using immunohistochemistry, we identified tenascin-C and types I, III, and V collagen along the mouse PGC migration pathway. These molecules were spatiotemporally expressed in basement membranes of hindgut, coelomic epithelia, and mesonephric tubules and mesenchyme throughout the study. Our results complement previous data from our laboratory and contribute to building comprehension of the composition of the mouse PGC migratory pathway extracellular matrix, thereby enhancing understanding of the process.  相似文献   

9.
There is a growing body of work in the literature that demonstrates the significant differences between 2D versus 3D environments in cell morphologies, spatial organization, cell-ECM interactions, and cell signaling. The 3D environments are generally considered more realistic tissue models both because they offer cells a surrounding environment rather than just a planar surface with which to interact, and because they provide the potential for more diverse mechanical environments. Many studies have examined cellular-mediated contraction of 3D matrices; however, because the 3D environment is much more complex and the scale more difficult to study, little is known regarding how mechanical environment, cell and collagen architecture, and collagen remodeling are linked. In the current work, we examine the spatial arrangement of neonatal cardiac fibroblasts and the associated collagen organization in constrained and unconstrained collagen gels over a 24 h period. Collagen gels that are constrained by their physical attachment to a mold and similar gels, which have been detached (unconstrained) from the mold and subsequently contract, offer two simple mechanical models by which the mechanisms of tissue homeostasis and wound repair might be examined. Our observations suggest the presence of two mechanical regimes in the unconstrained gels: an outer ring where cells orient circumferentially and local collagen aligns with the elongated cells; and a central region where unaligned stellate/bipolar cells are radially surrounded by collagen, similar to that seen throughout constrained gels. The evolving organization of cell alignment and surrounding collagen organization suggests that cellular response may be due to the cellular perception of the apparent stiffness of local physical environment.  相似文献   

10.
Bovine collagen alpha-1 is a naturally occurring extracellular matrix protein found in tendons and other connective tissues. It plays a vital role in cell growth, differentiation, attachment, and migration. Recent findings have established that collagen alpha-1 is involved in osteogenesis imperfecta phenotype in cattle but deep information about other members of this large family is not available so far. So with a view to finding a new edge and attempt to figure out a correlation among the well attributed Bovine alpha-1 collagen sequences are executed and analyzed. To do so, comparative analysis among the 28 members of collagen family has been carried out using Computational tools. Consequently, based on the physico-chemical, secondary structural, functional and phylogenetic classifications, we have selected collagen 12, 14 and 20 as targets for pathological conditions. These proteins belong to the FACIT family and significantly showed low glycine and proline content, high instability and aliphatic index. Moreover, FACIT family collagens contain multiple triple helical domains and being members of the FACIT family, bovine collagen 12, 14, 20 do not form fibrils by themselves but they are associated to collagen 1 associated fibrils. These collagen molecules might be crucial candidates to detect and understand the process of matrix remodeling in diseases especially in the arena of cellular compartments.  相似文献   

11.
Chronic liver injury always progresses to fibrosis and eventually to cirrhosis, a massive health care burden worldwide. Delta-like 1 (Dlk1) is well known as an inhibitor of adipocyte differentiation. However, whether it is involved in liver fibrosis remains unclear. Here, we provide the first evidence that Dlk1 is a critical contributor to liver fibrosis through promoting activation of hepatic stellate cells (HSCs) during chronic liver injury. We found that upon liver injury, Dlk1 was dramatically induced and initially expressed in hepatocytes and then into the HSCs by a paracrine manner. It leads to the activation of HSCs, which is considered to be a pivotal event in liver fibrogenesis. Two forms (~50 and ~25 kDa) of the Dlk1 protein were detected by Western blot analysis. In vitro administration of Dlk1 significantly promoted HSC activation, whereas in vivo knockdown of Dlk1 dramatically inhibited HSC activation and the subsequent fibrosis. The large soluble form (~50 kDa) of Dlk1 was shown to contribute to HSC activation. We were encouraged to find the Dlk1-promoted HSC activation and liver fibrosis can be depressed by transplantation of bone marrow-mesenchymal stem cells (BM-MSCs). Furthermore, we demonstrated that FGF2 was up-regulated in BM-MSCs under injury stimulation, and it probably participated in the inhibition of Dlk1 by BM-MSCs. Our findings provide a novel role of Dlk1 in liver fibrosis leading to a better understanding of the molecular basis in fibrosis and cirrhosis and also give insights into the cellular and molecular mechanisms of MSC biology in liver repair.  相似文献   

12.
Liu SY  Huang HC  Li XM 《生理科学进展》2005,36(4):314-318
组织型转谷氨酰胺酶(tTG)是一个Ca2 依赖的具有转酰胺基作用的酶,它分布广泛,在许多生理和病理条件下发挥重要作用。近年来它参与组织纤维化的作用逐渐引起重视。tTG分泌到细胞外能够使很多细胞外基质蛋白成分之间发生交联,形成牢固结构,抵抗降解,从而促使细胞外基质沉积,促进组织纤维化发展。本文简要叙述tTG的分子特征和生理及病理学意义,并着重介绍tTG和肾脏纤维化的联系。  相似文献   

13.
The purpose of this investigation is to support the novel hypothesis that collagenous matrices are intrinsically "smart" load-adapting biomaterials. This hypothesis is based fundamentally on the postulate that tensile strain directly modulates the susceptibility of collagen molecules to enzymatic degradation (i.e., protects molecules which are under load from cleavage). To test this postulate, collagenase (Clostridiopeptidase A) was applied to a uniaxially loaded, anisotropic, devitalized, collagenous matrix in which a subset of fibrils was loaded in tension while the remaining fibrils carried little or no load. The collagen degradation pattern (as assessed by polarization and transmission electron microscopy) was found to correspond inversely to the tensile stress field such that fibrils under lower tensile load were preferentially cleaved. These results have immediate implications for tissue engineering of load-bearing collagenous matrices in vitro and may contribute significantly to our understanding of synthesis, remodelling, and pathogenesis of collagen matrices in vivo.  相似文献   

14.
Aim of the studyOsteogenesis imperfecta and Ehlers Danlos syndrome are hereditary disorders caused primarily by defective collagen regulation. Osteogenesis imperfecta patients were divided to haploinsufficient and dominant negative depending on the effect of COL1A1 and COL1A2 mutations whereas Ehlers Danlos syndrome patients had a mutation in PLOD1. Although collagen abnormalities have been extensively studied in monolayer cultures, there are no reports about 3D in vitro models which may reflect more accurately the dynamic cell environment. This is the first study presenting the structural and mechanical characterization of a 3D cell-secreted model using primary patient fibroblasts.Materials and methodsFibroblasts from patients with osteogenesis imperfecta and Ehlers Danlos syndrome were cultured with ascorbic acid for 5 weeks. The effect of mutations on cytosolic and secreted collagen was tested by electrophoresis following incubation with radiolabeled 14C proline. Extracellular matrix was studied in terms of collagen fiber orientation, stiffness, as well as glycosaminoglycan and collagen content.Results and conclusionsOsteogenesis imperfecta patients with haploinsufficient mutations had higher percentage of anisotropic collagen fibers alignment compared to other patient groups; all patients had a lower percentage of anisotropic samples compared to healthy controls. This correlated with higher average stiffness in the control group. Glycosaminoglycan content was lower in the control and haploinsufficient groups. In cells with PLOD1 mutations, there were no differences in PLOD2 expression. This proof of concept study was able to show differences in collagen fiber orientation between different patient groups which can potentially pave the way towards the development of 3D models aiming at improved investigation of disease mechanisms.  相似文献   

15.
16.
Despite the success of elastography in grading hepatic fibrosis by stiffness related noninvasive markers the relationship between viscoelastic constants in the liver and tissue structure remains unclear. We therefore studied the mechanical properties of 16 human liver specimens with different degrees of fibrosis, inflammation and steatosis by wideband magnetic resonance elastography (MRE) and static indentation experiments providing the specimens? static Young?s modulus (E), dynamic storage modulus (G′) and dynamic loss modulus (G″). A frequency-independent shear modulus μ and a powerlaw exponent α were obtained by fitting G′ and G″ using the two-parameter sprinpot model. The mechanical parameters were compared to the specimens? histology derived parameters such as degree of Fibrosis (F), inflammation score and fat score, amount of hydroxyproline (HYP) used for quantification of collagen, blood markers and presurgery in vivo function tests.  相似文献   

17.
To elucidate the effect of extracellular matrices (ECMs) and related and nonrelated-limbal feeder cells as substitutes for the in vivo niche on the phenotype and genotype of the limbal stem cell (SC) expansion in vitro, human limbal SCs were used. The limbus explants were expanded on human amniotic membrane (AM), commercial ECMs including matrigel (MAT), collagen (COL), and control (no ECM) in presence and absence of feeder cells including human limbal fibroblasts (LFs), a limbus-specific cell and mouse embryonic fibroblasts (MEFs). Proliferation, cell death, immunocytochemistry, expression of specific genes, ultrastructural characteristics, and size and granularity of expanded human limbal SCs in different groups were evaluated. The growth, cell proliferation, and survival of limbal SCs were enhanced by AM and MAT matrices. Ultrastructure and expression of stemness markers revealed that there was no significance difference between AM and MAT. However, flow cytometric analysis showed that the size and granularity of cultured cells increased in the presence of MAT and COL as well as in no ECM group. Moreover, co-culturing of limbal explants with LFs and MEFs on AM and MAT groups, enhanced the expansion and survival of cultured cells in comparison with others. In conclusion, the cultivation of human limbal explants on AM co-culturing with human LFs promises to be a good model for preparing undifferentiated epithelial sheets suitable for transplantation.  相似文献   

18.
Gastric cancer(GC)is a primary cause of cancer-related mortality worldwide,and even after therapeutic gastrectomy,survival rates remain poor.The presence of gastric cancer stem cells(GCSCs)is thought to be the major reason for resistance to anticancer treatment(chemotherapy or radiotherapy),and for the development of tumor recurrence,epithelial–mesenchymal transition,and metastases.Additionally,GCSCs have the capacity for self-renewal,differentiation,and tumor initiation.They also synthesize antiapoptotic factors,demonstrate higher performance of drug efflux pumps,and display cell plasticity abilities.Moreover,the tumor microenvironment(TME;tumor niche)that surrounds GCSCs contains secreted growth factors and supports angiogenesis and is thus responsible for the maintenance of the growing tumor.However,the genesis of GCSCs is unclear and exploration of the source of GCSCs is essential.In this review,we provide up-todate information about GCSC-surface/intracellular markers and GCSC-mediated pathways and their role in tumor development.This information will support improved diagnosis,novel therapeutic approaches,and better prognosis using GCSC-targeting agents as a potentially effective treatment choice following surgical resection or in combination with chemotherapy and radiotherapy.To date,most anti-GCSC blockers when used alone have been reported as unsatisfactory anticancer agents.However,when used in combination with adjuvant therapy,treatment can improve.By providing insights into the molecular mechanisms of GCSCs associated with tumors in GC,the aim is to optimize anti-GCSCs molecular approaches for GC therapy in combination with chemotherapy,radiotherapy,or other adjuvant treatment.  相似文献   

19.
Adenosine (ADO) is an intermediary metabolite of adenosine trisphosphate degradation and a vasoactive mediator. We showed previously that ADO induces contraction and proliferation in rat mesangial cells by a mechanism involving A1 and A2 receptors. The studies concerning the effect of ADO on extracellular matrix (ECM) accumulation in mesangial cells are scarce. The purpose of our study was to evaluate the effect of ADO and the effect of the selective stimulation of A1 and A2 ADO receptors on the expression of ECM components fibronectin and collagen type I, in human and rat renal mesangial cells. Cultured human and rat renal mesangial cells were subjected to selective stimulation of A1 and A2 ADO receptors for 24 and 48 h. Fibronectin and collagen type I expression was evaluated by Western blot; total collagen synthesis was measured by [3H]-proline incorporation into collagen proteins. ADO, A1 and A2 receptor stimulation induce increases in fibronectin expression in rat mesangial cells, and A1 receptor stimulation partially inhibits fibronectin expression in serum-stimulated rat mesangial cells, without any effect in human mesangial cells. A2 receptor stimulation reduces collagen type I expression in serum-stimulated mesangial cells. Neither ADO nor A1 or A2 receptor stimulation induce significant changes in total collagen synthesis. These data suggest that ADO is not a major regulator of ECM synthesis in rat and human mesangial cells.  相似文献   

20.
Tenascin-X is an extracellular matrix protein whose absence leads to an Ehlers-Danlos syndrome in humans, characterized mainly by disorganisation of collagen and elastic fibril networks. After producing recombinant full-length tenascin-X in mammalian cells, we find that this protein assembled into disulfide-linked oligomers. Trimers were the predominant form observed using rotary shadowing. By solid phase interaction studies, we demonstrate that tenascin-X interacts with types I, III and V fibrillar collagen molecules when they are in native conformation. The use of tenascin-X variants with large regions deleted indicated that both epidermal growth factor repeats and the fibrinogen-like domain are involved in this interaction. Moreover, we demonstrate that tenascin-X binds to the fibril-associated types XII and XIV collagens. We thus suggest that tenascin-X, via trimerization and multiple interactions with components of collagenous fibrils, plays a crucial role in the organisation of extracellular matrices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号