首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ehrlich ascites carcinoma cells depleted of K+ and provided with 5.5 mM K+ in isosmotic 50 mM tris(hydroxymethyl)methylglycine buffer at pH 7.4 and 38 °C take up K+ from the medium at a rate of 6 μmoles/ml intracellular fluid per min. Depleted cells exposed to K+ for 2 min prior to glucose addition exhibit a higher initial rate of glycolysis, a lower glycose-6-P accumulation, and a higher fructose-1,6-P2 accumulation than depleted cells incubated in a K+-free medium. Both the K+ transport and the effect of K+ on glycolysis are blocked by 2 mM oubain.Calculation of thein vitro velocities of glycolytic enzymes from the rates of accumulation of lactate and glycolytic intermediates shows that the presence of K+ accelerates the velocities of fructose-6-phosphate kinase and lactate dehydrogenase about 2-fold and the velocity of hexokinase about 1.5-fold during the first 15 s. In either the presence or absence of K+, the hexokinase velocity is highest immediately after glucose addition and declines sharply with time; this decline is greater than would be predicted by product inhibition by the accumulated glucose-6-P. The maximal stimulation of fructose-6-phosphate kinase attibutable to the increasing intarcellular K+ concentration is only 1.25-fold. These observations indicate that the initial acceleration in glycolysis is not simply mediated through a direct K+ activation of fructose-6-phosphate kinase.The calculated theoretical rate of ATP generation by glycolysis shows that glycolysis is an ATP-utilizing system for the first 5–10 s both in the presence and in the absence of K+. Hence, the initial stimulation of glycolysis by K+ is not a consequence of an increased rate of ATP hydrolysis associated with K+ transport, although this mechanism may be responsible for the stimulation of steady-state glycolysis.The initial rate of phosphate ester (hexose and triose phosphates) accumulation corresponds to be rate of ATP generation by the “tail-end” of glycolysis, or twice the rate of lactate accumulation, in either the absence or presence of K+, but both the rate and the maximal level of ester accumulated are higher in the presence of K+. This implies that the oxidatively generated pool of ATP which is diverted from endogenous reactions to hexokinase and fructose-6-phosphate kinase on the introduction of glucose is larger in the presence of K+.Valinomycin (0.27 μM) under certain conditions can produce effects on the glycolysis of non-depleted cells which superficially resemble the effects of K+ on depleted cells. However, unlike K+, valinomycin stimulates the initial rate of glycolytic ATP generation, and abolishes the initial correspondence between the ATP generation by the “tail-end” of glycolysis and phosphate ester accumulation. These observations are interpreted to mean that valinomycin introduces an ATPase activity effective on glycolytically generated ATP.Comparison of the theoretical ATP generation in the presence and absence of K+ indicates that approximately one ATP is hydrolyzed for each K+ transported.  相似文献   

2.
Effects of glucose concentration and anoxia upon the metabolite concentrations and rates of glycolysis and respiration have been investigated in the perfused liver of the fetal guinea pig. In most cases the metabolite concentrations in the perfused liver were similar to those observed in vivo. Between 50 days and term there was a fall in the respiratory rate and in the concentration of ATP and fructose 1,6-diphosphate and an increase in the concentration of glutamate, glycogen and glucose. Reducing the medium glucose concentration from 10 mM to 1 mM or 0.1 mM depressed lactate production and the concentration of most of the phosphorylated intermediates (except 6-phosphogluconate) in the liver of the 50-day fetus. This indicates a fall in glycolytic rate which is not in accord with the known kinetic properties of hexokinase in the fetal liver. Anoxia increased lactate production by, and the concentrations of, the hexose phosphates ADP and AMP in the 50-day to term fetal liver, while the concentration of ribulose 5-phosphate, ATP and some triose phosphates fell. These results are consistent with an activation of glycolysis, particularly at phosphofructokinase and of a reduction in pentose phosphate pathway activity, particularly at 6-phosphogluconate dehydrogenase.The calculated cytosolic NAD+/NADH ratio for the perfused liver was similar to that measured in vivo and evidence is presented to suggest that the dihydroxyacetone phosphate/glycerol 3-phosphate ratio gives a better indication of cytosolic redox than the lactate/pyruvate ratio. The present observations indicate that phosphofructokinase and hexokinase and possibly pyruvate kinase control the glycolytic rate and that glyceraldehyde-3-phosphate dehydrogenase is at equilibrium in the perfused liver of the fetal guinea pig.  相似文献   

3.
Effects of glucose concentration and anoxia upon the metabolite concentrations and rates of glycolysis and respiration have been investigated in the perfused liver of the fetal guinea pig. In most cases the metabolite concentrations in the perfused liver were similar to those observed in vivo. Between 50 days and term there was a fall in the respiratory rate and in the concentration of ATP and fructose 1,6-diphosphate and an increase in the concentration of glutamate, glycogen and glucose. Reducing the medium glucose concentration from 10 mM to 1 mM or 0.1 mM depressed lactate production and the concentration of most of the phosphorylated intermediates (except 6-phosphogluconate) in the liver of the 50-day fetus. This indicates a fall in glycolytic rate which is not in accord with the known kinetic properties of hexokinase in the fetal liver. Anoxia increased lactate production by, and the concentrations of, the hexose phosphates ADP and AMP in the 50-day to term fetal liver, while the concentration of ribulose 5-phosphate, ATP and some triose phosphates fell. These results are consistent with an activation of glycolysis, particularly at phosphofructokinase and of a reduction in pentose phosphate pathway activity, particularly at 6-phosphogluconate dehydrogenase. The calculated cytosolic NAD+/NADH ratio for the perfused liver was similar to that measured in vivo and evidence is presented to suggest that the dihydroxyacetone phosphate/glycerol 3-phosphate ratio gives a better indication of cytosolic redox than the lactate/pyruvate ratio. The present observations indicate that phosphofructokinase hexokinase and possibly pyruvate kinase control the glycolytic rate and that glyceraldehyde-3-phosphate dehydrogenase is at equilibrium in the perfused liver of the fetal guinea pig.  相似文献   

4.
Glucose requirement for postischemic recovery of perfused working heart   总被引:5,自引:0,他引:5  
The quantitative importance of glycolysis in cardiomyocyte reenergization and contractile recovery was examined in postischemic, preload-controlled, isolated working guinea pig hearts. A 25-min global but low-flow ischemia with concurrent norepinephrine infusion to exhaust cellular glycogen stores was followed by a 15-min reperfusion. With 5 mM pyruvate as sole reperfusion substrate, severe contractile failure developed despite normal sarcolemmal pyruvate transport rate and high intracellular pyruvate concentrations near 2 mM. Reperfusion dysfunction was characterized by a low cytosolic phosphorylation potential [( ATP]/[( ADP][Pi]) due to accumulations of inorganic phosphate (Pi) and lactate. In contrast, with 5 mM glucose plus pyruvate as substrates, but not with glucose as sole substrate, reperfusion phosphorylation potential and function recovered to near normal. During the critical ischemia-reperfusion transition at 30 s reperfusion the cytosolic creatine kinase appeared displaced from equilibrium, regardless of the substrate supply. When under these conditions glucose and pyruvate were coinfused, glycolytic flux was near maximum, the glyceraldehyde-3-phosphate dehydrogenase/3-phosphoglycerate kinase reaction was enhanced, accumulation of Pi was attenuated, ATP content was slightly increased, and adenosine release was low. Thus, glucose prevented deterioration of the phosphorylation potential to levels incompatible with reperfusion recovery. Immediate energetic support due to maximum glycolytic ATP production and enhancement of the glyceraldehyde-3-phosphate dehydrogenase/3-phosphoglycerate kinase reaction appeared to act in concert to prevent detrimental collapse of [ATP]/[( ADP][Pi]) during creatine kinase dysfunction in the ischemia-reperfusion transition. Dichloroacetate (2 mM) plus glucose stimulated glycolysis but failed fully to reenergize the reperfused heart; conversely, 10 mM 2-deoxyglucose plus pyruvate inhibited glycolysis and produced virtually instantaneous de-energization during reperfusion. The following conclusions were reached. (1) A functional glycolysis is required to prevent energetic and contractile collapse of the low-flow ischemic or reperfused heart (2). Glucose stabilization of energetics in pyruvate-perfused hearts is due in part to intensification of glyceraldehyde-3-phosphate dehydrogenase/3-phosphoglycerate kinase activity. (3) 2-Deoxyglucose depletes the glyceraldehyde-3-phosphate pool and effects intracellular phosphate fixation in the form of 2-deoxyglucose 6-phosphate, but the cytosolic phosphorylation potential is not increased and reperfusion failure occurs instantly. (4) Consistent correlations exist between cytosolic ATP phosphorylation potential and reperfusion contractile function. The findings depict glycolysis as a highly adaptive emergency mechanism which can prevent deleterious myocyte deenergization during forced ischemia-reperfusion transitions in presence of excess oxidative substrate.  相似文献   

5.
In-Young Lee  Elmon L. Coe 《BBA》1967,131(3):441-452
Changes were measured in glycolytic and respiratory rates during the entire period of glycolysis and respiratory inhibition after addition of 0.08 or 0.15 mM glucose to Ehrlich ascites carcinoma cells in 54 mM phosphate buffer (pH 7.3) at 37°. Glycolytic products fully accounted for the glucose utilized.

Theoretical rates of glycolytic ATP synthesis were calculated from the rates of accumulation of glycolytic products, and rates of oxidative phosphorylation were calculated from respiratory rates, assuming a P:O ratio of 3.0. The maximum in the glycolytic phosphorylation rate curve preceded the minimum in the respiratory phosphorylation rate curve. As a consequence, the total phosphorylation rate curve was biphasic, first rising above, then falling below, and finally returning to the initial, pre-glucose rate. The area under the early rise approximately equalled the area above the later dip and corresponded to between 1 and 2 μmoles of ATP/ml cells. The low rate of change in the ATP content of the cells indicated that most of the change in phosphorylation rate represented changes in both ATP synthesis and ATP utilization.

It is hypothesized that ATP synthesized by glycolysis is more readily available to the ATP-utilizing systems. On addition of glucose, ATP is shifted from a respiratory to a glycolytic reservoir and a period of more rapid ATP utilization associated with a decrease in the level of endogenous substrates involved in the ATP-utilizing reactions ensues; after cessation of glycolysis, the process is reversed, and ATP utilization is slowed for a period while the endogenous substrates increase again.  相似文献   


6.
1. The effects of glucosamine concentration on the size of the lactate pool, on the levels of ATP, ADP, AMP and on the radioactivity incorporation from [1-14-C] glucosamine into lactate, N-acetylglucosamine and glucosamine-6-P were studied using whole bovine retinas. 2. The radioactive lactate, evaluated in relation to glucosamine molarity, after a modest initial increase, diminishes significantly. On the contrary the N-acetyl [1-14-C] glucosamine, the [1-14-C] glucosamine-6-P and, consequently, also the [1-14-C] glucosamine-6-P/[-14-C] lactate ratio increase with glucosamine molarity. 3. The retinal content of ATP shows a modest increment after incubation with low concentrations of D-glucosamine (0.5--2.0 mM) and a remarkable fall at higher concentrations. 4. Using retinal homogenates D-glucosamine clearly lowers the lactate production from glucose, glucose-6-P and fructose-1, 6-P2. 5. D-Glucosamine acts as an inhibitor of retinal glyceraldehyde-3-P dehydrogenase and lactate dehydrogenase by decreasing the initial velocity of these reactions. 6. It is concluded that D-glucosamine causes a reduction in the lactate production, by inhibiting two enzymes of the glycolytic pathway: glyceraldehyde-3-P dehydrogenase and lactate dehydrogenase. The fall in the adenine nucleotides content is a consequence of a dephosphorylation of ATP for the phosphorylation of glucosamine without concomitant resynthesis of ATP "via glycolysis".  相似文献   

7.
The effects of cold hypoxia were examined during a time-course at 2 °C on levels of glycolytic metabolites: glycogen, glucose, glucose-1-phosphate, glucose-6-phosphate, fructose-6-phosphate, fructose-1,6-bisphosphate, phosphoenolpyruvate, pyruvate, lactate and energetics (ATP, ADP, AMP) of livers from rats and columbian ground squirrels. Responses of adenylate pools reflected the energy imbalance created during cold hypoxia in both rat and ground squirrel liver within minutes of organ isolation. In rat, ATP levels and energy charge values for freshly isolated livers were 2.54 mol·g-1 and 0.70, respectively. Within 5 min of cold hypoxia, ATP levels had dropped well below control values and by 8 h storage, ATP, AMP, and energy charge values were 0.21 mol·g-1, 2.01 mol·g-1, and 0.17, respectively. In columbian ground squirrels the patterns of rapid ATP depletion and AMP accumulation were similar to those found in rat. In rat liver, enzymatic regulatory control of glycolysis appeared to be extremely sensitive to the decline in cellular energy levels. After 8 h cold hypoxia levels of fructose-6-phosphate decreased and fructose-1,6-bisphosphate increased, thus reflecting an activation of glycolysis at the regulatory step catalysed by phospho-fructokinase fructose-1,6-bisphosphatase. Despite an initial increase in flux through glycolysis over the first 2 min (lactate levels increased 3.7 mol·g-1), further flux through the pathway was not permitted even though glycolysis was activated at the phosphofructokinase/fructose-1,6-bisphosphatase locus at 8 h, since supplies of phosphorylated substrate glucose-1-phosphate or glucose-6-phosphate remained low throughout the duration of the 24-h period. Conversely, livers of Columbian ground squirrels exhibited no activation or inactivation of two key glycolytic regulatory loci, phosphofructokinase/fructose-1,6-bisphosphatase and pyruvate kinase/phosphoenolpyruvate carboxykinase and pyruvate carboxylase. Although previous studies have shown similar allosteric sensitivities to adenylates to rat liver phospho-fructokinase, there was no evidence of an activation of the pathway as a result of decreasing high energy adenylate, ATP or increasing AMP levels. The lack of any apparent regulatory control of glycosis during cold hypoxia may be related to hibernator-specific metabolic adaptations that are key to the survival of hypothermia during natural bouts of hibernation.Abbreviations DHAP dihydroxyacetonephosphate - EC energy charge - F1,6P2 fructose-1,6-bisphosphate - F2,6P2 fructose-2,6-bisphosphate - F6P fructose-6-phosphate - FBP fructose-1,6-bisphosphatase - G1P glucose-1-phosphate - G6P glucose-6-phosphate - GAP glyceraldehyde-3-phosphate - GAPDH glyceraldehyde-3-phosphate dehydrogenase - L/R lactobionate/raffinose-based solution - MR metabolic rate - PDH pyruvate dehydrogenase - PEP phosphoenolpyruvate - PEPCK & PC phosphoenolpyruvate carboxykinase and pyruvate carboxylase - PFK phosphofructokinase; PK, pyruvate kinase - Q 10 the effect of a 10 °C drop in temperature on reaction rates (generally, Q 10=2–3) - TA total adenylates - UW solution University of Wisconsin solution (L/R-based)  相似文献   

8.
The concentrations of glycolytic intermediates and ATP and the activities of certain glycolytic and gluconeogenic enzymes were determined in Propionibacterium shermanii cultures grown on a fully defined medium with glucose, glycerol or lactate as energy source. On all three energy sources, enzyme activities were similar and pyruvate kinase was considerably more active than the gluconeogenic enzyme pyruvate, orthophosphate dikinase, indicating the need for regulation of pyruvate kinase activity. The intracellular concentration of glucose 6-phosphate, a specific activator of pyruvate kinase in this organism, changed markedly according to both the nature and the concentration of the growth substrate: the concentration (7-10 mM) during growth with excess glucose or glycerol was higher than that (1-2 mM) during growth with lactate or at growth-limiting concentrations of glycerol or glucose. Other glycolytic intermediates, apart from pyruvate, were present at concentrations below 2 mM. Glucose 6-phosphate overcame inhibition of pyruvate kinase activity by ATP and inorganic phosphate. With 1 mM-ATP and more than 10 mM inorganic phosphate, a change in glucose 6-phosphate concentration from 1-2 mM was sufficient to switch pyruvate kinase from a strongly inhibited to a fully active state. The results provide a plausible mechanism for the regulation of glycolysis and gluconeogenesis in P. shermanii.  相似文献   

9.
Glucose utilization by spermatids was found to be 17.37±0.37 nmoles/hr/106 cells at 34°C and 28.94±1.12nmoles/hr/106 cells at 40°C. A good parallelism was observed between the increased rate of glucose utilization and lactate production at 40°C. There was no significant change in the levels of glycolytic intermediates in the cells, except for marked accumulations of fructose-1, 6-diphosphate, dihydroxyacetone phosphate and glyceraldehyde-3-phosphate in the presence of glucose (1 mM). Glucose oxidation in the citrate cycle by spermatids was higher at 40°C than at 34°C, but was never greater than 2% of the overall rate of glucose utilization. In addition, glucose did not prevent decrease of ATP at either 34 or 40°C. The effects of temperature on the activities of 11 glycolytic enzymes were examined. The activities of aldolase and phosphoglyceromutase were similar between 30 and 34°C, but increased markedly at 40°C. The higher temperature increased the Vmax values, without affecting the Kms. The activities of other glycolytic enzymes were similar at the different temperatures. These findings indicate that the increased overall rate of glucose utilization in glycolysis at higher temperature is due to increased Vmax values of aldolase and phosphoglyceromutase.  相似文献   

10.
Oscillatory behavior of glycolysis in cell-free extracts of rat skeletal muscle involves bursts of phosphofructokinase activity due to autocatalytic activation by fructose-1,6-P2. Fructose-2,6-P2 is an even more potent activator of phosphofructokinase and is competitive with fructose-1,6-P2 in binding and kinetic studies. The possible role and effects of fructose-2,6-P2 on the oscillating system were therefore examined. When muscle extracts were provided with 1 mM ATP and 10 mM glucose, fructose-2,6-P2 slowly accumulated to 50 nM in 1 h. The nearly monotonic rise, in contrast to the 50-fold oscillations in fructose-1,6-P2, indicated no involvement of fructose-2,6-P2 in the oscillatory process. Addition of 0.5 microM fructose-2,6-P2 blocked the oscillations, and there was negligible appearance of glycolytic intermediates from fructose-1,6-P2 to phosphoenolpyruvate, although similar amounts of lactate accumulated. In the presence of 0.2 microM fructose-2,6-P2, there were small, transient accumulations of fructose-1,6-P2, suggesting aborted activations of phosphofructokinase. Oscillations were not blocked by 0.1 microM fructose-2,6-P2. The average [ATP]/[ADP] ratio in the presence of 0.2 or 0.5 microM fructose-2,6-P2 was half the value in its absence, demonstrating the advantage of the oscillatory behavior in maintaining a high energy state. In the presence of higher, near physiological levels of ATP and citrate, inhibitors which reduce the affinity of phosphofructokinase for fructose-2,6-P2, glycolytic oscillations were not blocked by 1 microM fructose-2,6-P2, its approximate concentration in vivo.  相似文献   

11.
Adult pairs of Schistosoma mansoni convert glucose to lactate rapidly and almost quantitatively under aerobic and anaerobic conditions E. Bueding, 1950, Journal of General Physiology33, 475–495). Glycolysis is the principal source of energy of schistosomes and its inhibition by trivalent organic antimonials, at the phosphofructokinase step [EC 2.7.1.11], may be the basis for the chemotherapeutic effects of these agents E. Bueding and J. M. Mansour, 1957, British Journal of Pharmacology and Chemotherapy12, 159–165). We have developed standardized conditions for the comparison of rates of glucose consumption and lactate production by intact schistosomes in vitro and by centrifuged homogenates of worms. The rates of glycolysis of homogenates prepared from freshly isolated worms, and from worms that have been lyophilized immediately after harvesting and stored for prolonged periods at ?80 C were identical, when measured in media containing appropriate concentrations of glucose, NAD, ATP, MgCl2, KCl, and phosphate. The specific activities of the 11 glycolytic enzymes and of 3 related enzymes (fructose-biphosphatase [EC 3.1.3.11], glycerol-3-phosphate dehydrogenase [EC 1.1.1.8], and malate dehydrogenase [EC 1.1.1.37]) were measured in homogenates under optimal conditions. The profile of the relative activities of glycolytic enzymes of S. mansoni resembles closely that of Ehrlich ascites tumor cells, and differs markedly from that observed in erythrocytes or skeletal muscle. As is the case in many animal tissues, hexokinase [EC 2.7.1.1] was the enzyme of lowest specific activity, and the rate of glycolysis of homogenates was almost the same as the hexokinase activity. Several other lines of evidence support the view that the hexokinase reaction is the rate-limiting step in the glycolysis of worm homogenates. Hexokinase activity was not particulate in schistosome homogenates, and there was no detectable high Km glucokinase-like activity. The rate of glycolysis by homogenates exceeded that of intact worms by a factor of nearly 5. The contributions of glucose transport, availability of ADP and inorganic phosphate, regulatory enzymes, and a substrate cycle catalyzed by fructose-bisphosphatase are considered as possible mechanisms for the restraint of glycolysis in intact worms. The mechanisms contributing to the rapid rates of glycolysis of adult S. mansoni have not been identified, although several can be excluded (unusually high capacity of the glycolytic enzymes, the presence of mitochondrial hexokinase, the occurrence of glycosomes, and the operation of defective mitochondrial shuttles). In view of the regulatory role of hexokinase in the glycolysis of S. mansoni, inhibition of this enzyme is a potentially important target for the development of new antischistosomal drugs.  相似文献   

12.
J. N. Pierre  O. Queiroz 《Planta》1979,144(2):143-151
Glycolysis shows different patterns of operation and different control steps, depending on whether the level of Crassulacean acid metabolism (CAM) is low or high in the leaves of Kalanchoe blossfeldiana v.Poelln., when subjected to appropriate photoperiodic treatments: at a low level of CAM operation all the enzymes of glycolysis and phosphoenol pyruvate (PEP) carboxylase present a 12 h rhythm of capacity, resulting from the superposition of two 24h rhythms out of phase; phosphofructokinase appears to be the main regulation step; attainment of high CAM level involves (1) an increase in the peak of capacity occurring during the night of all the glycolytic enzymes, thus achieving an over-all 24h rhythm, in strict allometric coherence with the increase in PEP carboxylase capacity, (2) the establishment of different phase relationships between the rhythms of enzyme capacity, and (3) the control of three enzymic steps (phosphofructokinase, the group 3-P-glyceraldehyde dehydrogenase — 3-P-glycerate kinase, and PEP carboxylase). Results show that the hypothesis of allosteric regulation of phosphofructokinase (by PEP) and PEP carboxylase (by malate and glucose-6-P) cannot provide a complete explanation for the temporal organization of glycolysis and that changes in the phase relationships between the rhythms of enzyme capacity along the pathway and a strict correlation between the level of PEP carboxylase capacity and the levels of capacity of the glycolytic enzymes are important components of the regulation of glycolysis in relation to CAM.Abbreviations CAM crassulacean acid metabolism - F-6-P fructose-6-phosphate - F-bi-P fructose-1,6 biphosphate - G-3-PDH 3-phosphoglyceraldehyde dehydrogenase (NAD), EC 1.2.1.12 - G-6-P glucose-6-phosphate - GSH reduced glutathion - GDH glycerolphosphate dehydrogenase, EC 1.1.1.8 - PEP phosphoenol pyruvate - PEPC PEP carboxylase, EC 4.1.1.31 - PFK phosphofructokinase, EC 2.7.1.11 - 2-PGA 2-phosphoglycerate - 3-PGA 3-phosphoglycerate - PGM phosphoglycerate phosphomutase, EC 5.4.2.1 - T.P. triose phosphates - TPI triose phosphate isomerase, EC 5.3.1.1  相似文献   

13.
In Lactococcus lactis subsp. cremoris FD1, galactose and lactose are both transported and phosphorylated by phosphotransferase systems. Lactose 6-phosphate (lactose-6P) is hydrolyzed intracellularly to galactose-6P and glucose. Glucose enters glycolysis as glucose-6P, whereas galactose-6P is metabolized via the tagatose-6P pathway and enters glycolysis at the tagatose diphosphate and fructose diphosphate pool. Galactose would therefore be a gluconeogenic sugar in L. lactis subsp. cremoris FD1, but since fructose 1,6-diphosphatase is not present in this strain, galactose cannot serve as an essential biomass precursor (glucose-6P or fructose-6P) but only as an energy (ATP) source. Analysis of the growth energetics shows that transition from N limitation to limitation by glucose-6P or fructose-6P gives rise to a very high growth-related ATP consumption (152 mmol of ATP per g of biomass) compared with the value in cultures which are not limited by glucose-6P or fructose-6P (15 to 50 mmol of ATP per g of biomass). During lactose metabolism, the galactose flux through the tagatose-6P pathway (r(max) = 1.2 h) is lower than the glucose flux through glycolysis (r(max) = 1.5 h) and intracellular galactose-6P is dephosphorylated; this is followed by expulsion of galactose. Expulsion of a metabolizable sugar has not been reported previously, and the specific rate of galactose expulsion is up to 0.61 g of galactose g of biomass h depending on the lactose flux and the metabolic state of the bacteria. Galactose excreted during batch fermentation on lactose is reabsorbed and metabolized when lactose is depleted from the medium. In vitro incubation of galactose-6P (50 mM) and permeabilized cells (8 g/liter) gives a supernatant containing free galactose (50 mM) but no P(i) (less than 0.5 mM). No organic compound except the liberated galactose is present in sufficient concentration to bind the phosphate. Phosphate is quantitatively recovered in the supernatant as P(i) by hydrolysis with alkaline phosphatase (EC 3.1.3.1), whereas inorganic pyrophosphatase (EC 3.6.1.1) cannot hydrolyze the compound. The results indicate that the unknown phosphate-containing compound might be polyphosphate.  相似文献   

14.
The effects of the sodium nitroprusside (SNP), a nitric oxide (NO) donor clinically used in the treatment of hypertensive emergencies on the energy production of rat reticulocytes were investigated. Rat reticulocyte-rich red blood cell suspensions were aerobically incubated without (control) or in the presence of different concentrations of SNP (0.1, 0.25, 0.5, 1.0 mM). SNP decreased total and coupled, but increased uncoupled oxygen consumption. This was accompanied by the stimulation of glycolysis, as measured by increased glucose consumption and lactate accumulation. Levels of all glycolytic intermediates indicate stimulation of hexokinase-phosphofructo kinase (HK-PFK), glyceraldehyde 3-phosphate dehydrogenase (GAPD) and pyruvate kinase (PK) activities in the presence of SNP. Due to the decrease of coupled oxygen consumption in the presence of SNP, ATP production via oxidative phosphorylation was significantly diminished. Simultaneous increase of glycolytic ATP production was not enough to provide constant ATP production. In addition, SNP significantly decreased ATP level, which was accompanied with increased ADP and AMP levels. However, the level of total adenine nucleotides was significantly lower, which was the consequence of increased catabolism of adenine nucleotides (increased hypoxanthine level). ATP/ADP ratio and adenylate energy charge level were significantly decreased. In conclusion, SNP induced inhibition of oxidative phosphorylation, stimulation of glycolysis, but depletion of total energy production in rat reticulocytes. These alterations were accompanied with instability of energy status.  相似文献   

15.
It was examined whether lactate influences postischaemic hemodynamic recovery as a function of the duration of ischaemia and whether changes in high-energy phosphate metabolism under ischaemic and reperfused conditions could be held responsible for impairment of cardiac function. To this end, isolated working rat hearts were perfused with either glucose (11 mM), glucose (11 mM) plus lactate (5 mM) or glucose (11 mM) plus pyruvate (5 mM). The extent of ischaemic injury was varied by changing the intervals of ischaemia, i.e. 15, 30 and 45 min. Perfusion by lactate evoked marked depression of functional recovery after 30 min of ischaemia. Perfusion by pyruvate resulted in marked decline of cardiac function after 45 min of ischaemia, while in glucose perfused hearts hemodynamic performance was still recovered to some extent after 45 min of ischaemia. Hence, lactate accelerates postischaemic hemodynamic impairment compared to glucose and pyruvate. The marked decline in functional recovery of the lactate perfused hearts cannot be ascribed to the extent of degradation of high-energy phosphates during ischaemia as compared to glucose and pyruvate perfused hearts. Glycolytic ATP formation (evaluated by the rate of lactate production) can neither be responsible for loss of cardiac function in the lactate perfused hearts. Moreover, failure of reenergization during reperfusion, the amount of nucleosides and oxypurines lost or the level of high-energy phosphates at the end of reperfusion cannot explain lactate-induced impairment. Alternatively, the accumulation of endogenous lactate may have contributed to ischaemic damage in the lactate perfused hearts after 30 min of ischaemia as it was higher in the lactate than in the glucose or pyruvate perfused hearts. It cannot be excluded that possible beneficial effects of the elevated glycolytic ATP formation during 15 to 30 min of ischaemia in the lactate perfused hearts are counterbalanced by the detrimental effects of lactate accumulation.  相似文献   

16.
A comparison of branchial enzyme profiles indicates that the gills of Periophthalmodon schlosseri would have a greater capacity for energy metabolism through glycolysis than those of Boleophthalmus boddaerti. Indeed, after exposure to hypoxia, or anoxia, there were significant increases in the lactate content in the gills of P. schlosseri. In addition, exposure to hypoxia or anoxia significantly lowered the glycogen level in the gills of this mudskipper. It can be deduced from these results that the glycolytic flux was increased to compensate for the decrease in ATP production through anaerobic glycolysis. Different from P. schlosseri, although there was an increase in lactate production in the gills of B. boddaerti exposed to hypoxia, there was no significant change in the branchial glycogen content, indicating that a reversed Pasteur effect might have occurred under such conditions. In contrast, anoxia induced an accumulation of lactate and a decrease in glycogen in the gills of B. boddaerti. Although lactate production in the gills of these mudskippers during hypoxia was inhibited by iodoacetate, the decreases in branchial glycogen contents could not account for the amounts of lactate formed. The branchial fructose-2,6-bisphosphate contents of these mudskippers exposed to hypoxia or anoxia decreased significantly, leaving phosphofructokinase and glycolytic rate responsive to cellular energy requirements under such conditions. The differences in response in the gills of B. boddaerti and P. schlosseri to hypoxia were possibly related to the distribution of phosphofructokinase between the free and bound states.Abbreviations ADP adenosine diphosphate - ALD aldolase - ALT alanine transaminase - AST aspartate transaminase - ATP adenosine triphosphate - CS citrate synthase - EDTA ethylenediaminetetra-acetic acid - EGTA ethylene glycol tetra-acetic acid - F6P fructose-6-phosphate - F-1,6-P2 fructose-1,6-bisphosphate - F-2,6-P2 fructose-2,6-bisphosphate - FBPase fructose-1,6-bisphosphatese - GAPDH glyceraldehyde-3-phosphate dehydrogenase - GDH glutamate dehydrogenase - -GDH -glycerophosphate dehydrogenase - GPase glycogen phosphorylase - HK hexokinase - HOAD 3-hydroxyacyl-CoA dehydrogenase - IDH isocitrate dehydrogenase - IOA iodoacetic acid - LDH lactate dehydrogenase - LO lactate oxidizing activity - MDH malate dehydrogenase - 3-PG 3-phosphoglyceric acid - PEP phosphoenolpyruvate - PEPCK phosphoenolpyruvate carboxykinase - PGI phosphoglucose isomerase - PGK phosphoglycerate kinase - PFK 6-phosphofructo-1-kinase - PIPES piperazine-N, N-bis-(2-ethanesulphonic acid) - PK pyruvate kinase - PMSF phenylmethylsulphonyl fluoride - PR pyrurate reducing activity - SE standard error - SW seawater - TPI triosephosphate isomerase  相似文献   

17.
Concentrations of m-Cl-peroxy benzoic acid (CPBA) higher than 0.1 mM decrease the ATP-content of Saccharomyces cerevisiae in the presence of glucose in 1 min to less than 10% of the initial value. In the absence of glucose, 1.0 mM CPBA is necessary for a similar effect. After the rapid loss of ATP in the first min in the presence of glucose caused by 0.2 mM CPBA, the ATP-content recovers to nearly the initial value after 10 min. Aerobic glucose consumption and ethanol formation from glucose are both completely inhibited by 1.0 mM CPBA. Assays of the activities of nine different enzymes of the glycolytic pathway as well as analysis of steady state concentrations of metabolites suggest that glyceraldehyde-3-phosphate dehydrogenase is the most sensitive enzyme of glucose fermentation. Phosphofructokinase and alcohol dehydrogenase are slightly less sensitive. Incubation for 1 or 10 min with concentrations of 0.05 to 0.5 mM CPBA causes a) inhibition of glyceraldehyde-3-phosphate dehydrogenase, b) decrease of the ATP-content and c) a decrease of the colony forming capacity. From these findings it is concluded that the disturbance of the ATP-producing glycolytic metabolism by inactivation of glyceraldehyde-3-phosphate dehydrogenase may be an explanation for cell death caused by CPBA.Abbreviations CPBA m-Chloro-peroxy benzoic acid - G-6-P glucose-6-phosphate - F-6-P fructose-6-phosphate - F-1,6-P2 frnctose-1,6-bisphosphate - DAP dihydroxyacetone phosphate - GAP glyceraldehyde-3-phosphate - 2PGA 2-phosphoglycerate - PEP phosphoenol pyruvate - Pyr pyruvate - EtOH ethanol - PFK phosphofructokinase - GAPDH glyceraldehyde-3-phosphate dehydrogenase - ADH alcohol dehydrogenase Dedicated to Prof. Dr. Wolfgang Gerok at the occasion of his 60th birthday  相似文献   

18.
19.
Experimentally, enhanced glycolytic flux has been shown to confer many benefits to the ischernic heart, including maintenance of membrane activity, inhibition of contracture, reduced arrhythmias, and improved functional recovery. While at moderate low coronary flows, the benefits of glycolysis appear extensive, the controversy arises at very low flow rates, in the absence of flow; or when glycolytic substrate may be present in excess, such that high glucose concentrations with or without insulin overload the cell with deleterious metabolises. Under conditions of total global ischemia' glycogen is the only substrate for glycolytic flux. Glycogenolysis may only be protective until the accumulation of metabolises (lactate, H+, NADH, sugar phosphates and Pi ) outweighs the benefit of the ATP produced.The possible deleterious effects associated with increased glycolysis cannot be ignored, and may explain some of the controversial findings reported in the literature. However, an optimal balance between the rate of ATP production and rate of accumulation of metabolises (determined by the glycolytic flux rate and the rate of coronary washout), may ensure optimal recovery. In addition, the effects of glucose utilisation must be distinguished from those of glycogen, differences which may be explained by functional compartmentation within the cell.  相似文献   

20.
The primary catabolic pathways in the fungi Penicillium notatum and P. duponti, and Mucor rouxii and M. miehei were examined by measuring the relative rate of 14CO2 production from different carbon atoms of specifically labelled glucose. It was found that these organisms dissimilate glucose predominantly via the Embden--Meyerhof pathway in conjunction with the tricarboxylic acid cycle and to a lesser extent by the pentose phosphate pathway. Phosphofructokinase (EC 2.7.1.11) activity could not be detected initially in Penicillium species because of the interference from mannitol-1-phosphate dehydrogenase (EC 1.1.1.17) and NADH oxidase (EC 1.6.99.3). A combination of differential centrifuging and a heat treatment of Penicillium cell-free extracts in the presence of fructose-6-phosphate removed the interfering enzymes. The kinetic characteristics of phosphofructokinase from P. notatum and M. rouxii are described. The enzyme presents highly cooperative kinetics for fructose-6-phosphate. The kinetics for ATP show no cooperativity and inhibition by excess ATP is observed. The addition of AMP activated the P. notatum enzyme, relieving ATP inhibition; slight inhibition by AMP was observed with the M. rouxii enzyme. In contrast M. rouxii pyruvate kinase (EC 2.7.1.40) is activated 50-fold by fructose-1,6-diphosphate whereas pyruvate kinase from P. notatum and P. duponti were unaffected by fructose-1,6-diphosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号