首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Roettger MP  Bakhtina M  Tsai MD 《Biochemistry》2008,47(37):9718-9727
While matched nucleotide incorporation by DNA polymerase beta (Pol beta) has been well-studied, a true understanding of polymerase fidelity requires comparison of both matched and mismatched dNTP incorporation pathways. Here we examine the mechanism of misincorporation for wild-type (WT) Pol beta and an error-prone I260Q variant using stopped-flow fluorescence assays and steady-state fluorescence spectroscopy. In stopped-flow, a biphasic fluorescence trace is observed for both enzymes during mismatched dNTP incorporation. The fluorescence transitions are in the same direction as that observed for matched dNTP, albeit with lower amplitude. Assignments of the fast and slow fluorescence phases are designated to the same mechanistic steps previously determined for matched dNTP incorporation. For both WT and I260Q mismatched dNTP incorporation, the rate of the fast phase, reflecting subdomain closing, is comparable to that induced by correct dNTP. Pre-steady-state kinetic evaluation reveals that both enzymes display similar correct dNTP insertion profiles, and the lower fidelity intrinsic to the I260Q mutant results from enhanced efficiency of mismatched incorporation. Notably, in comparison to WT, I260Q demonstrates enhanced intensity of fluorescence emission upon mismatched ternary complex formation. Both kinetic and steady-state fluorescence data suggest that relaxed discrimination against incorrect dNTP by I260Q is a consequence of a loss in ability to destabilize the mismatched ternary complex. Overall, our results provide first direct evidence that mismatched and matched dNTP incorporations proceed via analogous kinetic pathways, and support our standing hypothesis that the fidelity of Pol beta originates from destabilization of the mismatched closed ternary complex and chemical transition state.  相似文献   

2.
DNA polymerases maintain genomic integrity by copying DNA with high fidelity. A conformational change important for fidelity is the motion of the polymerase fingers subdomain from an open to a closed conformation upon binding of a complementary nucleotide. We previously employed intra-protein single-molecule FRET on diffusing molecules to observe fingers conformations in polymerase–DNA complexes. Here, we used the same FRET ruler on surface-immobilized complexes to observe fingers-opening and closing of individual polymerase molecules in real time. Our results revealed the presence of intrinsic dynamics in the binary complex, characterized by slow fingers-closing and fast fingers-opening. When binary complexes were incubated with increasing concentrations of complementary nucleotide, the fingers-closing rate increased, strongly supporting an induced-fit model for nucleotide recognition. Meanwhile, the opening rate in ternary complexes with complementary nucleotide was 6 s−1, much slower than either fingers closing or the rate-limiting step in the forward direction; this rate balance ensures that, after nucleotide binding and fingers-closing, nucleotide incorporation is overwhelmingly likely to occur. Our results for ternary complexes with a non-complementary dNTP confirmed the presence of a state corresponding to partially closed fingers and suggested a radically different rate balance regarding fingers transitions, which allows polymerase to achieve high fidelity.  相似文献   

3.
DNA polymerases insert a dNTP by a multistep mechanism that involves a conformational rearrangement from an open to a closed ternary complex, a process that positions the incoming dNTP in the proper orientation for phosphodiester bond formation. In this work, the importance and relative contribution of hydrogen-bonding interactions and the geometric shape of the base pair that forms during this process were studied using Escherichia coli DNA polymerase I (Klenow fragment, 3'-exonuclease deficient) and natural dNTPs or non-hydrogen-bonding dNTP analogues. Both the geometric fit of the incoming nucleotide and its ability to form Watson-Crick hydrogen bonds with the template were found to contribute to the stability of the closed ternary complex. Although the formation of a closed complex in the presence of a non-hydrogen-bonding nucleotide analogue could be detected by limited proteolysis analysis, a comparison of the stabilities of the ternary complexes indicated that hydrogen-bonding interactions between the incoming dNTP and the template increase the stability of the complex by 6-20-fold. Any deviation from the Watson-Crick base pair geometry was shown to have a destabilizing effect on the closed complex. This degree of destabilization varied from 3- to 730-fold and was found to be correlated with the size of the mismatched base pair. Finally, a stable closed complex is not formed in the presence of a ddNTP or rNTP. These results are discussed in relation to the steric exclusion model for the nucleotide insertion.  相似文献   

4.
Substrate-induced conformational change of the protein is the linchpin of enzymatic reactions. Replicative DNA polymerases, for example, convert from an open to a closed conformation in response to dNTP binding. Human DNA polymerase-iota (hPoliota), a member of the Y family of DNA polymerases, differs strikingly from other polymerases in its much higher proficiency and fidelity for nucleotide incorporation opposite template purines than opposite template pyrimidines. We present here a crystallographic analysis of hPoliota binary complexes, which together with the ternary complexes show that, contrary to replicative DNA polymerases, the DNA, and not the polymerase, undergoes the primary substrate-induced conformational change. The incoming dNTP "pushes" templates A and G from the anti to the syn conformation dictated by a rigid hPoliota active site. Together, the structures posit a mechanism for template selection wherein dNTP binding induces a conformational switch in template purines for productive Hoogsteen base pairing.  相似文献   

5.
Starcevic D  Dalal S  Sweasy J 《Biochemistry》2005,44(10):3775-3784
DNA polymerases ensure efficient insertion of the correct dNTP into the DNA substrate. They have evolved mechanisms for discriminating among very similar dNTP substrates. DNA polymerase beta is a repair polymerase that provides a model system for a direct study of insertion fidelity. In this study, we examined the role of hinge residue Ile260 of the rat Polbeta on enzyme activity and accuracy. We changed residue I260 to every other amino acid residue and used genetic screens to assess the activity and fidelity of the resulting mutants. The I260D, -E, -K, -N, and -R mutants are significantly less active than wild-type Polbeta. Interestingly, I260H and I260Q are active but exhibit mutator activity. This suggests that the nonpolar nature of residue 260 is important for maintaining the activity and fidelity of Polbeta. We employ molecular modeling as an aid in explaining the observed phenotypes and propose a mechanism whereby the positioning of the DNA substrate in the enzyme and within the surface of the hinge may be a key player in forming an optimal active site for phosphodiester bond formation between Watson-Crick base pairs.  相似文献   

6.
7.
To provide molecular-level insights into the spontaneous replication error and the mismatch discrimination mechanisms of human DNA polymerase β (polβ), we report four crystal structures of polβ complexed with dG•dTTP and dA•dCTP mismatches in the presence of Mg2+ or Mn2+. The Mg2+-bound ground-state structures show that the dA•dCTP-Mg2+ complex adopts an ‘intermediate’ protein conformation while the dG•dTTP-Mg2+ complex adopts an open protein conformation. The Mn2+-bound ‘pre-chemistry-state’ structures show that the dA•dCTP-Mn2+ complex is structurally very similar to the dA•dCTP-Mg2+ complex, whereas the dG•dTTP-Mn2+ complex undergoes a large-scale conformational change to adopt a Watson–Crick-like dG•dTTP base pair and a closed protein conformation. These structural differences, together with our molecular dynamics simulation studies, suggest that polβ increases replication fidelity via a two-stage mismatch discrimination mechanism, where one is in the ground state and the other in the closed conformation state. In the closed conformation state, polβ appears to allow only a Watson–Crick-like conformation for purine•pyrimidine base pairs, thereby discriminating the mismatched base pairs based on their ability to form the Watson–Crick-like conformation. Overall, the present studies provide new insights into the spontaneous replication error and the replication fidelity mechanisms of polβ.  相似文献   

8.
Dalal S  Starcevic D  Jaeger J  Sweasy JB 《Biochemistry》2008,47(46):12118-12125
DNA polymerase beta plays a key role in base excision repair. We have previously shown that the hydrophobic hinge region of polymerase beta, which is distant from its active site, plays a critical role in the fidelity of DNA synthesis by this enzyme. The I260Q hinge variant of polymerase beta misincorporates nucleotides with a significantly higher catalytic efficiency than the wild-type enzyme. In the study described here, we show that I260Q extends mispaired primer termini. The kinetic basis for extension of mispairs is defective discrimination by I260Q at the level of ground-state binding of the dNTP substrate. Our results suggest that the hydrophobic hinge region influences the geometry of the dNTP binding pocket exclusively. Because the DNA forms part of the binding pocket, our data are also consistent with the interpretation that the mispaired primer terminus affects the geometry of the dNTP binding pocket such that the I260Q variant has a higher affinity for the incoming dNTP than wild-type polymerase beta.  相似文献   

9.
10.
The high fidelity of chick embryo DNA polymerase-gamma (pol-gamma) observed during in vitro DNA synthesis (Kunkel, T. A. (1985) J. Biol. Chem. 260, 12866-12874) has led us to examine this DNA polymerase for the presence of an exonuclease activity capable of proofreading errors. Highly purified chick embryo pol-gamma preparations do contain exonuclease activity capable of digesting radiolabeled DNA in a 3'----5' direction, releasing deoxynucleoside 5'-monophosphates. The polymerase and exonuclease activities cosediment during centrifugation in a glycerol gradient containing 0.5 M KCl. In the absence of dNTP substrates, this exonuclease excises both matched and mismatched primer termini, with a preference for mismatched bases. Excision is inhibited by the addition of nucleoside 5'-monophosphates to the digestion reaction. In the presence of dNTP substrates to permit competition between excision and polymerization from the mismatched primer, the exonuclease excises mismatched bases from preformed terminal mispairs with greater than 98% efficiency. The preference for excision over polymerization can be diminished by addition of either high concentrations of dNTP substrates or nucleoside 5'-monophosphates to the exonuclease/polymerase reaction. To determine if this exonuclease is capable of proofreading misinsertions produced during a normal polymerization reaction, a sensitive base substitution fidelity assay was developed based on reversion of an M13mp2 lacZ alpha nonsense codon. In this assay using reaction conditions that permit highly active exonucleolytic proofreading, pol-gamma exhibits a fidelity of less than one error for every 260,000 bases polymerized. As for terminal mismatch excision, fidelity is reduced by the addition to the synthesis reaction of high concentrations of dNTP substrates or nucleoside 5'-monophosphates, both hallmarks of exonucleolytic proofreading by prokaryotic enzymes. Taken together, these observations suggest that the 3'----5' exonuclease present in highly purified chick embryo pol-gamma preparations proofreads base substitution errors during DNA synthesis. It remains to be determined if the polymerase and exonuclease activities reside in the same or different polypeptides.  相似文献   

11.
DNA polymerase ν (pol ν) is a low fidelity A-family polymerase with a putative role in interstrand cross-link repair and homologous recombination. We carried out pre-steady-state kinetic analysis to elucidate the kinetic mechanism of this enzyme. We found that the mechanism consists of seven steps, similar that of other A-family polymerases. pol ν binds to DNA with a Kd for DNA of 9.2 nm, with an off-rate constant of 0.013 s−1and an on-rate constant of 14 μm−1 s−1. dNTP binding is rapid with Kd values of 20 and 476 μm for the correct and incorrect dNTP, respectively. Pyrophosphorylation occurs with a Kd value for PPi of 3.7 mm and a maximal rate constant of 11 s−1. Pre-steady-state kinetics, examination of the elemental effect using dNTPαS, and pulse-chase experiments indicate that a rapid phosphodiester bond formation step is flanked by slow conformational changes for both correct and incorrect base pair formation. These experiments in combination with computer simulations indicate that the first conformational change occurs with rate constants of 75 and 20 s−1; rapid phosphodiester bond formation occurs with a Keq of 2.2 and 1.7, and the second conformational change occurs with rate constants of 2.1 and 0.5 s−1, for correct and incorrect base pair formation, respectively. The presence of a mispair does not induce the polymerase to adopt a low catalytic conformation. pol ν catalyzes both correct and mispair formation with high catalytic efficiency.  相似文献   

12.
Roettger MP  Fiala KA  Sompalli S  Dong Y  Suo Z 《Biochemistry》2004,43(43):13827-13838
DNA polymerase mu (Polmu), an X-family DNA polymerase, is preferentially expressed in secondary lymphoid tissues with yet unknown physiological functions. In this study, Polmu was overexpressed in Escherichia coli and purified to homogeneity. The purified enzyme had a lifetime of <20 min at 37 degrees C, but was stable for over 3 h at 25 degrees C in an optimized reaction buffer. The fidelity of human Polmu was thus determined using pre-steady-state kinetic analysis of the incorporation of single nucleotides into undamaged DNA 21/41-mer substrates at 25 degrees C. Single-turnover saturation kinetics for all 16 possible deoxynucleotide (dNTP) incorporations and for four matched ribonucleotide (rNTP) incorporations were measured under conditions where Polmu was in molar excess over DNA. The polymerization rate (k(p)), binding affinity (K(d)), and substrate specificity (k(p)/K(d)) are 0.006-0.076 s(-1), 0.35-1.8 microM, and (8-64) x10(-3) microM(-1) s(-1), respectively, for matched incoming dNTPs, (2-30) x 10(-5) s(-1), 7.3-135 microM, and (4-61) x 10(-7) microM(-1) s(-1), respectively, for mismatched incoming dNTPs, and (2-73) x 10(-4) s(-1), 45-302 microM, and (7-1300) x 10(-7) microM(-1) s(-1), respectively, for matched incoming rNTPs. The overall fidelity of Polmu was estimated to be in the range of 10(-3)-10(-5) for both dNTP and rNTP incorporations and was sequence-independent. The sugar selectivity, defined as the substrate specificity ratio of a matched dNTP versus a matched rNTP, was measured to be in the range of 492-10959. In addition to a slow and distributive DNA polymerase activity, Polmu was identified to possess a weak strand-displacement activity. The potential biological roles of Polmu are discussed.  相似文献   

13.
Klenow–DNA complex is known to undergo a rate-limiting, protein conformational transition from an ‘open’ to ‘closed’ state, upon binding of the ‘correct’ dNTP at the active site. In the ‘closed’ state, Mg2+ mediates a rapid chemical step involving nucleophilic displacement of pyrophosphate by the 3′ hydroxyl of the primer terminus. The enzyme returns to the ‘open’ state upon the release of PPi and translocation permits the next round of reaction. To determine whether Klenow can translocate to the next site on the addition of the next dNTP, without the preceding chemical step, we studied the ternary complex (KlenowDNA–dNTP) in the absence of Mg2+. While the ternary complex is proficient in chemical addition of dNTPs in Mg2+, as revealed by primer extensions, the same in Mg2+-deficient conditions lead to non-covalent (physical) sequestration of first two ‘correct’ dNTPs in the ternary complex. Moreover, the second dNTP traps the first one in the DNA-helix of the ternary complex. Such a dNTP–DNA complex is found to be stable even after the dissociation of Klenow. This reveals the novel state of the dNTP–DNA complex where the complementary base is stacked in a DNA-helix non-covalently, without the phosphodiester linkage. Further, shuttling of the DNA between the polymerase and the exonuclease site mediates the release of such a DNA complex. Interestingly, Klenow in such a Mg2+-deficient ternary complex exhibits a ‘closed’ conformation.  相似文献   

14.
15.
16.
Yan SF  Wu M  Geacintov NE  Broyde S 《Biochemistry》2004,43(24):7750-7765
Fidelity of DNA polymerases is predominantly governed by an induced fit mechanism in which the incoming dNTP in the ternary complex fits tightly into a binding pocket whose geometry is determined by the nature of the templating base. However, modification of the template with a bulky carcinogen may alter the dNTP binding pocket and thereby the polymerase incorporation fidelity. High fidelity DNA polymerases, such as bacteriophage T7 DNA polymerase, are predominantly blocked by bulky chemical lesions on the template strand during DNA replication. However, some mutagenic bypass can occur, which may lead to carcinogenesis. Experimental studies have shown that a DNA covalent adduct derived from (+)-anti-BPDE [(+)-(7R,8S,9S,10R)-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene], a carcinogenic metabolite of benzo[a]pyrene (BP), primarily blocks Sequenase 2.0, an exo(-) T7 DNA polymerase; however, a mismatched dATP can be preferentially inserted opposite the damaged adenine templating base within the active site of the polymerase [Chary, P., and Lloyd, R. S. (1995) Nucleic Acids Res. 23, 1398-1405]. The goal of this work is to elucidate structural features that contribute to DNA polymerase incorporation fidelity in the presence of this bulky covalent adduct and to interpret the experimental findings on a molecular level. We have carried out molecular modeling and molecular dynamics simulations with AMBER 6.0, investigating a T7 DNA polymerase primer-template closed ternary complex containing this 10S (+)-trans-anti-[BP]-N(6)-dA adduct in the templating position within the polymerase active site. All four incoming dNTPs were studied. The simulations show that the BP ring system fits well into an open pocket on the major groove side of the modified template adenine with anti glycosidic bond conformation, without disturbing critical polymerase-DNA interactions. However, steric hindrance between the BP ring system and the primer-template DNA causes displacement of the modified template adenine, so that the dNTP base binding pocket is enlarged. This alteration can explain the experimentally observed preference for incorporation of dATP opposite this lesion. These studies also rationalize the observed lower probabilities of incorporation of the other three nucleotides. Our results suggest that the differences in incorporation of dGTP, dCTP, and dTTP are due to the effects of imperfect geometric complementarity. Thus, the simulations suggest that altered DNA polymerase incorporation fidelity can result from adduct-induced changes in the dNTP base binding pocket geometry. Furthermore, plausible structural explanations for the observed effects of [BP]-N(6)-dA adduct stereochemistry on the observed stalling patterns are proposed.  相似文献   

17.
Zhang Y  Yuan F  Xin H  Wu X  Rajpal DK  Yang D  Wang Z 《Nucleic acids research》2000,28(21):4147-4156
Escherichia coli DNA polymerase IV encoded by the dinB gene is involved in untargeted mutagenesis. Its human homologue is DNA polymerase κ (Polκ) encoded by the DINB1 gene. Our recent studies have indicated that human Polκ is capable of both error-free and error-prone translesion DNA synthesis in vitro. However, it is not known whether human Polκ also plays a role in untargeted mutagenesis. To examine this possibility, we have measured the fidelity of human Polκ during DNA synthesis from undamaged templates. Using kinetic measurements of nucleotide incorporations and a fidelity assay with gapped M13mp2 DNA, we show that human Polκ synthesizes DNA with extraordinarily low fidelity. At the lacZα target gene, human Polκ made on average one error for every 200 nucleotides synthesized, with a predominant T→G transversion mutation at a rate of 1/147. The overall error rate of human Polκ is 1.7-fold lower than human Polη, but 33-fold higher than human Polβ, a DNA polymerase with very low fidelity. Thus, human Polκ is one of the most inaccurate DNA polymerases known. These results support a role for human Polκ in untargeted mutagenesis surrounding a DNA lesion and in DNA regions without damage.  相似文献   

18.
Fiala KA  Suo Z 《Biochemistry》2004,43(7):2116-2125
The kinetic mechanism of DNA polymerization catalyzed by Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) is resolved by pre-steady-state kinetic analysis of single-nucleotide (dTTP) incorporation into a DNA 21/41-mer. Like replicative DNA polymerases, Dpo4 utilizes an "induced-fit" mechanism to select correct incoming nucleotides. The affinity of DNA and a matched incoming nucleotide for Dpo4 was measured to be 10.6 nM and 230 microM, respectively. Dpo4 binds DNA with an affinity similar to that of replicative polymerases due to the presence of an atypical little finger domain and a highly charged tether that links this novel domain to its small thumb domain. On the basis of the elemental effect between the incorporations of dTTP and its thio analogue S(p)-dTTPalphaS, the incorporation of a correct incoming nucleotide by Dpo4 was shown to be limited by the protein conformational change step preceding the chemistry step. In contrast, the chemistry step limited the incorporation of an incorrect nucleotide. The measured dissociation rates of the enzyme.DNA binary complex (0.02-0.07 s(-1)), the enzyme.DNA.dNTP ternary complex (0.41 s(-1)), and the ternary complex after the protein conformational change (0.004 s(-1)) are significantly different and support the existence of a bona fide protein conformational change step. The rate-limiting protein conformational change was further substantiated by the observation of different reaction amplitudes between pulse-quench and pulse-chase experiments. Additionally, the processivity of Dpo4 was calculated to be 16 at 37 degrees C from analysis of a processive polymerization experiment. The structural basis for both the protein conformational change and the low processivity of Dpo4 was discussed.  相似文献   

19.
Polymerases from the Pol-I family which are able to efficiently use ddNTPs have demonstrated a much improved performance when used to sequence DNA. A number of mutations have been made to the gene coding for the Pol-II family DNA polymerase from the archaeon Pyrococcus furiosus with the aim of improving ddNTP utilisation. ‘Rational’ alterations to amino acids likely to be near the dNTP binding site (based on sequence homologies and structural information) did not yield the desired level of selectivity for ddNTPs. However, alteration at four positions (Q472, A486, L490 and Y497) gave rise to variants which incorporated ddNTPs better than the wild type, allowing sequencing reactions to be carried out at lowered ddNTP:dNTP ratios. Wild-type Pfu–Pol required a ddNTP:dNTP ratio of 30:1; values of 5:1 (Q472H), 1:3 (L490W), 1:5 (A486Y) and 5:1 (Y497A) were found with the four mutants; A486Y representing a 150-fold improvement over the wild type. A486, L490 and Y497 are on an α-helix that lines the dNTP binding groove, but the side chains of the three amino acids point away from this groove; Q472 is in a loop that connects this α-helix to a second long helix. None of the four amino acids can contact the dNTP directly. Therefore, the increased selectivity for ddNTPs is likely to arise from two factors: (i) small overall changes in conformation that subtly alter the nucleotide triphosphate binding site such that ddNTPs become favoured; (ii) interference with a conformational change that may be critical both for the polymerisation step and discrimination between different nucleotide triphosphates.  相似文献   

20.
The mechanism by which DNA polymerases achieve their extraordinary accuracy has been intensely studied because of the linkage between this process and mutagenesis and carcinogenesis. Here, we have used single-molecule fluorescence microscopy to study the process of nucleotide selection and exonuclease action. Our results show that the binding of Escherichia coli DNA polymerase I (Klenow fragment) to a primer-template is stabilized by the presence of the next correct dNTP, even in the presence of a large excess of the other dNTPs and rNTPs. These results are consistent with a model where nucleotide selection occurs in the open complex prior to the formation of a closed ternary complex. Our assay can also distinguish between primer binding to the polymerase or exonuclease domain and, contrary to ensemble-averaged studies, we find that stable exonuclease binding only occurs with a mismatched primer terminus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号