首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Cadmium is an environmental toxic metal implicated in human diseases. In the present study, the effect of diphenyl diselenide, (PhSe)(2), on sub-chronic exposure with cadmium chloride (CdCl(2)) was investigated in rats. Male adult Swiss albino rats received CdCl(2) (10 micromol/kg, orally) and (PhSe)(2) (5 micromol/kg, orally) for a period of 30 days. A number of parameters were examined as indicators of toxicity, including hepatic and renal damage, glucose and glycogen levels and markers of oxidative stress. Cadmium content, liver histology, delta-aminolevulinate dehydratase (delta-ALA-D) activity, metallothionein (MT) levels were also evaluated. Cadmium content determined in the tissue of rats exposed to CdCl(2) provides evidence that the liver is the major cadmium target where (PhSe)(2) acts. The concentration of cadmium in liver was about three fold higher than that in kidney, and (PhSe)(2) reduced about six fold the levels of this metal in liver of rats exposed. Rats exposed to CdCl(2) showed histological alterations abolished by (PhSe)(2) administration. (PhSe)(2) administration ameliorated plasma malondialdehyde (MDA) levels, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH) and gamma-glutamyl transferase (GGT) activities increased by CdCl(2) exposure. Urea and bilirubin levels increased by CdCl(2) exposure were also reduced by (PhSe)(2). In conclusion, this study demonstrated that co-treatment with (PhSe)(2) ameliorated hepatotoxicity and cellular damage in rat liver after sub-chronic exposure with CdCl(2). The proposed mechanisms by which (PhSe)(2) acts in this experimental protocol are its antioxidant properties and its capacity to form a complex with cadmium.  相似文献   

2.
3.
The aim of this study was to investigate beneficial effect of aqueous extract of Phyllanthus fraternus (AEPF) on bromobenzene (BB) induced changes on cytosolic glutathione S-transferase (GST) isozymes in rat liver. Administration of BB significantly decreased the activity of GST, however, prior administration of AEPF prevented the BB induced decrease in GST activity. Further the cytosolic GSTs were purified from 3 groups of animals (control, BB and AEPF+BB administered) and resolved into three protein bands on SDS-PAGE. Densitometric analysis showed a significant decrease in BB group compared to control. Further, 2D PAGE analysis resolved these proteins into 8 bands which were identified as five isozymes of alpha, two of Mu and one of theta by MALDI-TOF MS and also observed decreased levels of isozymes in BB group. However, on prior administration of AEPF significantly prevented the BB induced decrease in GSTs and restored to normal levels.  相似文献   

4.
Glutaredoxins (Grx) are small (approximately 12kDa) proteins which catalyze thiol disulfide oxidoreductions involving glutathione (GSH) and disulfides in proteins or small molecules. Here, we present data which demonstrate the ability of glutaredoxins to catalyze the reduction of oxidized glutathione (GSSG) by dihydrolipoamide (DHL), an important biological redox catalyst and synthetic antioxidant. We have designed a new assay method to quantify the rate of reduction of GSSG and other disulfides by reduced lipoamide and have tested a set of eight recombinant Grx from human, rat, yeast, and E. coli. Lipoamide dependent activity is highest with the large atypical E. coli Grx2 (k(cat)=3.235 min(-1)) and lowest for human mitochondrial Grx2a (k(cat)=96 min(-1)) covering a wider range than k(cat) for the standard reduction of hydroxyethyldisulfide (HED) by GSH (290-2.851 min(-1)). The lipoamide/HED activity ratio was highest for yeast Grx2 (1.25) and E. coli Grx2 and lowest for E. coli Grx1 (0.13). These results suggest a new role for Grxs as ancillary proteins that could shunt reducing equivalents from main catabolic pathways to recycling of GSSG via a lipoyl group, thus serving biochemical functions which involve GSH but without NAD(P)H consumption.  相似文献   

5.
Among the factors that affect cell resistance against dehydration, oxidation is considered to be of great importance. In this work, we verified that both control and glutathione deficient mutant strains were much more oxidized after dehydration. Moreover, cells lacking glutathione showed a twofold higher increase in oxidation and lipid peroxidation than the control strain. While glucose 6-phosphate dehydrogenase and glutathione reductase activities did not change in response to dehydration in the control strain, the mutant strain gsh1 (glutathione deficient) showed a reduction of 50% in both activities, which could explain the high levels of oxidation shown by gsh1 cells. In conformity with these results, the mutant lacking GSH1 showed a high sensitivity to dehydration. Furthermore, the addition of glutathione to gsh1 cells restored survival rates to the levels of the control strain. We conclude that glutathione plays a significant role in the maintenance of intracellular redox balance during dehydration.  相似文献   

6.
Exposure to chlorpyrifos (CPF) poses several harmful effects to human and animal health. The present study investigated the influence of diphenyl diselenide (DPDS) on CPF-induced toxicity in Drosophila melanogaster. Firstly, the time course lethality response of virgin flies (2- to 3-day-old) to CPF (0.075–0.6 μg/g) and DPDP (5–40 μmol/kg) in the diet for 28 consecutive days were investigated. Subsequently, the protective effect of DPDS (10, 20 and 40 μmol/kg) on CPF (0.15 μg/g)-induced mortality, locomotor deficits, neurotoxicity and oxidative stress was assessed in a co-exposure paradigm for 7 days. Results showed that CPF exposure significantly decreased the percent live flies in a time- and concentration-dependent manner, whereas the percent live flies with DPDS treatment was not statistically different from control following 28 days of treatment. In the co-exposure study, CPF significantly increased flies mortality while the survivors exhibited significant locomotor deficits with decreased acetylcholinesterase (AChE) activity. Dietary supplementation with DPDS was associated with marked decrease in mortality, improvement in locomotor activity and restoration of AChE activity in CPF-exposed flies. Moreover, CPF exposure significantly decreased catalase and glutathione-S-transferase activities, total thiol level with concomitant significant elevation in the levels of reactive oxygen species and thiobarbituric acid reactive substances in the head and body regions of the treated flies. Dietary supplementation with DPDS significantly improved the antioxidant status and prevented CPF-induced oxidative stress, thus demonstrating the protective effect of DPDS in CPF-treated flies.  相似文献   

7.
Glutathione (L-γ-Glutamyl-L-Cysteinylglycine) appears as the major nonprotein thiol compound in yeasts. Recent advances have shown that glutathione (GSH) seems to be involved in the response of yeasts to different nutritional and oxidative stresses. When the yeast Saccharomyces cerevisiae is starved for sulfur or nitrogen nutrients, GSH may be mobilized to ensure cellular maintenance. Glutathione S-transferases may be involved in the detoxification of electrophilic xenobiotics. Vacuolar transport of metal derivatives of GSH ensure resistance to metal stress. Growth of methylotrophic yeasts on methanol results in the formation of an excess formaldehyde that is detoxified by a GSH-dependent formaldehyde dehydrogenase. Growth of yeasts on glycerol results in the accumulation of methylglyoxal detoxified by the glyoxalase pathway. Glutathione per se can react with oxidative agents or is involved in the oxidative stress response through glutathione peroxidase.  相似文献   

8.
Rat hearts were perfused for 15min with buffer equilibrated with 0.01% or 0.05% CO. The buffer was equilibrated with 21% O(2) throughout. The ventricular glutathione content decreased by 76% and 84%, 90min post-exposure to 0.01% and 0.05% CO, respectively, compared with 0% CO controls (0.45+/-0.01 micromol/g wet tissue; +/-SEM, n=3). Both reduced and oxidised glutathione contributed to this decline. When ascorbate and Trolox C were included during exposure to 0.05% CO the glutathione pool was partly protected; here the glutathione decrease was 46%. In most hearts additional creatine kinase activity in the perfusate indicated minor tissue injury occurring immediately after the start and/or about 10min after the end of exposure to 0.01% CO or 0.05% CO. Ventricle lactate levels were unaffected by exposure to 0.01% CO. This evidence supports a role for oxidative stress in CO cardiotoxicity.  相似文献   

9.
Aluminium is one of the most studied neurotoxin, and its effects on nervous system are both structural and functional, involving various regions of brain. Aluminium toxicity is known to have multiple mechanisms of action in the central nervous system. Affinity of aluminium for thiol substrates is considered a possible molecular mechanism involved in aluminium neurotoxicity. The reduced glutathione (GSH) is especially important for cellular defence against aluminium toxicity. This study pertains to the modulatory action of Centrophenoxine on GSH status in aluminium exposed different brain regions of the female rats. Aluminium was administered orally at a dose of 40 mg/Kg. b.wt. /day for a period of eight weeks whereas, Centrophenoxine was administered intraperitoneally at a dose of 100 mg/Kg b.wt./day for a period of six weeks. The study was carried out in different regions of brain namely Cerebrum, Cerebellum, Medulla Oblongata and Hypothalamus. Animals exposed to aluminum, registered a significant decrease in the levels of reduced glutathione, and oxidized glutathione as well as in the activity of glutathione reductase in all the different regions studied when compared to normal control animals. Post-treatment with Centrophenoxine, showed a significant improvement in the thiol levels in different regions. Centrophenoxine when administered alone also had a profound effect on the levels of reduced glutathione as well as on the activity of glutathione reductase. From the present results, it can be stated that Centrophenoxine administration, as a thiol-antioxidant, arrests the aluminium induced cellular damage by improving the thiol status in brain regions.  相似文献   

10.
Experimental autoimmune encephalomyelitis (EAE) is a T cell-mediated inflammatory and demyelinating disease of the central nervous system with clinical and pathological similarities with multiple sclerosis. The oxidative stress is one of the major mediators of demyelination and axonal damage in both, multiple sclerosis and EAE. Therefore, several studies are being performed to assess whether treatment with antioxidants prevents the progression of these diseases. Some organic forms of selenium that exhibit glutathione peroxidase-like activity have become good candidates for disease prevention and therapy since they catalytically remove oxidative stressors. Particularly, diphenyl diselenide ((PhSe)2) exerts antioxidant activity and has neuroprotective effects in several systems. The aim of the present study was to prove the therapeutic activity of (PhSe)2 on the development of EAE. Intraperitoneally administered (PhSe)2 (1-25 μmoles/kg body weight/day) reduced the incidence of the disease but was also deleterious for the animals. Conversely, (PhSe)2 given orally (80 μmoles/kg body weight/day) produced a significant inhibition of EAE without any toxic effect. In addition, there was a reduction of the characteristic histological alterations and a diminished in vivo and in vitro T-cell response against the encephalitogenic myelin basic protein. These results show an effective suppression of the autoimmune response that could be the base for future developments of successful antioxidants therapies in EAE as well as in multiple sclerosis.  相似文献   

11.
The involvement of non-enzymatic antioxidant defenses in the protective effect of diphenyl diselenide (PhSe)2 on testicular damage caused by cadmium in mice was investigated. Mice received a single dose of CdCl2 (5 mg/kg, intraperitoneally). Thirty minutes after the CdCl2 injection, they received a single oral dose of (PhSe)2 (400 μmol/kg). Twenty-four hours after CdCl2 administration, blood samples were collected and mice were killed and had their testes dissected. Parameters in plasma (aspartate (AST) and alanine (ALT) aminotransferases and lactato dehydrogenase (LDH) activities as well as creatinine levels) were determined. The activity of δ-aminolevulinate dehydratase (δ-ALA-D), the levels of thiobarbituric acid-reactive substances (TBARS), ascorbic acid and nonprotein thiols (NPSH) and histological analysis were determined in collected samples. Results demonstrated that (PhSe)2 protected against toxicity induced by CdCl2 on δ-ALA-D activity, ascorbic acid and NPSH levels. (PhSe)2 protected against the increase in plasma AST, ALT and LDH activities caused by CdCl2. Testes of mice exposed to CdCl2 showed marked histopathological alterations that were ameliorated by administration of (PhSe)2. (PhSe)2 protected against toxicity induced by CdCl2 in testes of mice. Ascorbic acid and NPSH, non-enzymatic antioxidant defenses, are involved in the protective effect of (PhSe)2 against testicular damage caused by CdCl2 in mice.  相似文献   

12.
Interest in organoselenide chemistry and biochemistry has increased in the past three decades, mainly due to their chemical and biological activities. Here, we investigated the protective effect of the organic selenium compound diphenyl diselenide (PhSe)2 (5 μmol/kg), in a mouse model of methylmercury (MeHg)-induced brain toxicity. Our group has previously demonstrated that the oral and repeated administration (21 days) of MeHg (40 mg/L) induced MeHg brain accumulation at toxic concentrations, and a pattern of severe cortical and cerebellar biochemical and behavioral. In order to assess neurotoxicity, the neurochemical parameters, namely, mitochondrial complexes I, II, II–III and IV, glutathione peroxidase (GPx) and glutathione reductase (GR) activities, the content of thiobarbituric acid-reactive substances (TBA-RS), 8-hydroxy-2′-deoxyguanosine (8-OHdG), and brain-derived neurotrophic factor (BDNF), as well as, metal deposition were investigated in mouse cerebral cortex. Cortical neurotoxicity induced by brain MeHg deposition was characterized by the reduction of complexes I, II, and IV activities, reduction of GPx and increased GR activities, increased TBA-RS and 8-OHdG content, and reduced BDNF levels. The daily treatment with (PhSe)2 was able to counteract the inhibitory effect of MeHg on mitochondrial activities, the increased oxidative stress parameters, TBA-RS and 8-OHdG levels, and the reduction of BDNF content. The observed protective (PhSe)2 effect could be linked to its antioxidant properties and/or its ability to reduce MeHg deposition in brain, which was here histochemically corroborated. Altogether, these data indicate that (PhSe)2 could be consider as a neuroprotectant compound to be tested under neurotoxicity.  相似文献   

13.
A mutant rat GPX1 (a cytosolic predominant form), in which the selenocysteine residue in the catalytic center was replaced by cysteine, was prepared and an antibody against the mutant enzyme was raised. The resultant antibody specifically reacted with rat GPX1 and was, together with the Glutathione reductase (GR) antibody, used in a Western blot analysis and immunohistochemistry experiments. To elucidate the physiological coupling of these enzymes under oxidative stress which accompanies the birth, developmental changes of the protein levels and enzymatic activities of GR and GPX1 were examined for lungs and kidneys from prenatal fetus to adult rats. The expression of GR was already evident at the prenatal stage and remained high in lungs at all stages. However, GR activity in kidneys gradually increased after birth reaching maximal levels at adulthood. An immunohistochemical study showed that GR was strongly bound to the bronchial epithelia in lungs and the epithelial cells of renal tubes. GPX1 was expressed in the renal tube epithelial cells and its level gradually increased after birth in a manner similar to that of GR. The expression of GPX1 in the lungs was, on the other hand, variable and occurred in some alveolar cells and bronchial epithelia only at restricted periods. It preferentially localized in nuclei at a late stage of development. Thus, the expression of the two functionally coupled enzymes via GSH did not appear to coordinate with development, tissue localization or under oxidative stress. Since many gene products show GSH-dependent preoxidase activity, other peroxidase(s) may be induced to compensate for the low GPX1 levels at stages with high GR expression.  相似文献   

14.

Background

In epilepsy, seizures are generated by abnormal synchronous activity in neurons. In the rat hippocampus (HIP), epileptiform activity has been found to be associated with gap junctions (GJs). GJs are formed by the combination of two hemichannels, each composed of six connexins. At low doses, the convulsive drug 4-aminopyridine (4-AP) produces epileptiform activity without affecting glutamate levels; therefore, GJs could participate in its effect. Based on this argument, in this study, the expression of Cx 32, Cx 36 and Cx 43 protein and mRNA in the HIP of rats treated with 4-AP was evaluated. The evaluation of connexins was carried out by chemifluorescent immunoassay, semiquantitative RT-PCR and immunofluorescence to detect the amount and distribution of connexins and of cellular markers in the HIP and dentate gyrus (DG) of animals treated with NaCl and 4-AP in the right entorhinal cortex. In these animals, convulsive behavior and EEG signals were analyzed.

Results

The animals treated with 4-AP showed convulsive behavior and epileptiform activity 60 min after the administration. A significant increase in the protein expression of Cx 32, Cx 36 and Cx 43 was found in the HIP contralateral and ipsilateral to the site of 4-AP administration. A trend toward an increase in the mRNA of Cx 32 and Cx 43 was also found. An increase in the cellular density of Cx 32 and Cx 43 was found in the right HIP and DG, and an increase in the cellular density of oligodendrocytes in the DG and a decrease in the number of cells marked with NeuN were observed in the left HIP.

Conclusions

Cx 32 and Cx 43 associated with oligodendrocytes and astrocytes had an important role in the first stages of seizures induced by 4-AP, whereas Cx36 localized to neurons could be associated with later stages. Additionally, these results contribute to our understanding of the role of connexins in acute seizures and allow us to direct our efforts to other new anticonvulsant strategies for seizure treatment.  相似文献   

15.
In this study, total glutathione content was determined in human spermatozoa before and after cryopreservation. Total GSH in fresh semen was 4.47 ± 0.46 nmol/108 cells. Following semen cryopreservation, GSH decreased to 1.62 ± 0.13 nmol/108 cells, a 64% reduction (p < 0.01). This decrease in GSH content was associated with a decrease in sperm progressive motility (68% of reduction, p < 0.01). Addition of 1 mM GSH to the freezing extender increased the percentage of total motility and sperm viability. It also modified the motility pattern measured by CASA with changes in the straight-line and average path velocities and wobble of the curvilinear trajectory. Addition of GSH to the freezing media reduced spermatozoa ROS levels and increased the level of sulfhydryl groups on membrane proteins. Nevertheless, no effect of GSH addition on lipid membrane disorder or chromatin condensation was detected. Addition of 1 or 5 mM GSH to the thawing media increased the percentage of motile and progressively motile spermatozoa, but no effect on viability was detected. In conclusion, the antioxidant defensive capacity of the GSH is severely altered by the freeze–thawing process. The addition of GSH to the freezing and thawing extender could be of partial and limited benefit in improving the function of frozen human spermatozoa.  相似文献   

16.
Raza H  Ahmed I  John A 《Life sciences》2004,74(12):1503-1511
In streptozotocin (STZ)-induced diabetes, destruction of pancreatic beta-cell causes an acute shortage of insulin. Increased oxidative stress is believed to be one of the main factors in the etiology and complications of diabetes. In this study we have reported hyperglycemia and glutathione-associated oxidative stress in rats one week after treatment with STZ. In our previous studies, we have reported oxidative stress-related changes in xenobiotic metabolism in tissues from STZ-induced chronic diabetic rats. Here, we demonstrate by immunohistochemistry, that glutathione S-transferase (GST) isoenzymes are differentially expressed in the liver, kidney and testis of diabetic rats. The distribution of GST isoenzymes was found to be tissue- and regio-specific. In addition, we have also shown that treatment with an extract of Momordica charantia (karela), an antidiabetic herb, modulates GST expression in diabetic rats and reverts them to the normal distribution as seen in the tissues of control rats. These results suggest that glutathione metabolism and GST distribution in the tissues of diabetic rats may play an important role in the etiology, pathology and prevention of diabetes.  相似文献   

17.
A grande gsh1 disruptant mutant of Saccharomyces cerevisiae was generated by crossing a petite disruptant to a wild-type grande strain. This strain was relatively stable, but generated petites at an elevated frequency, illustrating the ancillary role of glutathione (GSH) in the maintenance of the genetic integrity of the mitochondrial genome. The availability of the grande gsh1 deletant enabled an evaluation of the role of GSH in the cellular response to hydrogen peroxide independent of the effects of a petite mutation. The mutant strain was more sensitive to hydrogen peroxide than the wild-type strain but was still capable of producing an adaptive stress response to this compound. GSH was found to be essential for growth and sporulation of the yeast, but the intracellular level needed to support growth was at least two orders of magnitude less than that normally present in wild-type cells. This surprising result indicates that there is an essential role for GSH but only very low amounts are needed for growth. This result was also found in anaerobic conditions, thus this essential function does not involve protection from oxidative stress. Suppressors of the gsh1 deletion mutation were isolated by ethylmethanesulfonate mutagenesis. These were the result of a single recessive mutation (sgr1, suppressor for glutathione requirement) that relieved the requirement for GSH for growth on minimal medium but did not affect the sensitivity to H(2)O(2) stress. Interestingly, the gsh1 sgr1 mutant generated petites at a lower rate than the gsh1 mutant. Thus, it is suggested that the essential role of GSH is involved in the maintenance of the mitochondrial genome.  相似文献   

18.
Glutathione redox status is a commonly used oxidative stress biomarker. High-performance liquid chromatography-ultraviolet (HPLC-UV) and HPLC-electrochemical detection (HPLC-ECD) have been used to assess glutathione status but have potential limitations due to challenging sample preparation procedures or electrochemical signal degradation. Thus, this study aimed to validate an HPLC-ECD approach using boron-doped diamond (BDD), a novel electrode material exhibiting excellent electrochemical stability. Liver homogenates from obese (ob/ob) mice and their lean littermates (n = 4/genotype) as well as from rats fed high- or low-fat diets (n = 8/treatment) were analyzed in parallel by HPLC-BDD and -UV. HPLC-BDD responses for reduced glutathione (GSH) and oxidized glutathione (GSSG) were linear over more than four orders of magnitude at 1475 mV, the optimal oxidation potential. Within- and between-day precision values of GSH, GSSG, and GSH/GSSG were 2.1% to 7.9%, and accuracy values of GSH and GSSG were 96% and 105%, respectively. Electrochemical responses were stable up to 48 h of continuous system use. Using HPLC-BDD and -UV, hepatic GSH, GSSG, and GSH/GSSG from mice (r = 0.64-0.94) and rats (r = 0.79-0.92) were well correlated (P < 0.05), and no significant differences in thiol levels were observed between detection methods. Collectively, our findings support HPLC-BDD as a relatively simple, accurate, and validated approach for evaluating hepatic glutathione redox status.  相似文献   

19.
Astrocytes provide cysteine to neurons by releasing glutathione   总被引:21,自引:0,他引:21  
Cysteine is the rate-limiting precursor of glutathione synthesis. Evidence suggests that astrocytes can provide cysteine and/or glutathione to neurons. However, it is still unclear how cysteine is released and what the mechanisms of cysteine maintenance by astrocytes entail. In this report, we analyzed cysteine, glutathione, and related compounds in astrocyte conditioned medium using HPLC methods. In addition to cysteine and glutathione, cysteine-glutathione disulfide was found in the conditioned medium. In cystine-free conditioned medium, however, only glutathione was detected. These results suggest that glutathione is released by astrocytes directly and that cysteine is generated from the extracellular thiol/disulfide exchange reaction of cystine and glutathione: glutathione + cystine<-->cysteine + cysteine-glutathione disulfide. Conditioned medium from neuron-enriched cultures was also assayed in the same way as astrocyte conditioned medium, and no cysteine or glutathione was detected. This shows that neurons cannot themselves provide thiols but instead rely on astrocytes. We analyzed cysteine and related compounds in rat CSF and in plasma of the carotid artery and internal jugular vein. Our results indicate that cystine is transported from blood to the CNS and that the thiol/disulfide exchange reaction occurs in the brain in vivo. Cysteine and glutathione are unstable and oxidized to their disulfide forms under aerobic conditions. Therefore, constant release of glutathione by astrocytes is essential to maintain stable levels of thiols in the CNS.  相似文献   

20.
Experimental kinetics and computational modeling of human glutathione synthetase (hGS) support the significant role of the G-loop glycine triad (G369, G370, G371) for activity of this ATP-grasp enzyme. Enzyme kinetic experiments indicate that G369V and G370V mutant hGS have little activity (<0.7 and 0.3%, respectively, versus wild-type hGS). However, G371V retains ∼13% of the activity of wild-type hGS. With respect to G-loop:A-loop interaction in hGS, mutations at Gly369 and Gly370 decrease ligand binding and prevent active site closure and protection. This research indicates that Gly369 and Gly370 have essential roles in hGS, while Gly371 has a lesser involvement. Implications for glycine-rich ensembles in other phosphate-binding enzymes are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号