首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The pancreatic endocrine component was studied at different stages of development in the tadpoles of Rana temporaria. The material was embedded in Epon, and serial semithin and thin sections were made in order to correlate ultrastructural features and tinctorial traits of the endocrine cells. Serial semithin sections were also stained with the peroxidase-antiperoxidase immunocytochemical method and with silver impregnations for argyrophilia and argentaffinity. In early larvae (legless tadpoles), A and B cells are present. Both can be found within ducts and exocrine tissue or, more frequently, in cellular clusters among the ducts and acini. These primitive islets are solid structures, surrounded but not penetrated by capillaries. Mitoses were observed in A and B cells. In the following phase (tadpoles with hindlegs), D and pancreatic polypeptide-immunoreactive cells are also present, as well as numerous endocrine cells scattered among exocrine tissue. There is also a change in the vascular-insular pattern: capillaries not only surround but also penetrate the endocrine group. The structure of the endocrine pancreas in older tadpoles is similar. Tinctorial traits and ultrastructural features of endocrine cells are described, and the origin of primitive islets is discussed.  相似文献   

2.
The capillary volumes in the endocrine and exocrine parenchyma of the pancreas were compared with a point-sampling technique. The islets were found to have a capillary volume of approximately 3.5%, while the value for the exocrine pancreas was significantly (P less than 0.001) lower at 2%. When the capillary wall area was measured, however, both types of parenchyma had a similar value of approximately 20 mm2/mm3 tissue. The reason for the discrepancy between these parameters is probably the lack of lymphatic capillaries, with their relatively small lumen in the islets.  相似文献   

3.
Summary The pathways of microcirculation in the pancreas of the cat were investigated by scanning electron microscopy of Mercox preparations of the vascular bed. A portal system from islet to exocrine vessels as well as a direct arterial flow to the exocrine pancreas have been observed. Sphincters appear to exist in portal capillaries at the border between the endocrine and exocrine portions of the pancreas. Islets possess an independent venous drainage.A portion of these results was presented on the occasion of the 6th European Anatomical Congress, Hamburg 1981 (see Syed Ali 1981, for abstract).  相似文献   

4.
We have examined the pattern of the capillaries of the pancreas in rabbits, rats, mice, guinea-pigs, cats and baboons, using arterial and venous injections of Berlin blue. In all these species we found extensive, direct connexions between the capillary beds of the islets and the exocrine tissue of the gland, forming a highly developed portal system. Some of the functional implications of these vascular connexions are discussed, particularly the influence of the islet hormones insulin, glucagon and somatostatin upon the exocrine cells.  相似文献   

5.
Pancreatic vascular casts of the common tree shrew (Tupaia glis) were prepared by infusion of Batson's No. 17 plastic mixture into the blood vessels and examined by scanning electron microscopy (SEM). Routine histological study of the pancreas was also performed. It was found that the A and D cells appeared to occupy the core whereas the B cells were found at the periphery of the islets of Langerhans. With SEM, the insular arteriole, a branch of the interlobular artery, was shown to penetrate deeply into the core of the islets before branching off into the glomerular capillary network supplying the islets. These capillaries reunited at the periphery of the islets to become vasa efferentia and then gave off capillaries to anastomose with those in the exocrine part of the pancreas, the insuloacinar portal system. Such an insuloacinar portal system found in the pancreas of the tree shrew was similar to that found in the horse and monkey. However, there were some intralobular arterioles which did not end in the islets but directly branched into the interacinar capillary network and periductular plexus. The capillaries in the exocrine part not only gathered into intralobular venules which confluently formed the interlobular vein but also supplied the duct system. The periductular plexus also collected blood into the intralobular venule and interlobular vein, respectively.  相似文献   

6.
Nestin is expressed in vascular endothelial cells in the adult human pancreas.   总被引:22,自引:0,他引:22  
In this study we examined the expression of nestin in islets, the exocrine part, and the big ducts of the adult human pancreas by immunofluorescent double staining. Two different anti-nestin antisera in combination with various pancreatic and endothelial markers were employed. Nestin-immunoreactive cells were found in islets and in the exocrine portion. All nestin-positive cells co-expressed the vascular endothelial markers PECAM-1 (CD31), endoglin (CD105), and CD34 as well as vimentin. Endocrine, acinar, and duct cells did not stain for nestin. We also demonstrated that in the area of big pancreatic ducts, nestin-positive cells represent small capillaries scattered in the connective tissue surrounding the duct epithelium and do not reside between the duct cells. We detected nestin-expressing endothelial cells located adjacent to the duct epithelium where endocrine differentiation occurs. We have shown that nestin is expressed by vascular endothelial cells in human pancreas, and therefore it is unlikely that nestin specifically marks a subpopulation of cells representing endocrine progenitors in the adult pancreas.  相似文献   

7.
Summary By the use of scanningand transmission electron microscopy, the possible sources of errors in interpretation of the microcirculation of the pancreas can be reduced in comparison to the classical India-ink injection method. Sphincter-like structures in the capillary wall of the cat pancreas are established by pericytes. These sphincters encircle the junctional zones between the endocrine and exocrine capillaries. They are assumed to be regulatory structures of blood flow and to regulate indirectly hormone secretion according to demand.This work was financially supported through the kindness of Eli Lilly GmbH, Bad Homburg, Bundesrepublik Deutschland  相似文献   

8.
Summary The angioarchitecture of the pineal organ of the rainbow trout (Salmo gairdneri) was investigated by means of the corrosion-cast preparation method and scanning electron microscopy. Two main arteries (aa. epiphyseales) supply the pineal parenchyma. They emerge from the aa. cerebri anteriores and run in the fissure between the prosencephalon and the mesencephalon. After entering the pineal stalk, the aa. epiphyseales branch off into several arterioles, most of which extend to the pineal end-vesicle where they give rise to a lobular, bilaterally symmetric capillary network. Capillaries establishing the main portion of the pineal vessels appear widened in comparison to those supplying other portions of the brain and resemble capillaries in other endocrine organs. In Salmo gairdneri, no specialized system of portal vessels appears to exist between the pineal organ and other portions of the brain.  相似文献   

9.
Summary The capillary volumes in the endocrine and exocrine parenchyma of the pancreas were compared with a point-sampling technique. The islets were found to have a capillary volume of approximately 3.5%, while the value for the exocrine pancreas was significantly (P<0.001) lower at 2%. When the capillary wall area was measured, however, both types of parenchyma had a similar value of approximately 20 mm2/mm3 tissue. The reason for the discrepancy between these parameters is probably the lack of lymphatic capillarics, with their relatively small lumen in the islets.  相似文献   

10.
Indirect double immunofluorescence labelling for eight neuropeptides in the pancreas of the bullfrog, Rana catesbeiana, demonstrated the occurrence, distribution, and coexistence of certain neuropeptides in the exocrine and endocrine pancreas. Immunoreactivity of substance P (SP), calcitonin gene-related peptide (CGRP), vasoactive intestinal polypeptide (VIP), neuropeptide Y (NPY), FMRFamide (FMRF), and galanin (GAL) was localized in nerve fibers distributed between the acini and around the duct system and vasculature of the exocrine pancreas. In these regions, CGRP-immunoreactive fibers were more numerous than those containing the other five peptides. Almost all SP fibers showed coexistence of SP with CGRP, and about one third of fibers also showed coexistence of SP with VIP, NPY, FMRF, and GAL. In the endocrine pancreas, SP, CGRP, VIP, and GAL were recognized in the nerve fibers around and within the islets of Langerhans, and VIP and GAL fibers were more numerous than SP and CGRP fibers. All CGRP fibers, and about half of the VIP and GAL fibers were immunoreactive for SP. NPY- and FMRF-immunoreactive cells were found at the periphery of the islets. These findings suggest that the exocrine and endocrine pancreatic functions of the bullfrog are under the control of peptidergic innervation.  相似文献   

11.
In the exchange link of the microcirculation system of the exocrine part of the pancreas of Rana temporaria the substances moved from the blood capillary into the pericapillary space, then into the intercellular clefts and into the acinar cells by active transport. This is confirmed by the electron microscope studies of the ATP-ase activity localization in the exchange link: there are numerous lead phosphate granules in the endothelium of blood capillaries, on the fibrillae structures of the pericapillary space interstitium, on the lateral plasmic membrane of the exocrine pancreacytes, and on the cytoplasmic plates forming pinocytotic vacuoles.  相似文献   

12.
Estimates of islet area and numbers and endocrine cell composition in the adult human pancreas vary from several hundred thousand to several million and beta mass ranges from 500 to 1500 mg. With this known heterogeneity, a standard processing and staining procedure was developed so that pancreatic regions were clearly defined and islets characterized using rigorous histopathology and immunolocalization examinations. Standardized procedures for processing human pancreas recovered from organ donors are described in part 1 of this series. The pancreas is processed into 3 main regions (head, body, tail) followed by transverse sections. Transverse sections from the pancreas head are further divided, as indicated based on size, and numbered alphabetically to denote subsections. This standardization allows for a complete cross sectional analysis of the head region including the uncinate region which contains islets composed primarily of pancreatic polypeptide cells to the tail region. The current report comprises part 2 of this series and describes the procedures used for serial sectioning and histopathological characterization of the pancreatic paraffin sections with an emphasis on islet endocrine cells, replication, and T-cell infiltrates. Pathology of pancreatic sections is intended to characterize both exocrine, ductular, and endocrine components. The exocrine compartment is evaluated for the presence of pancreatitis (active or chronic), atrophy, fibrosis, and fat, as well as the duct system, particularly in relationship to the presence of pancreatic intraductal neoplasia. Islets are evaluated for morphology, size, and density, endocrine cells, inflammation, fibrosis, amyloid, and the presence of replicating or apoptotic cells using H&E and IHC stains. The final component described in part 2 is the provision of the stained slides as digitized whole slide images. The digitized slides are organized by case and pancreas region in an online pathology database creating a virtual biobank. Access to this online collection is currently provided to over 200 clinicians and scientists involved in type 1 diabetes research. The online database provides a means for rapid and complete data sharing and for investigators to select blocks for paraffin or frozen serial sections.  相似文献   

13.
Endocrine component of the crucian (Carassius carassius), carp (Cyprinus carpio), tench (Tinca tinca) and silurus (Silurus glanis) pancreas is structurally organized in the form of pancreatic islets. Gorbusha (Oncorhynchus gorbuscha) has, besides the islets, some Brockman's bodies. Endocrine component of the pancreas of Teleostei possesses A-, B-, D and acinar-islet cells "B". All types of cells are shoot-shaped and all have contacts with the capillaries. Extrusion of the hormones from the endocrine cells is carried out via emiocytosis, and in gorbusha at the time of migration--by microapocrine means. Secretory granules were observed to get into the capillaries and make hormonal storage necessary for fish migration. It was demonstrated that endocrine component of the pancreas in Teleostei is highly rich in innervation, neuronal fibers containing small granular vesicles.  相似文献   

14.
The composition of intermediate filaments in pericytes was examined by immunofluorescent and immunoelectron microscopic labeling of frozen sections of various chicken microvascular beds in situ. Pericytes in capillaries of cardiac muscle, exocrine pancreas, and kidney (peritubular capillary) were found to contain both desmin and vimentin. In some capillaries where pericytes do not exist, cells apposed to endothelial cells--the Ito cell in the hepatic sinusoid and the reticular cell in the splenic sinusoid--were shown to contain both of the intermediate filament proteins. In contrast, podocytes and mesangial cells around renal glomerular capillaries contained only vimentin. The presence of desmin supports the hypothesis that pericytes may have a contractile apparatus similar to that of vascular smooth muscle cells. Our results also revealed that even in microvascular beds where pericytes are not found, cells having both desmin and vimentin exist next to endothelial cells and may assume similar functions to pericytes.  相似文献   

15.
The pancreas is composed of three tissues: endocrine, exocrine, and duct. The endocrine/exocrine lineages diverge from the ductal lineage before E12.5 in mice, and then further separate into endocrine and exocrine precursors. These processes are regulated by differential activation of Notch1-mediated signaling, which is required to repress the expression of the pro-endocrine gene neurogenin3 (ngn3) in the exocrine lineage. Mammalian Numb (mNumb) is an ortholog of Drosophila Numb (dNumb), which is likely to be an intracellular inhibitor of Notch signaling, and has four splicing isoforms: PTBS-PRRS, PTBL-PRRS, PTBS-PRRL, and PTBL-PRRL. Here we developed an anti-PRRL antibody, which recognizes only the PRRL forms of mNumb. We then performed immunohistochemical analyses using anti-PRRL together with anti-pan Numb, which recognizes all the isoforms of mNumb, antibodies that determine the spatio-temporal expression pattern of mNumb in the mouse fetal pancreas. mNumb PRRS and PRRL were first expressed in identical cells in the early stage of pancreatic development (i.e., E10.5), but gradually became biased. At the stage of endocrine and exocrine divergence, mNumb PRRS continued to be expressed in endocrine lineage cells, whereas PRRL was down-regulated during endocrine differentiation. Even after the endocrine/exocrine divergence, notch1 expression was sustained in endocrine lineage, where ngn3 was expressed. These results agree with the notion that mNumb PRRS has an inhibitory effect on Notch signaling, indicating its potential roles in the differentiation of pancreatic endocrine lineage. In addition, islet cells, which are produced from ductal tissue, were immunostained by the anti-panNb antibody. Our present results will contribute to the understanding of the mechanisms of islet development from ductal tissue.  相似文献   

16.
Problems associated with the transformation of differentiated cells in vertebrate organisms are discussed based on electron microscopical results of intermediate cells (i.e. cells with morphological characteristics of exocrine acinar cells and endocrine cells of Langerhans' islets) in the pancreas of human adults with chronic insulin-dependent diabetes mellitus. In this context, reference is made to experimental results of Scarpelli, Rao, and coworkers relating to the occurrence of hepatocyte-like cells in the pancreas of Syrian golden hamsters (Rao and Scarpelli 1980; Scarpelli and Rao 1981; Rao et al. 1983). These observations show that exocrine acinar cells of the pancreas may, even beyond the neonatal period, become transformed, depending upon different triggering stimuli, into different endocrine islet cells, or into hepatocytes, this being accomplished either directly or by new formation of cells (regeneration) with abnormal differentiation (metaplasia). Obviously, transformation is effected through a change in the activation of gene loci: the normally stably blocked genes are partially or completely deblocked for the functions of different endocrine islets cells or hepatocytes, and the original genetic expression of exocrine pancreatic functions is blocked either partially or completely. The results presented and quoted in this paper suggest that in all differentiated cells derived from the endoderm of the foregut, such as duct cells, exocrine and endocrine pancreatic cells, and hepatocytes, functional programs are retained which can be modified in the manner quoted to enable partial or complete transformation into one or another of these differentiated cells in the adult organism.  相似文献   

17.
Summary The pattern of the vascular supply to the choroid of the frog eye was studied in toto with the use of the injection-replication-SEM technique. The choroid of anuran amphibians is composed mainly of the choriocapillaris. In both species studied (Rana temporaria, Rana esculenta), an independent arterial supply to the choriocapillaris supplemented that from the ciliary arteries. This additional vascular route arises from the optic artery, a separate branch of the arteria infundibularis superficialis. The optic artery, accompanied by its vein within the vascular sheath of the optic nerve, joins the rich arterial capillary network of the choriocapillaris and supplies the posterior pole of the ocular bulb. The superficial capillary network displays a dense collar around the entrance of the optic nerve into the eye and is composed of a circular meshwork of small capillaries, several layers deep. More peripherally, however, it becomes single layered. This capillary network, as a whole, establishes numerous connections with the adjacent choriocapillaris at the posterior pole of the ocular bulb. In anuran amphibians the complex arrangement of both arterial systems supporting the choriocapillaris may be regarded as a more complete equivalent of the short posterior ciliary arteries of mammals.  相似文献   

18.
Summary The distribution pattern of serotonin (5HT) in the pancreas was studied immunohistochemically by using a 5HT monoclonal antibody in various vertebrates including the eel, bullfrog, South African clawed toad, turtle, chicken, mouse, rat, guinea-pig, cat, dog and human. In all species examined, except the bullfrog, 5HT-like immunoreactivity was observed in nerve fibers, in endocrine cells, or in both. Positive nerve fibers were found in the eel, turtle, mouse, rat and guinea-pig. These fibers ran mainly along the blood vessels and partly through the gap between the exocrine glands. In the eel and guinea-pig, positive fibers invaded the pancreatic islet. Occasionally, these positive fibers were found adjacent to the surface of both exocrine and endocrine cells, suggesting a regulatory role of 5HT in pancreatic function. 5HT-positive endocrine cells were observed in the pancreas of all species except for the bullfrog and rat. In the eel and in mammals such as the mouse, guinea-pig, cat, dog and human, 5HT-positive cells were mainly observed within the pancreatic islet. In the South African clawed toad, turtle and chicken, the positive cells were mainly in the exocrine region. The present study indicates that the distribution patterns of 5HT in the pancreas varies considerably among different species.  相似文献   

19.
Role of VEGF-A in vascularization of pancreatic islets   总被引:17,自引:0,他引:17  
Blood vessel endothelium has been recently shown to induce endocrine pancreatic development. Because pancreatic endocrine cells or islets express high levels of vascular endothelial growth factors, VEGFs, we investigated the role of a particular VEGF, VEGF-A, on islet vascularization and islet function. By deleting VEGF-A in the mouse pancreas, we show that endocrine cells signal back to the adjacent endothelial cells to induce the formation of a dense network of fenestrated capillaries in islets. Interestingly, VEGF-A is not required for the development of all islet capillaries. However, the few remaining capillaries found in the VEGF-A-deficient islets are not fenestrated and contain an unusual number of caveolae. In addition, glucose tolerance tests reveal that the VEGF-A-induced capillary network is not strictly required for blood glucose control but is essential for fine-tuning blood glucose regulation. In conclusion, we speculate that islet formation takes place in two sequential steps: in the first step, signals from blood vessel endothelium induce islet formation next to the vessels, and in the second step, the islets signal to the endothelium. The second step involves paracrine VEGF-A signaling to elaborate the interaction of islets with the circulatory system.  相似文献   

20.
To determine the origin of the ventral pancreas, a fate map of the ventral pancreas was constructed using DiI crystal or CM-DiI to mark regions of the early chick endoderm: this allowed correlations to be established between specific endoderm sites and the positions of their descendants. First, the region lateral to the 7- to 9-somite level, which has been reported to contribute to the ventral pancreas, was shown to contribute mainly to the intestine or the dorsal pancreas. At the 10 somite stage (ss), the ventral pre-pancreatic cells reside laterally at the 2-somite level, at the lateral boarder of the somite. At this stage, however, the fate of these cells has not yet segregated and they contribute to the ventral pancreas and to the intestine or bile duct. The ventral pancreas fate segregated at the 17 ss; the cells residing at the somite boarder at the 4-somite level at the 17 ss were revealed to contribute to the ventral pancreas. Interestingly, the dorsal and the ventral pancreatic buds are different in both origin and function. These two pancreatic buds begin to fuse at day 7 (HH 30) of embryonic development. However, whereas the dorsal pancreas gives rise to both Insulin-expressing endocrine and Amylase-expressing exocrine cells, the ventral pancreas gives rise to Amylase-expressing exocrine cells, but not insulin-expressing endocrine cells before day 7 (HH 30) of embryonic development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号