首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tert-butyl-2(4,5-dihydrogen-4,4,5,5-tetramethyl-3-O-1H-imidazole-3-cationic-1-oxyl-2)-pyrrolidine-1-carboxylic ester (L-NNP) is a stable nitroxyl nitroxide radical, which have displayed cytotoxicity on human breast cancer MCF-7 and MDA-MB-231 cell lines. In the present study, we investigated the selective cytotoxicity of L-NNP on isogenetic human hepatoma HepG2 and normal L-02 cell lines. Cell growth inhibition, intracellular reactive oxygen species production, the mitochondrial membrane potential loss, malondialdehyde generation and glutathione levels were analyzed. The expression of Bax, Bcl-2 and NF-κBp65 proteins was also examined. The anticancer activity was evaluated in a HepG2 cell xenograft nude mice model. The results showed that 10, 20, 40 μg/ml L-NNP exposure for 48 h caused 52%, 82% and 91% cell growth inhibition of HepG2 cells, compared with 5%, 10% and 15% that of L-02 cells (p < 0.01). Concentrations of 10, 20, 40 μg/ml L-NNP induced cell death by increasing the generation of intracellular reactive oxygen species and MDA, by depolarizing the mitochondrial membrane potential, and by decreasing intracellular GSH levels in HepG2 cells. Western blot assay showed that Bax, Bcl-2 and NF-κBp65 might be implicated in L-NNP-induced selective HepG2 cell death. L-NNP was also found to inhibit HepG2 hepatoma growth and extend the life span of nude mice model (p < 0.01). The pretreatment and co-treatment of 10 mM N-acetyl-cysteine alleviated L-NNP exposure induced intracellular reactive oxygen species increase and cell growth inhibition demonstrated that L-NNP exhibited neoplasm-selective cytotoxicity and pro-apoptotic activities via reactive oxygen species mediated oxidative damage in HepG2 cells. It might be promising for developing a new class of anticancer agent for liver cancer.  相似文献   

2.
Withaferin A (WA), a promising anticancer constituent of Ayurvedic medicinal plant Withania somnifera, inhibits growth of MDA-MB-231 and MCF-7 human breast cancer cells in culture and MDA-MB-231 xenografts in vivo in association with apoptosis induction, but the mechanism of cell death is not fully understood. We now demonstrate, for the first time, that WA-induced apoptosis is mediated by reactive oxygen species (ROS) production due to inhibition of mitochondrial respiration. WA treatment caused ROS production in MDA-MB-231 and MCF-7 cells, but not in a normal human mammary epithelial cell line (HMEC). The HMEC was also resistant to WA-induced apoptosis. WA-mediated ROS production as well as apoptotic histone-associated DNA fragment release into the cytosol was significantly attenuated by ectopic expression of Cu,Zn-superoxide dismutase in both MDA-MB-231 and MCF-7 cells. ROS production resulting from WA exposure was accompanied by inhibition of oxidative phosphorylation and inhibition of complex III activity. Mitochondrial DNA-deficient Rho-0 variants of MDA-MB-231 and MCF-7 cells were resistant to WA-induced ROS production, collapse of mitochondrial membrane potential, and apoptosis compared with respective wild-type cells. WA treatment resulted in activation of Bax and Bak in MDA-MB-231 and MCF-7 cells, and SV40 immortalized embryonic fibroblasts derived from Bax and Bak double knockout mouse were significantly more resistant to WA-induced apoptosis compared with fibroblasts derived from wild-type mouse. In conclusion, the present study provides novel insight into the molecular circuitry of WA-induced apoptosis involving ROS production and activation of Bax/Bak.  相似文献   

3.
The aim of the study was to discover possible differential cytotoxicity of triptolide towards estrogen-sensitive MCF-7 versus estrogen-insensitive MDA-MB-231 human breast cancer cells. Considering that MCF-7 cells express functional Estrogen receptor α (ERα) and wild-type p53, whereas MDA-MB-231 cells which are ERα-negative express mutant p53, the anti-proliferation effect of triptolide on MCF-7 and MDA-MB-231 cells were examined, the apoptotic effect and cell cycle arrest caused by triptolide were investigated, ERα and p53 expression were also observed in this paper. The results showed that the anti-proliferation effects were induced by triptolide in both cell lines. But the value of IC50 in MCF-7 cells for its anti-proliferation effect was about one tenth of that in MDA-MB-231 cells, which indicated that the effect is more potent in MCF-7 cells. Condensed chromatin or fragmented nuclei could be found in MCF-7 cells treated with only 40 nM triptolide but in MDA-MB-231 cells they couldn’t be observed until the concentration reached to 400 nM. Triptolide induced significant S cell cycle arrest along with the presence of sub-G0/G1 peak in MDA-MB-231 cells, whereas there was only slightly S cell cycle arrest on cell cycle distribution in MCF-7 cells. The role of p53 in two breast cancer cells was examined, the results showed that the mutant p53 in MDA-MB-231 cells was suppressed and the wild-type p53 in MCF-7 was increased. Moreover, triptolide could down regulate the expression of ERα in MCF-7 cells. The results showed that triptolide is much more sensitive to ERα-positive MCF-7 cells than to ERα-negative MDA-MB-231 cells, and the sensitivity is significantly associated with the ERα and p53 status.  相似文献   

4.
The primary purpose of this research is to investigate whether exposure to polychlorinated biphenyls (PCBs), i.e. PCB153 and PCB126, is associated with induction of reactive oxygen species (ROS), poly(ADP-ribose) polymerase-1 (PARP-1) activation, and cell death in human T47D and MDA-MB-231 breast cancer cells. Results indicated that PCB153 and PCB126 induced concentration- and time-dependent increases in cytotoxic response and ROS formation in both T47D and MDA-MB-231 cells. At non-cytotoxic concentrations both PCB153 and PCB126 induced decreases in intracellular NAD(P)H and NAD+ in T47D and MDA-MB-231 cells where T47D cells were more resistant to PCB-induced reduction in intracellular NAD(P)H than MDA-MB-231 cells. Further investigation indicated that three specific PARP inhibitors completely blocked PCB-induced decreases in intracellular NAD(P)H in both T47D and MDA-MB-231 cells. These results imply that decreases in intracellular NAD(P)H in PCB-treated cells may be, in part, due to depletion of intracellular NAD+ pool mediated by PARP-1 activation through formation of DNA strand breaks. Overall, the extent of cytotoxic response, ROS formation, and PARP-1 activation generated in T47D and MDA-MB-231 cells was greater for PCB153 than for PCB126. In addition, the cytotoxicity induced by PCB153 and PCB126 in both T47D and MDA-MB-231 cells was completely blocked by co-treatment of catalase, dimethylsulfoxide, cupper (I)-/iron (II)-specific chelators, and CYP1A/2B inhibitors. This evidence suggests the involvement of ROS, Cu(I), Fe(II), and CYP1A/2B enzymes in mediating the induction of cell death by PCB153 and PCB126. Further, antagonism was observed between PCB126 and PCB153 for effects on cytotoxic response and ROS formation in T47D and MDA-MB-231 cells. Antagonism was also observed between PCB153 and PCB126 in the induction of NAD(P)H depletion at lower concentration (<10 microM) in T47D cells, but not in MDA-MB-231 cells. In conclusions, results from our investigation suggest that ROS formation induced by PCBs is a significant determinant factor in mediating the DNA damage and cell death in human breast cancer cells. The data also suggests that the status of estrogen receptor alpha may play a role in modulating the PCB-induced oxidative DNA damage and cell death in human breast cancer cells.  相似文献   

5.
Oxidative stress has been postulated as one of the mechanisms underlying the estrogen carcinogenic effect in breast cancer. Estrogens are known to increase mitochondrial-derived reactive oxygen species (ROS) by an unknown mechanism. Given that uncoupling proteins (UCPs) are key regulators of mitochondrial energy efficiency and ROS production, our aim was to check the presence and activity of UCPs in estrogen receptor (ER)-positive and ER-negative breast cancer cells and tumors, as well as their relation to oxidative stress. Estrogen (1 nM) induced higher oxidative stress in the ER-positive MCF-7 cell line, showing increased mitochondrial membrane potential, H2O2 levels, and DNA and protein damage compared to ER-negative MDA-MB-231 cells. All isoforms of uncoupling proteins were highly expressed in ER-positive breast cancer cells and tumors compared to negative ones. ROS production in mitochondria isolated from MCF-7 was increased by inhibition of UCPs with GDP, but not in mitochondria from MDA-MB-231. Estrogen treatment decreased uncoupling protein and catalase levels in MCF-7 and decreased GDP-dependent ROS production in isolated mitochondria. On the whole, these results suggest that estrogens, through an ER-dependent mechanism, may increase mitochondrial ROS production by repressing uncoupling proteins, which offers a new perspective on the understanding of why estrogens are a risk factor for breast cancer.  相似文献   

6.
Natural products are considered recently as one of the source for production of efficient therapeutical agents for breast cancer treatment. In this study, a sesquiterpene lactone, 13-O-acetylsolstitialin A (13ASA), isolated from Centaurea cyanus, showed cytotoxic activities against MCF-7 and MDA-MB-231 breast cancer cell lines using standard 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. To find the mechanism of action of cytotoxicity, annexin V/propidium iodide (PI) staining was performed for evaluation of apoptosis. This process was further confirmed by immunoblotting of anti- and proapoptotic, Bcl-2 and Bax, proteins. Cell cycle arrest was evaluated by measurement of fluorescence intensity of PI dye and further confirmed by immunoblotting of Cdk-4 and cyclin D1. Mitochondrial transmembrane potential (ΔΨm) and generation of reactive oxygen species (ROS) were measured using the JC-1 and DCFDA fluorescence probes, respectively. These experiments showed that 13ASA is a potent cytotoxic agent, which activates apoptosis-mediated cell death. In response to this compound, Bax/Bcl-2 ratio was noticeably increased in MCF-7 and MDA-MB-231 cells. Moreover, 13ASA induced cell cycle arrest at subG1 and G1 phases by decreasing protein levels of cyclin D1 and Cdk-4. It was done possibly through the decrease of ΔΨm and increase of ROS levels which induce apoptosis. In conclusion, this study mentioned that 13ASA inhibit the growth of MCF-7 and MDA-MB-231 breast cancer cell lines through the induction of cell cycle arrest, which triggers apoptotic pathways. 13ASA can be considered as a susceptible compound for further investigation in breast cancer study.  相似文献   

7.
Temporin-1CEa is an antimicrobial peptide isolated from the skin secretions of the Chinese brown frog (Rana chensinensis). We have previously reported the rapid and broad-spectrum anticancer activity of temporin-1CEa in vitro. However, the detailed mechanisms for temporin-1CEa-induced cancer cell death are still weakly understood. In the present study, the mechanisms of temporin-1CEa-induced rapid cytotoxicity on two human breast cancer cell lines, MDA-MB-231 and MCF-7, were investigated. The MTT assay and the LDH leakage assay indicated that one-hour of incubation with temporin-1CEa led to cytotoxicity in a dose-dependent manner. The morphological observation using electronic microscopes suggested that one-hour exposure of temporin-1CEa resulted in profound morphological changes in both MDA-MB-231 and MCF-7 cells. The membrane-disrupting property of temporin-1CEa was further characterized by induction of cell-surface exposure of phosphatidylserine, elevation of plasma membrane permeability and rapid depolarization of transmembrane potential. Moreover, temporin-1CEa evoked intracellular calcium ion and reactive oxygen species (ROS) elevations as well as collapse of mitochondrial membrane potential (Δφm). In summary, the present study indicates that temporin-1CEa triggers rapid cell death in breast cancer cells. This rapid cytotoxic activity might be mediated by both membrane destruction and intracellular calcium mechanism.  相似文献   

8.
The newly discovered human voltage-gated proton channel Hv1 is essential for proton transfer, which contains a voltage sensor domain (VSD) without a pore domain. We report here for the first time that Hv1 is specifically expressed in the highly metastatic human breast tumor tissues, but not in poorly metastatic breast cancer tissues, detected by immunohistochemistry. Meanwhile, real-time RT-PCR and immunocytochemistry showed that the expression levels of Hv1 have significant differences among breast cancer cell lines, MCF-7, MDA-MB-231, MDA-MB-468, MDA-MB-453, T-47D and SK-BR-3, in which Hv1 is expressed at a high level in highly metastatic human breast cancer cell line MDA-MB-231, but at a very low level in poorly metastatic human breast cancer cell line MCF-7. Inhibition of Hv1 expression in the highly metastatic MDA-MB-231 cells by small interfering RNA (siRNA) significantly decreases the invasion and migration of the cells. The intracellular pH of MDA-MB-231 cells down-regulated Hv1 expression by siRNA is obviously decreased compared with MDA-MB-231 with the scrambled siRNA. The expression of matrix metalloproteinase-2 and gelatinase activity in MDA-MB-231 cells suppressed Hv1 by siRNA were reduced. Our results strongly suggest that Hv1 regulates breast cancer intracellular pH and exacerbates the migratory ability of metastatic cells.  相似文献   

9.
The viability, cellular uptake and subcellular distribution of heavy metal Hg, were determined in human mammary cell lines (MCF-7, MDA-MB-231 and MCF-10A). It was observed that Hg had the capacity of being excluded from the cells with a different type of possible transporters. MCF-7 cells showed the lowest viability, while the other two cell lines were much more resistant to Hg treatments. The intracellular concentration of Hg was higher at lower exposure times in MCF-10A cells and MCF-7 cells; but as the time was increased only MDA-MB-231 showed the capacity to continue introducing the metal. In MCF-7 and MCF-10A cells the subcellular distribution of Hg was higher in cytosolic fraction than nucleus and membrane, but MDA-MB-231 showed membrane and nucleus fraction as the enriched one. The analysis of RNA-seq about the genes or family of genes that encode proteins which are related to cytotoxicity of Hg evidenced that MCF-10A cells and MCF-7 cells could have an active transport to efflux the metal. On the contrary, in MDA-MB-231 no genes that could encode active transporters have been found.  相似文献   

10.
Antony ML  Kim SH  Singh SV 《PloS one》2012,7(2):e32267
Benzyl isothiocyanate (BITC), a constituent of edible cruciferous vegetables, decreases viability of cancer cells by causing apoptosis but the mechanism of cell death is not fully understood. The present study was undertaken to determine the role of Bcl-2 family proteins in BITC-induced apoptosis using MDA-MB-231 (breast), MCF-7 (breast), and HCT-116 (colon) human cancer cells. The B-cell lymphoma 2 interacting mediator of cell death (Bim) protein was dispensable for proapoptotic response to BITC in MCF-7 and MDA-MB-231 cells as judged by RNA interference studies. Instead, the BITC-treated MCF-7 and MDA-MB-231 cells exhibited upregulation of p53 upregulated modulator of apoptosis (PUMA) protein. The BITC-mediated induction of PUMA was relatively more pronounced in MCF-7 cells due to the presence of wild-type p53 compared with MDA-MB-231 with mutant p53. The BITC-induced apoptosis was partially but significantly attenuated by RNA interference of PUMA in MCF-7 cells. The PUMA knockout variant of HCT-116 cells exhibited significant resistance towards BITC-induced apoptosis compared with wild-type HCT-116 cells. Attenuation of BITC-induced apoptosis in PUMA knockout HCT-116 cells was accompanied by enhanced G2/M phase cell cycle arrest due to induction of p21 and down regulation of cyclin-dependent kinase 1 protein. The BITC treatment caused a decrease in protein levels of Bcl-xL (MCF-7 and MDA-MB-231 cells) and Bcl-2 (MCF-7 cells). Ectopic expression of Bcl-xL in MCF-7 and MDA-MB-231 cells and that of Bcl-2 in MCF-7 cells conferred protection against proapoptotic response to BITC. Interestingly, the BITC-treated MDA-MB-231 cells exhibited induction of Bcl-2 protein expression, and RNA interference of Bcl-2 in this cell line resulted in augmentation of BITC-induced apoptosis. The BITC-mediated inhibition of MDA-MB-231 xenograft growth in vivo was associated with the induction of PUMA protein in the tumor. In conclusion, the results of the present study indicate that Bim-independent apoptosis by BITC in cancer cells is mediated by PUMA.  相似文献   

11.
One-third of women with breast cancer will develop bone metastases and eventually die from disease progression at these sites. Therefore, we analyzed the ability of human MG-63 osteoblast-like cells (MG-63 cells), MG-63 conditioned media (MG-63 CM), insulin-like growth factor I (IGF-I), and transforming growth factor beta 1 (TGF-beta1) to alter the effects of adriamycin on cell cycle and apoptosis of estrogen receptor negative (ER-) MDA-MB-231 and positive (ER+) MCF-7 breast cancer cells, using cell count, trypan blue exclusion, flow cytometry, detection of DNA fragmentation by simple agarose gel, and the terminal deoxynucleotidyl transferase (TdT)-mediated nick end-labeling method for apoptosis (TUNEL assay). Adriamycin arrested MCF-7 and MDA-MB-231 cells at G2/M phase in the cell cycle and inhibited cell growth. In addition, adriamycin arrested the MCF-7 cells at G1/G0 phase and induced apoptosis of MDA-MB-231 cells. Exogenous IGF-I partially neutralized the adriamycin cytotoxicity/cytostasis of cancer cells. MG-63 CM and TGF-beta1 partially neutralized the adriamycin cytotoxicity of MDA-MB-231 cells but enhanced adriamycin blockade of MCF-7 cells at G1/G0 phase. MG-63 osteoblast-like cells inhibited growth of MCF-7 cells while promoting growth and rescued MDA-MB-231 cells from adriamycin apoptosis in a collagen co-culture system. These data suggest that osteoblast-derived growth factors can alter the chemotherapy response of breast cancer cells. Conceivably, host tissue (bone)-tumor cell interactions can modify the clinical response to chemotherapy in patients with advanced breast cancer.  相似文献   

12.
Polyunsaturated fatty acids have been reported to enhance the cytotoxic activity of several anticancer drugs. In the present study, we observed that doxorubicin chemosensitization of breast cancer cell lines by docosahexaenoic acid (DHA, a long-chain omega-3 polyunsaturated fatty acid) was cell-line selective, affecting MDA-MB-231 and MCF-7 dox (a doxorubicin-resistant cell line) but not the parental MCF-7 cell line. DHA supplementation led to an increase in membrane phospholipid DHA level, but did not induce changes in intracellular [(14)C]doxorubicin accumulation. In MDA-MB-231, doxorubicin efficacy enhancement by DHA was linked to an increase in malondialdehyde level, a final product of lipid peroxidation. DHA elicited by itself a 3.7-fold malondialdehyde level increase, additive to that induced by doxorubicin. Addition of doxorubicin to DHA further increased the glutathione level, indicative of the generation of an oxidative stress. In contrast to MDA-MB-231, doxorubicin did not increase the malondialdehyde level in MCF-7, although DHA induced lipid peroxidation. Therefore in MCF-7, lipid peroxidation induced by DHA itself was not sufficient to trigger an oxidative stress and to subsequently increase sensitivity to doxorubicin. These data indicate that the differential effect of DHA among cells on drug toxicity results from a differential oxidative response to doxorubicin. Chemosensitization through fatty acids appears as a new promising adjuvant therapeutic paradigm, since omega-3 fatty acids are physiological molecules found in food and are nontoxic in vivo.  相似文献   

13.
Lin Y  Chang G  Wang J  Jin W  Wang L  Li H  Ma L  Li Q  Pang T 《Experimental cell research》2011,(14):2031-2040
Na+/H+ exchanger 1 (NHE1), an important regulator of intracellular pH (pHi) and extracellular pH (pHe), has been shown to play a key role in breast cancer metastasis. However, the exact mechanism by which NHE1 mediates breast cancer metastasis is not yet well known. We showed here that inhibition of NHE1 activity, with specific inhibitor Cariporide, could suppress MDA-MB-231 cells invasion as well as the activity and expression of MT1-MMP. Overexpression of MT1-MMP resulted in a distinguished increase in MDA-MB-231 cells invasiveness, but treatment with Cariporide reversed the MT1-MMP-mediated enhanced invasiveness. To explore the role of MAPK signaling pathways in NHE1-mediated breast cancer metastasis, we compared the difference of constitutively phosphorylated ERK1/2, p38 MAPK and JNK in non-invasive MCF-7 cells and invasive MDA-MB-231cells. Interestingly, we found that the phosphorylation levels of ERK1/2 and p38 MAPK in MDA-MB-231 cells were higher than in MCF-7 cells, but both MCF-7 cells and MDA-MB-231 cells expressed similar constitutively phosphorylated JNK. Treating MDA-MB-231 cells with Cariporide led to decreased phosphorylation level of both p38 MAPK and ERK1/2 in a time-dependent manner, but JNK activity was not influenced. Supplementation with MAPK inhibitor (MEK inhibitor PD98059, p38 MAPK inhibitor SB203580 and JNK inhibitor SP600125) or Cariporide all exhibited significant depression of MDA-MB-231 cells invasion and MT1-MMP expression. Furthermore, we co-treated MDA-MB-231 cells with MAPK inhibitor and Cariporide. The result showed that Cariporide synergistically suppressed invasion and MT1-MMP expression with MEK inhibitor and p38 MAPK inhibitor, but not be synergistic with the JNK inhibitor. These findings suggest that NHE1 mediates MDA-MB-231 cells invasion partly through regulating MT1-MMP in ERK1/2 and p38 MAPK signaling pathways dependent manner.  相似文献   

14.
Benzyl isothiocyanate (BITC), a constituent of edible cruciferous vegetables, inhibits growth of breast cancer cells but the mechanisms underlying growth inhibitory effect of BITC are not fully understood. Here, we demonstrate that BITC treatment causes FoxO1-mediated autophagic death in cultured human breast cancer cells. The BITC-treated breast cancer cells (MDA-MB-231, MCF-7, MDA-MB-468, BT-474, and BRI-JM04) and MDA-MB-231 xenografts from BITC-treated mice exhibited several features characteristic of autophagy, including appearance of double-membrane vacuoles (transmission electron microscopy) and acidic vesicular organelles (acridine orange staining), cleavage of microtubule-associated protein 1 light chain 3 (LC3), and/or suppression of p62 (p62/SQSTM1 or sequestosome 1) expression. On the other hand, a normal human mammary epithelial cell line (MCF-10A) was resistant to BITC-induced autophagy. BITC-mediated inhibition of MDA-MB-231 and MCF-7 cell viability was partially but statistically significantly attenuated in the presence of autophagy inhibitors 3-methyl adenine and bafilomycin A1. Stable overexpression of Mn-superoxide dismutase, which was fully protective against apoptosis, conferred only partial protection against BITC-induced autophagy. BITC treatment decreased phosphorylation of mTOR and its downstream targets (P70s6k and 4E-BP1) in cultured MDA-MB-231 and MCF-7 cells and MDA-MB-231 xenografts, but activation of mTOR by transient overexpression of its positive regulator Rheb failed to confer protection against BITC-induced autophagy. Autophagy induction by BITC was associated with increased expression and acetylation of FoxO1. Furthermore, autophagy induction and cell growth inhibition resulting from BITC exposure were significantly attenuated by small interfering RNA knockdown of FoxO1. In conclusion, the present study provides novel insights into the molecular circuitry of BITC-induced cell death involving FoxO1-mediated autophagy.  相似文献   

15.
Gemcitabine (2',2'-difluoro-2'-deoxycytidine; dFdCyd) is one of the anti-metabolites drugs that target DNA replication. We evaluated dFdCyd cytotoxicity and its radiosensitizing ability in human breast cancer cell lines, MCF-7 (wild-type p53) and MDA-MB-231 (mutant-type p53) along with normal mammary epithelial cell line (MCF-12) for comparison. Radiosensitivity and cytotoxicity were measured by the clonogenic survival assays. DNA DSBs was studied by Pulse Field Gel Electrophoresis (PFGE) and cell cycle distribution was analyzed by flow cytometry. MDA-MB-231 cells were the most sensitive to the cytotoxicity of dFdCyd (IC(50) 5 nM) then MCF-7 (IC(50) 10nM), whereas MCF-12 cells were the most resistant to the cytotoxicity of dFdCyd (IC(50) 70 nM). MCF-12 and MCF-7 cell lines did not show any radiosensitization to dFdCyd, whereas the MDA-MB-231 cells showed significantly increased radioresistant to dFdCyd at equimolar concentration (p=0.002) and at IC(50) concentration (p<0.001). The DNA double strand breaks (DSBs) repair showed that dFdCyd neither increases DNA DSBs nor decreases the rate of their repair in MCF-12 and MCF-7 cell lines, while the same treatment in MDA-MB-231 cell line led to decrease the rate of DSBs or increase the rate of DNA repair (p=0.034). Therefore, dFdCyd is a cytotoxic agent, especially in the cancer cells irrespective of having wild-type or mutated p53 protein, but it is not effective as radiosensitizer in the cell lines used in this study. dFdCyd combined with radiation reduces the efficacy of chemo-radiotherapy in p53 mutated cells. Therefore, p53-mutated cancer could be a counter-indication for radiation-gemcitabine combined treatment.  相似文献   

16.
The transport of L-leucine by two human breast cancer cell lines has been examined. L-leucine uptake by MDA-MB-231 and MCF-7 cells was via a BCH-sensitive, Na+ -independent pathway. L-leucine uptake by both cell lines was inhibited by L-alanine, D-leucine and to a lesser extent by L-lysine but not by L-proline. Estrogen (17beta-estradiol) stimulated L-leucine uptake by MCF-7 but not by MDA-MB-231 cells. L-leucine efflux from MDA-MB-231 and MCF-7 cells was trans-stimulated by BCH in a dose-dependent fashion. The effect of external BCH on L-leucine efflux from both cell types was almost abolished by reducing the temperature from 37 to 4 degrees C. There was, however, a significant efflux of L-leucine under zero-trans conditions which was also temperature-sensitive. L-glutamine, L-leucine, D-leucine, L-alanine, AIB and L-lysine all trans-stimulated L-leucine release from MDA-MB-231 and MCF-7 cells. In contrast, D-alanine and L-proline had little or no effect. The anti-cancer agent melphalan inhibited L-leucine uptake by MDA-MB-231 cells but had no effect on L-leucine efflux. Quantitative real-time PCR revealed that LAT1 mRNA was approximately 200 times more abundant than LAT2 mRNA in MCF-7 cells and confirmed that MDA-MB-231 cells express LAT1 but not LAT2 mRNA. LAT1 mRNA levels were higher in MCF-7 cells than in MDA-MB-231 cells. Furthermore, LAT1 mRNA was more abundant than CD98hc mRNA in both MDA-MB-231 and MCF-7 cells. The results suggest that system L is the major transporter for L-leucine in both MDA-MB-231 and MCF-7 cells. It is possible that LAT1 may be the major molecular correlate of system L in both cell types. However, not all of the properties of system L reflected those of LAT1/LAT2/CD98hc.  相似文献   

17.
18.
Cancer cells reprogram their metabolism due to genetic alteration to compensate for increased energy demand and enhanced anabolism, cell proliferation, and protection from oxidative damage. Here, we assessed the cytotoxicity of three dimeric naphthoquinones against the glycolytic MCF-7 versus the oxidative MDA-453 breast carcinoma cell lines. Dimeric naphthoquinones 1 and 2 impaired MDA-453, but not MCF-7, cell growth at IC(50)=15 μM. Significant increase in reactive oxygen species, decrease in oxygen consumption and ATP production were observed in MDA-453 cells but not in MCF-7 cell. These findings suggest that oxidative stress and mitochondrial dysfunction are mechanisms by which these agents exert their cytotoxic effects. Cyclic voltammetry and semi-empirical molecular orbital calculations further characterized the electrochemical behavior of these compounds. These results also suggest that dimeric naphthoquinones may be used to selectively target cancer cells that depend on oxidative phosphorylation for energy production and macromolecular synthesis.  相似文献   

19.
The transport of l-leucine by two human breast cancer cell lines has been examined. l-Leucine uptake by MDA-MB-231 and MCF-7 cells was via a BCH-sensitive, Na+-independent pathway. l-Leucine uptake by both cell lines was inhibited by l-alanine, d-leucine and to a lesser extent by l-lysine but not by l-proline. Estrogen (17β-estradiol) stimulated l-leucine uptake by MCF-7 but not by MDA-MB-231 cells. l-Leucine efflux from MDA-MB-231 and MCF-7 cells was trans-stimulated by BCH in a dose-dependent fashion. The effect of external BCH on l-leucine efflux from both cell types was almost abolished by reducing the temperature from 37 to 4 °C. There was, however, a significant efflux of l-leucine under zero-trans conditions which was also temperature-sensitive. l-Glutamine, l-leucine, d-leucine, l-alanine, AIB and l-lysine all trans-stimulated l-leucine release from MDA-MB-231 and MCF-7 cells. In contrast, d-alanine and l-proline had little or no effect. The anti-cancer agent melphalan inhibited l-leucine uptake by MDA-MB-231 cells but had no effect on l-leucine efflux. Quantitative real-time PCR revealed that LAT1 mRNA was approximately 200 times more abundant than LAT2 mRNA in MCF-7 cells and confirmed that MDA-MB-231 cells express LAT1 but not LAT2 mRNA. LAT1 mRNA levels were higher in MCF-7 cells than in MDA-MB-231 cells. Furthermore, LAT1 mRNA was more abundant than CD98hc mRNA in both MDA-MB-231 and MCF-7 cells. The results suggest that system L is the major transporter for l-leucine in both MDA-MB-231 and MCF-7 cells. It is possible that LAT1 may be the major molecular correlate of system L in both cell types. However, not all of the properties of system L reflected those of LAT1/LAT2/CD98hc.  相似文献   

20.
Quercetin is a dietary flavonoid which exerts anti-oxidant, anti-inflammatory and anti-cancer properties. In this study, we investigated the anti-proliferative effect of quercetin in two breast cancer cell lines (MCF-7 and MDA-MB-231), which differed in hormone receptor. IC50 value (37μM) of quercetin showed significant cytotoxicity in MCF-7 cells, which was not observed in MDA-MB-231 cells even at 100μM of quercetin treatment. To study the response of cancer cells to quercetin, with respect to different hormone receptors, both the cell lines were treated with a fixed concentration (40μM) of quercetin. MCF-7 cells on quercetin treatment showed more apoptotic cells with G1 phase arrest. In addition, quercetin effectively suppressed the expression of CyclinD1, p21, Twist and phospho p38MAPK, which was not observed in MDA-MB-231 cells. To analyse the molecular mechanism of quercetin in exerting an apoptotic effect in MCF-7 cells, Twist was over-expressed and the molecular changes were observed after quercetin administration. Quercetin effectively regulated the expression of Twist, in turn p16 and p21 which induced apoptosis in MCF-7 cells. In conclusion, quercetin induces apoptosis in breast cancer cells through suppression of Twist via p38MAPK pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号