首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Scutellaria baicalensis (SB) has been shown to improve the therapeutic effects of colorectal cancer (CRC) and perform well for reversing radio-resistance in different cancers. However, its potential function and mechanism related to radio-resistance in CRC has not been explored. A radio-resistant human CRC cell line (HCT116R) was applied. A network pharmacological analysis was performed to reveal the potential mechanism of SB for reversing radio-resistance in CRC, and computational pathological analysis was applied to indicate the clinicopathological significance of the key targets. Then, our hypothesis was further verified by molecular docking. The network pharmacology analysis showed that wogonin is the key compound of SB for reversing the radio-resistance of CRC. A Kyoto Encyclopedia of Genes and Genomes analysis showed that the genes for SB that reverse radio-resistance in CRC are mainly involved in steroid hormone biosynthesis. An enrichment analysis pointed out that Sulfotransferase family 2B member 1 (SULT2B1) is a potentially vital gene. SULT2B1 was demonstrated as being highly expressed in CRC and upregulated in radio-resistant rectal tissues or cell lines. A CCK-8 and clone formation test showed that the viability and clone formation ability of HCT116R were significantly decreased by wogonin combined with radiotherapy, compared to radiotherapy alone. By contrast, flow cytometry revealed that the apoptosis of HCT116R was significantly increased when wogonin treatment combined with radiotherapy, compared with radiotherapy alone. Molecular docking verification indicated that SULT2B1 and wogonin have a good binding ability. Taken together, SULT2B1 may be the potential drug target in treating radio-resistant CRC. Wogonin may be the core compound of SB for reversing radio-resistance in CRC by targeting SULT2B1.  相似文献   

2.
Tak JK  Lee JH  Park JW 《BMB reports》2012,45(4):242-246
The use of ionizing radiation (IR) is essential for treating many human cancers. However, radioresistance markedly impairs the efficacy of tumor radiotherapy. IR enhances the production of reactive oxygen species (ROS) in a variety of cells which are determinant components in the induction of apoptosis. Much interest has developed to augment the effect of radiation in tumors by combining it with radiosensitizers to improve the therapeutic ratio. In the current study, the radiosensitizing effects of resveratrol and piperine on cancer cells were evaluated. Cancer cell lines treated with these natural products exhibited significantly augmented IR-induced apoptosis and loss of mitochondrial membrane potential, presumably through enhanced ROS generation. Applying natural products as sensitizers for IR-induced apoptotic cell death offers a promising therapeutic approach to treat cancer.  相似文献   

3.
Hsin IL  Ou CC  Wu TC  Jan MS  Wu MF  Chiu LY  Lue KH  Ko JL 《Autophagy》2011,7(8):873-882
Autophagy is a self-digestive process that degrades the cytoplasmic constituents. Immunomodulatory protein, one major bioactive component of Ganoderma, has antitumor activity. In this study, recombinant fungal immunomodulatory protein, GMI, was cloned from Ganoderma microsporum and purified. We demonstrated that GMI induces lung cancer cell death by activating autophagy, but does not induce apoptotic cell death. On western blot, GMI increased LC3 conversion and decreased p53 expression in a time- and concentration-dependent manner. Cytoplasmic calcium chelator BAPTA-AM was used to prove that GMI promotes autophagy via a calcium-mediated signaling pathway. 3-methyladenine (3-MA), an autophagy inhibitor, enhanced the cytotoxicity of GMI on cell viability assay. Using VZV-G pseudotyped lentivirus-shRNA system for autophagy-related genes silencing, the capabilities of GMI to reduce cell viability and colony formation were abolished in autophagy-defective cells. Furthermore, GMI did not stimulate apoptosis after blocking of autophagy by 3-MA or shRNA knockdown system. In xenograft studies, oral administration of GMI inhibited the tumor growth and induced autophagy significantly in nude mice that had received a subcutaneous injection of A549 cells. This is the first study to reveal the novel function of GMI in activating autophagy. GMI may be a potential chemopreventive agent against non-small cell lung cancer.  相似文献   

4.
Zou M  Lu N  Hu C  Liu W  Sun Y  Wang X  You Q  Gu C  Xi T  Guo Q 《Cellular signalling》2012,24(8):1722-1732
Autophagy is a tightly-regulated catabolic process that involves the degradation of intracellular components via lysosomes. Although the pivotal role of autophagy in cell growth, development, and homeostasis has been well understood, its function in cancer prevention and intervention remains to be delineated. The aim of this study was to investigate the function and mechanism of autophagy induced by oroxylin A, a natural mono-flavonoid extracted from Scutellariae radix. We found for the first time that oroxylin A induced Beclin 1-mediated autophagy in human hepatocellular carcinoma HepG2 cells. Time-lapse video microscopy and western blotting studies showed that treatment of cells with 80 μM oroxylin A resulted in the conversion of water soluble MAP-LC3 (LC3-I) to the lipidated and autophagosome-associated form (LC3-II) after 12hours; then autophagosome-lysosome fusion and lysosome degradation after 24 hours was required in oroxylin A-mediated cell death. This induction was associated with the suppressing of PI3K-PTEN-Akt-mTOR signaling pathway by oroxylin A. Our results also showed that autophagy took place before noticeable apoptosis can be observed. It was further demonstrated that oroxylin A-triggered autophagy contributed to cell death using over-expression of autophagy-related gene (Atg5 and Atg7) and inhibition of autophagy by siBeclin 1 and 3-methyladenine (3-MA). In vivo study, oroxylin A inhibited xenograft tumor growth and induced obvious autophagy in tumors. Taken together, we conclude that oroxylin A exhibits autophagy-mediated antitumor activity in a dose and time-dependent manner in vivo and in vitro. These findings define and support a novel function of autophagy in promoting death of hepatocellular carcinoma cells.  相似文献   

5.
Liu YL  Yang PM  Shun CT  Wu MS  Weng JR  Chen CC 《Autophagy》2010,6(8):1057-1065
Hepatocellular carcinoma (HCC) is the fifth most common cancer and the third leading cause of cancer death worldwide. Drug treatments for HCC have been largely unsuccessful. Histone deacetylase inhibitors can reactivate tumor suppressor genes in cancer cells and serve as potential anti-cancer drugs. Two potent HDAC inhibitors OSU-HDAC42 and SAHA induced autophagy in HCC cells as revealed by transmission electron microscopy, immunofluorescence and LC3-II accumulation. We found that SAHA and OSU-HDAC42 induced autophagy through downregulation of Akt/mTOR signaling and induction of ER stress response. Inhibition of autophagy by 3-MA or Atg5 knockout reduced SAHA-induced cytotoxicity, indicating that SAHA-induced autophagy led to cell death. Our results show that the combination of autophagy inducers with SAHA might be attractive for the treatment of HCC and pharmacological targeting of autophagy provides promise for the management of cancer therapy.  相似文献   

6.
《Autophagy》2013,9(8):873-882
Autophagy is a self-digestive process that degrades the cytoplasmic constituents. Immunomodulatory protein, one major bioactive component of Ganoderma, has antitumor activity. In this study, recombinant fungal immunomodulatory protein, GMI, was cloned from Ganoderma microsporum and purified. We demonstrated that GMI induces lung cancer cell death by activating autophagy, but does not induce apoptotic cell death. On western blot, GMI increased LC3 conversion and decreased p53 expression in a time- and concentration-dependent manner. Cytoplasmic calcium chelator BAPTA-AM was used to prove that GMI promotes autophagy via a calcium-mediated signaling pathway. 3-methyladenine (3-MA), an autophagy inhibitor, enhanced the cytotoxicity of GMI on cell viability assay. Using VZV-G pseudotyped lentivirus-shRNA system for autophagy-related genes silencing, the capabilities of GMI to reduce cell viability and colony formation were abolished in autophagy-defective cells. Furthermore, GMI did not stimulate apoptosis after blocking of autophagy by 3-MA or shRNA knockdown system. In xenograft studies, oral administration of GMI inhibited the tumor growth and induced autophagy significantly in nude mice that had received a subcutaneous injection of A549 cells. This is the first study to reveal the novel function of GMI in activating autophagy. GMI may be a potential chemopreventive agent against non-small cell lung cancer.  相似文献   

7.
《Autophagy》2013,9(8):1057-1065
Hepatocellular carcinoma (HCC) is the fifth most common cancer and the third leading cause of cancer death worldwide. Drug treatments for HCC have been largely unsuccessful. Histone deacetylase inhibitors can reactivate tumor suppressor genes in cancer cells and serve as potential anti-cancer drugs. Two potent HDAC inhibitors OSU-HDAC42 and SAHA induced autophagy in HCC cells as revealed by transmission electron microscopy, immunofluorescence and LC3-II accumulation. We found that SAHA and OSU-HDAC42 induced autophagy through downregulation of Akt/mTOR signaling and induction of ER stress response. Inhibition of autophagy by 3-MA or Atg5 knockout reduced SAHA-induced cytotoxicity, indicating that SAHA-induced autophagy led to cell death. Our results show that the combination of autophagy inducers with SAHA might be attractive for the treatment of HCC and pharmacological targeting of autophagy provides promise for the management of cancer therapy.  相似文献   

8.
《Autophagy》2013,9(2):166-173
Minocycline has been shown to alleviate several neurological disorders. Unexpectedly, we found that minocycline had opposite effects on glioma cells: minocycline induced nonapoptotic cell death in glioma cells. The glioma cell death was associated with the presence of autophagic vacuoles in the cytoplasm. Minocycline induced autophagy was confirmed by acridine orange, monodansylcadaverine (MDC) stainings of vesicle formation and the conversion of microtubule-associated proteins light chain 3 (LC3-I) to LC3-II. Pretreatment with autophagy inhibitor 3-methyladenine (3-MA) suppressed the induction of acidic vesicular organelles and the accumulation of LC3-II to the autophagosome membrane in glioma cells treated with minocycline. Despite the pretreatment of 3-MA, minocycline induced cell death which could result from the activation of caspase-3. Minocycline effectively inhibited tumor growth and induced autophagy in the xenograft tumor model of C6 glioma cells. These results suggest that minocycline may kill glioma cells by inducing autophagic cell death. When autophagy was inhibited, minocycline still induced cell death through the activation of caspase-3. Thus, minocycline is a promising agent in the treatment of malignant gliomas.  相似文献   

9.
Radiotherapy is a conventional approach for anti-cancer treatment, killing tumor cells through damaging cellular DNA. While increasing studies have demonstrated that tumors generated the tolerance to radiation and tumor immune system was found to be correlated to radiotherapy resistance. Therefore, it is critical to identify potential immune factors associated with the efficacy of radiotherapy. Here in this study, we evaluated the sensitivities of different tumor cells to radiation and determined HEp-2 cells as the radio-resistant tumor cells for further investigation. IFNgamma as a key regulator of host immune response showed the potential to sensitize tumors to ionizing radiation (IR). Besides, IFNgamma-induced CXC chemokine ligand 10 (CXCL10) was found to be necessary for effective IR-induced killing of cultured HEp-2 cells. Increased clonogenic survival was observed in CXCL10-depleted HEp-2 cells and CXCL10-KO cells. Additionally, the loss of CXCL10 in HEp-2 cells showed less progression of the G0/G1 phase to G2/M when exposed to IR (8 Gy). Local IR (20 Gy) to nude mice bearing HEp-2 tumors significantly reduced tumor burden, while fewer effects on tumor burden in mice carrying CXCL10-KO tumors were observed. We furtherly evaluated the possible roles the chemokine receptor CXCR3 plays in mediating the sensitivity of cultured HEp-2 cells to IR. Altered expression of CXCR3 in HEp-2 cells affected IR-induced killing of HEp-2 cells. Our data suggest the IFNgamma-activated CXCL10/CXCR3 axis may contribute to the effective radiation-induced killing of HEp-2 cells in vitro.  相似文献   

10.
Liu WT  Lin CH  Hsiao M  Gean PW 《Autophagy》2011,7(2):166-175
Minocycline has been shown to alleviate several neurological disorders. Unexpectedly, we found that minocycline had opposite effects on glioma cells: minocycline induced nonapoptotic cell death in glioma cells. The glioma cell death was associated with the presence of autophagic vacuoles in the cytoplasm. Minocycline induced autophagy was confirmed by acridine orange, monodansylcadaverine (MDC) stainings of vesicle formation and the conversion of microtubule-associated proteins light chain 3 (LC3-I) to LC3-II. Pretreatment with autophagy inhibitor 3-methyladenine (3-MA) suppressed the induction of acidic vesicular organelles and the accumulation of LC3-II to the autophagosome membrane in glioma cells treated with minocycline. Despite the pretreatment of 3-MA, minocycline induced cell death which could result from the activation of caspase-3. Minocycline effectively inhibited tumor growth and induced autophagy in the xenograft tumor model of C6 glioma cells. These results suggest that minocycline may kill glioma cells by inducing autophagic cell death. When autophagy was inhibited, minocycline still induced cell death through the activation of caspase-3. Thus, minocycline is a promising agent in the treatment of malignant gliomas.  相似文献   

11.
As cellular models for in vitro liver cancer and toxicity studies, HepG2 and Hep3B are the two most frequently used liver cancer cell lines. Because of their similarities they are often treated as the same in experimental studies. However, there are many differences that have been largely over-sighted or ignored between them. In this review, we summarize the differences between HepG2 and Hep3B cell lines that can be found in the literature based on PubMed search. We particularly focus on the differential gene expression, differential drug responses (chemosensitivity, cell cycle and growth inhibition, and gene induction), signaling pathways associated with these differences, as well as the factors in governing these differences between HepG2 and Hep3B cell lines. Based on our analyses of the available data, we suggest that neither HBx nor p53 may be the crucial factor to determine the differences between HepG2 and Hep3B cell lines although HBx regulates the expression of the majority of genes that are differentially expressed between HepG2 and Hep3B. Instead, the different maturation stages in cancer development of the original specimen between HepG2 and Hep3B may be responsible for the differences between them. This review provides insight into the molecular mechanisms underlying the differences between HepG2 and Hep3B and help investigators especially the beginners in the areas of liver cancer research and drug metabolism to fully understand, and thus better use and interpret the data from these two cell lines in their studies.  相似文献   

12.
Lee SM  Li ML  Tse YC  Leung SC  Lee MM  Tsui SK  Fung KP  Lee CY  Waye MM 《Life sciences》2002,71(19):2267-2277
Paeoniae Radix (PR) is the root of traditional Chinese Herb named Paeonia lactiflora Pallas, which is commonly used to treat liver diseases in China for centuries. Several earlier studies have indicated that PR has anticancer growth activities, however the mechanism underlying these activities was unclear and remained to be elucidated. In this study, we evaluated the molecular mechanism of the effect of PR on human hepatoma cell lines, HepG2 and Hep3B. Our results showed that the water-extract of Paeoniae Radix (PRE) had inhibitory effect on the growth of both HepG2 and Hep3B cell lines. The induction of internucleosomal DNA fragmentation and chromatin condensation appearance, and accumulation of sub-G1 phase of cell cycle profile in PRE treated hepatoma cells evidenced that the cytotoxicity of PRE to the hepatoma cells is through activation of the cell death program, apoptosis. The activation of apoptosis by PRE is independent of the p53 pathway as Hep3B cell is p53-deficient. In addition, the differential gene expression of PRE treated HepG2 was examined by cDNA microarray technology and RT-PCR analysis. We found that the gene expression of BNIP3 was up-regulated while ZK1, RAD23B, and HSPD1 were down-regulated during early apoptosis of the hepatoma cell mediated by PRE. The elucidation of the drug targets of PR on inhibition of tumor cells growth should enable further development of PR for liver cancer therapy.  相似文献   

13.
p53凋亡刺激蛋白2(apoptosis stimulating protein 2 of p53, ASPP2)能特异性地与p53蛋白结合并增强其促凋亡的功能,进而发挥抗肿瘤作用. 本室前期研究发现,ASPP2可以通过p53-DRAM自噬途径诱导细胞凋亡. 在本研究中,利用ASPP2 腺病毒感染Hep3B细胞(p53缺陷型肝癌细胞系)并用甲基磺酸(MMS)处理后; Calcein AM/PI和M30染色检测细胞凋亡;GFP-LC3质粒转染细胞后检测自噬; 荧光定量PCR和免疫印迹检测自噬基因表达. 结果表明,ASPP2在p53缺陷的Hep3B细胞内可诱导发生凋亡;在MMS存在和缺失条件下, Adr-ASPP2均引起自噬体水平升高及自噬基因的表达增 加,且MMS协同Adr-ASPP2能使自噬水平增加; 进一步用VPS34 siRNA和DRAM siRNA抑 制自噬发现,细胞凋亡水平下降, 说明由Adr-ASPP2诱发经损伤相关自噬调节蛋白( DRAM)介导的自噬参与了肝癌细胞系凋亡的发生. 综上结果表明,ASPP2可以通过非p53依赖的DRAM介导自噬,并促进肝癌细胞凋亡. 该研究可为肝癌的基因治疗提供新的思路.  相似文献   

14.
15.
We asked whether inhibitors of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, which is highly active in cancer stem cells (CSCs) and upregulated in response to genotoxic treatments, promote γ-irradiationγIR)-induced cell death in highly radioresistant, patient-derived stem-like glioma cells (SLGCs). Surprisingly, in most cases the inhibitors did not promote γIR-induced cell death. In contrast, the strongly cytostatic Ly294002 and PI-103 even tended to reduce it. Since autophagy was induced we examined whether addition of the clinically applicable autophagy inhibitor chloroquine (CQ) would trigger cell death in SLGCs. Triple therapy with CQ at doses as low as 5 to 10 µM indeed caused strong apoptosis. At slightly higher doses, CQ alone strongly promoted γIR-induced apoptosis in all SLGC lines examined. The strong apoptosis in combinations with CQ was invariably associated with strong accumulation of the autophagosomal marker LC3-II, indicating inhibition of late autophagy. Thus, autophagy-promoting effects of PI3K/Akt pathway inhibitors apparently hinder cell death induction in γ-irradiated SLGCs. However, as we show here for the first time, the late autophagy inhibitor CQ strongly promotes γIR-induced cell death in highly radioresistant CSCs, and triple combinations of CQ, γIR and a PI3K/Akt pathway inhibitor permit reduction of the CQ dose required to trigger cell death.  相似文献   

16.
稀土氧化物纳米材料的生物安全性越来越受到关注,这类纳米材料引起的自噬反应对于癌细胞杀伤也具有重要意义。自噬在细胞存活和死亡中发挥双重作用,槲皮素可以促进自噬,稀土氧化物已被证明可引起不同类型的自噬。制备了葡聚糖包被的氧化铈纳米颗粒负载的槲皮素复合材料DCQ,并对其自身性质进行表征,从细胞活力及氧化损伤以及自噬、凋亡机制这几个方面研究了其对人肝癌细胞HepG2的作用。结果表明,此复合材料对HepG2细胞具有更强的毒性(P<0.05),并且对正常细胞人脐静脉血管内皮细胞HUVEC无明显毒害作用,复合材料能够诱发人肝癌细胞产生大量活性氧,引起自噬阻断和诱导癌细胞凋亡。上述结果说明,这种纳米复合材料能有效杀伤人肝癌细胞,为肝癌治疗提供了新思路。  相似文献   

17.
The hepatitis B virus X protein (HBx) has been implicated in the development of hepatocellular carcinoma (HCC) associated with chronic infection. As a multifunctional protein, HBx regulates numerous cellular pathways, including autophagy. Although autophagy has been shown to participate in viral DNA replication and envelopment, it remains unclear whether HBx-activated autophagy affects host cell death, which is relevant to both viral pathogenicity and the development of HCC. Here, we showed that enforced expression of HBx can inhibit starvation-induced cell death in hepatic (L02 and Chang) or hepatoma (HepG2 and BEL-7404) cell lines. Starvation-induced cell death was greatly increased in HBX-expressing cell lines treated either with the autophagy inhibitor 3-methyladenine (3-MA) or with an siRNA directed against an autophagy gene, beclin 1. In contrast, treatment of cells with the apoptosis inhibitor Z-Vad-fmk significantly reduced cell death. Our results demonstrate that HBx-mediated cell survival during starvation is dependent on autophagy. We then further investigated the mechanisms of cell death inhibition by HBx. We found that HBx inhibited the activation of caspase-3, an execution caspase, blocked the release of mitochondrial apoptogenic factors, such as cytochrome c and apoptosis-inducing factor (AIF), and inhibited the activation of caspase-9 during starvation. These results demonstrate that HBx reduces cell death through inhibition of mitochondrial apoptotic pathways. Moreover, increased cell viability was also observed in HepG2.2.15 cells that replicate HBV and in cells transfected with HBV genomic DNA. Our findings demonstrate that HBx promotes cell survival during nutrient deprivation through inhibition of apoptosis and activation of autophagy. This highlights an important potential role of autophagy in HBV-infected hepatocytes growing under nutrient-deficient conditions.  相似文献   

18.
To explore new targets for hepatoma research, we used a surface display library to screen novel tumor cell-specific peptides. The bacterial FliTrx system was screened with living normal liver cell line L02 and hepatoma cell line HepG2 successively to search for hepatoma-specific peptides. Three clones (Hep1, Hep2, and Hep3) were identified to be specific to HepG2 compared with L02 and other cancer cell lines. Three-dimensional structural prediction proved that peptides inserted into the active site of Escherichia coli thioredoxin (TrxA) formed certain loop structures protruding out of the surface. Western blot analysis showed that FliC/TrxA-peptide fusion proteins could be directly used to detect HepG2 cells. Three different FliC/TrxA-peptide fusion proteins targeted the same molecule, at approximately 140 kDa, on HepG2 cells. This work presented for the first time the application of the FliTrx library in screening living cells. Three peptides were obtained that could be potential candidates for targeted liver cancer therapy.  相似文献   

19.
With the aim to elucidate the etiology of radioresistance, we explored the genetic alterations in non-radioresistant vs. resistant esophageal cancer cells acquired by long-term fractionated radiation. We found AKR1C3, an aldo-keto reductase expressed seldom in most human tissues, expressed higher in radioresistance-acquired cells. Suppression of AKR1C3 via RNAi or its chemical inhibitors restored the sensitivity of the acquired tumor cells and xenograft BALB/c nude mice to ionizing radiation (IR). Cellular monitoring of the oxidative stress in the AKR1C3-elevated cells indicated that IR-induced ROS accumulation and the concomitant DNA damage was significantly alleviated, and such protective consequence disappeared upon AKR1C3 knockdown. These findings uncover the potential involvement of AKR1C3 in removal of cellular ROS and explain, at least partially, the acquired radioresistance by AKR1C3 overexpression. A retrospective analysis of esophageal carcinomas also indicated a significant expression of AKR1C3 in radio-resistant but not radio-sensitive surgical samples. Our study may provide a potential biomarker for predicting prognosis of radiotherapy and even direct a targeted therapy for esophageal cancer and other tumors.  相似文献   

20.
Hou H  Zhang Y  Huang Y  Yi Q  Lv L  Zhang T  Chen D  Hao Q  Shi Q 《PloS one》2012,7(4):e35665
The phosphatidylinositol 3-kinase (PI3K) pathway plays an important role in many biological processes, including cell cycle progression, cell growth, survival, actin rearrangement and migration, and intracellular vesicular transport. However, the involvement of the PI3K pathway in the regulation of mitotic cell death remains unclear. In this study, we treated HeLa cells with the PI3K inhibitors, 3-methyladenine (3-MA, as well as a widely used autophagy inhibitor) and wortmannin to examine their effects on cell fates using live cell imaging. Treatment with 3-MA decreased cell viability in a time- and dose-dependent manner and was associated with caspase-3 activation. Interestingly, 3-MA-induced cell death was not affected by RNA interference-mediated knockdown (KD) of beclin1 (an essential protein for autophagy) in HeLa cells, or by deletion of atg5 (an essential autophagy gene) in mouse embryonic fibroblasts (MEFs). These data indicate that cell death induced by 3-MA occurs independently of its ability to inhibit autophagy. The results from live cell imaging studies showed that the inhibition of PI3Ks increased the occurrence of lagging chromosomes and cell cycle arrest and cell death in prometaphase. Furthermore, PI3K inhibitors promoted nocodazole-induced mitotic cell death and reduced mitotic slippage. Overexpression of Akt (the downstream target of PI3K) antagonized PI3K inhibitor-induced mitotic cell death and promoted nocodazole-induced mitotic slippage. These results suggest a novel role for the PI3K pathway in regulating mitotic progression and preventing mitotic cell death and provide justification for the use of PI3K inhibitors in combination with anti-mitotic drugs to combat cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号