首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Investigations determined the mechanism(s) by which Arg-Pro-Pro-Gly-Phe (RPPGF) inhibits thrombin-induced platelet activation. High concentrations of RPPGF inhibit thrombin-induced coagulant activity. RPPGF binds to the active site of thrombin by forming a parallel beta-strand with Ser214-Gly216 and interacts with His57, Asp189, and Ser195 of the catalytic triad. RPPGF competitively inhibits alpha-thrombin from hydrolyzing Sar-Pro-Arg-paranitroanilide with a Ki = 1.75 +/- 0.03 mM. Other mechanisms were sought to explain why RPPGF inhibits thrombin activation of platelets at concentrations below that which inhibits its active site. Soluble RPPGF blocks biotinylated NATLDPRSFLLR of the thrombin cleavage site on protease-activated receptor (PAR)1 from binding to the peptide RPPGC (IC50 = 20 microM). The soluble recombinant extracellular domain of PAR1 (rPAR1EC) blocks biotinylated RPPGF binding to rPAR1EC (IC50 = 50 microM) bound to microtiter plates, but rPAR1EC deletion mutants missing the sequence LDPR or PRSF do not. RPPGF and related forms prevent the thrombin-like enzyme thrombocytin from proteolyzing rPAR1EC at concentrations that do not block thrombocytin's active site. These studies indicate that RPPGF is a bifunctional inhibitor of thrombin: it binds to PAR1 to prevent thrombin cleavage at Arg41 and interacts with the active site of alpha-thrombin.  相似文献   

2.
Platelet activation and aggregation are mediated by thrombin cleavage of the exodomain of the PAR1 receptor. The specificity of thrombin for PAR1 is enhanced by binding to a hirudin-like region (Hir) located in the receptor exodomain. Here, we examine the mechanism of thrombin-PAR1 recognition and cleavage by steady-state kinetic measurements using soluble PAR1 N-terminal exodomains. We determined that the primary role of the PAR1 Hir sequence is to reduce the kinetic barriers to formation of the docked thrombin-PAR1 complex rather than to form high affinity ground-state interactions. In addition, the exosite I-bound Hir motif facilitates the productive interaction of the PAR1 (38)LDPR/SFL(44) sequence with the active site of thrombin. This locking process is the most energetically unfavorable step of the overall reaction. The subsequent irreversible steps of peptide bond cleavage are rapid and allosterically enhanced by the presence of the docked Hir sequence. Furthermore, the C-terminal exodomain product of thrombin cleavage, corresponding to the activated receptor, binds tightly to thrombin. This would suggest that an additional role of the Hir sequence in the thrombin-activated receptor is to sequester thrombin to the platelet surface and modulate cleavage of other platelet receptors such as the PAR4 thrombin receptor, which lacks a functional Hir sequence.  相似文献   

3.
Nieman MT  Schmaier AH 《Biochemistry》2007,46(29):8603-8610
Investigations determined the critical amino acids for alpha-thrombin's interaction with protease-activated receptors 1 and 4 (PAR1 and PAR4, respectively) at the thrombin cleavage site. Recombinant PAR1 wild-type (wt) exodomain was cleaved by alpha-thrombin with a Km of 28 microM, a kcat of 340 s-1, and a kcat/Km of 1.2 x 10(7). When the P4 or P2 position was mutated to alanine, PAR1-L38A or PAR1-P40A, respectively, the Km was unchanged, 29 or 23 microM, respectively; however, the kcat and kcat/Km were reduced in each case. In contrast, when Asp39 at P3 was mutated to alanine, PAR1-D39A, Km and kcat were both reduced approximately 3-fold, making the kcat/Km the same as that of PAR1-wt exodomain. Recombinant PAR4-wt exodomain was cleaved by alpha-thrombin with a Km of 61 microM, a kcat of 17 s-1, and a kcat/Km of 2.8 x 10(5). When the P5 or P4 position was mutated to alanine, PAR4-L43A or PAR4-P44A, respectively, there was no change in the Km (69 or 56 microM, respectively); however, the kcat was lowered in each case (9.7 or 7.7 s-1, respectively). Mutation of the P2 position (PAR4-P46A) also had no effect on the Km but markedly lowered the kcat and kcat/Km approximately 35-fold. PAR1-wt exodomain and P4 and P3 mutants were noncompetitive inhibitors of alpha-thrombin hydrolyzing Sar-Pro-Arg-pNA. However, PAR1-P40A displayed a mixed type of inhibition. Mutation of P4, P3, or P2 had no effect on the Ki. All PAR4 exodomains were competitive inhibitors of alpha-thrombin. Mutation of P5, P4, or P2 had no effect on the Ki. These investigations show that Leu at P4 in PAR1 or P5 in PAR4 critically influences the kinetics of alpha-thrombin binding and cleavage of PAR1 and PAR4 exodomains. It also implies that factors other than the hirudin-like binding region on PAR1 exodomain predominate in influencing PAR1 cleavage on cells.  相似文献   

4.
Hammes SR  Coughlin SR 《Biochemistry》1999,38(8):2486-2493
The thrombin receptor PAR1 is activated when thrombin cleaves the receptor's amino-terminal exodomain to reveal the new N-terminal sequence SFLLRN which then acts as a tethered peptide ligand. Free SFLLRN activates PAR1 independent of receptor cleavage and has been used to probe PAR1 function in various cells and tissues. PAR1-expressing cells desensitized to thrombin retain responsiveness to SFLLRN. Toward determining the mechanism of such responses, we utilized fibroblasts derived from a PAR1-deficient mouse. These cells were unresponsive to thrombin and SFLLRN and became sensitive to both ligands after transfection with human PAR1 cDNA. Moreover, PAR1-transfected cells responded to SFLLRN after thrombin-desensitization, indicating that signaling of thrombin-desensitized cells to SFLLRN was mediated by PAR1 itself. SFLLRN caused signaling in thrombin-desensitized cells when no uncleaved PAR1 was detectable on the cell surface; however, cleaved PAR1 was present. To determine whether the cleaved receptors could still signal, fibroblasts were transfected with a PAR1 mutant containing a trypsin site/SFLLRN sequence carboxyl terminal to the native thrombin site. These cells retained responsiveness to trypsin after thrombin-desensitization. Conversely, fibroblasts expressing a PAR1 mutant with the trypsin site/SFLLRN sequence amino terminal to the native thrombin site retained responsiveness to thrombin after trypsin-desensitization. This suggests that a population of thrombin-cleaved PAR1 can respond both to exogenous SFLLRN and to a second tethered ligand. In this population, the tethered ligand unmasked by thrombin cleavage must not be functional, suggesting the possibility of a novel mechanism of receptor shutoff involving sequestration or modification of the tethered ligand to prevent or terminate its function.  相似文献   

5.
Regulated shedding of PAR1 N-terminal exodomain from endothelial cells   总被引:4,自引:0,他引:4  
G protein-coupled receptors can trigger metalloproteinase-dependent shedding of proteins from the cell surface. We now report that G protein-coupled receptors can themselves undergo regulated metalloproteinase-dependent shedding. The N-terminal exodomain of protease-activated receptor-1 (PAR1), a G protein-coupled receptor for thrombin, displayed regulated shedding in endothelial cells, which normally express this receptor. Cleavage occurred at a site predicted to render the receptor unresponsive to thrombin. A chimeric protein in which the N-terminal exodomain of PAR1 was fused to an unrelated transmembrane segment was shed as efficiently as PAR1, shedding of both proteins was stimulated by phorbol ester and by a PAR1 agonist. TNFalpha protease inhibitor-2 (TAPI-2), phenanthroline, and tissue inhibitor of metalloproteinase-3 (TIMP-3) but not TIMP-1 or -2 inhibited such shedding. These and other data suggest that the information that specifies PAR1 shedding resides within its N-terminal exodomain rather than its heptahelical segment, that activation of protein kinase C or of PAR1 itself can stimulate PAR1 shedding in trans, and that ADAM17/TACE or a metalloproteinase with similar properties mediates PAR1 shedding. Regulated shedding reduced the amount of cell surface PAR1 available for productive cleavage by thrombin by half or more, but thus far we have been unable to demonstrate an effect of PAR1 shedding on cellular responsiveness to thrombin. Nonetheless, regulated shedding of G protein-coupled receptors represents a new mechanism by which signaling by this important class of receptors might be modulated.  相似文献   

6.
It has been hypothesized that protease-activated receptors may be activated and attenuated by more than one protease. Here, we explore a desensitization mechanism of the PAR1 thrombin receptor by anticoagulant proteases and provide an explanation to the enigma of why plasmin/tissue plasminogen activator (t-PA) can both activate and deactivate platelets prior to thrombin treatment. By using a soluble N-terminal exodomain (TR78) as a model for the full-length receptor, we were able to unambiguously compare cleavage rates and specificities among the serum proteases. Thrombin cleaves TR78 at the R41-S42 peptide bond with a kcat of 120 s-1 and a KM of 16 microM to produce TR62 (residues 42-103). We found that, of the anticoagulant proteases, only plasmin can rapidly truncate the soluble exodomain at the R70/K76/K82 sites located on a linker region that tethers the ligand to the body of the receptor. Plasmin cleavage of the TR78 exodomain is nearly equivalent to that of thrombin cleavage at R41 with similar rates (kcat = 30 s-1) and affinity (KM = 18 microM). Specificity was demonstrated since there is no observed cleavage at the five other potential plasmin-cleavage sites. Plasmin also cleaves the TR78 exodomain at the R41 thrombin-cleavage site generating transiently activated exodomain. We directly demonstrated that plasmin cleaves these same sites in full-length membrane-embedded receptor expressed in yeast and COS7 fibroblasts. The rate of plasmin truncation is similar between the extensively glycosylated COS7-expressed receptor and the nonglycosylated yeast-produced receptor. Mutation of the R70/K76/K82 sites to A70/A76/A82 eliminates plasmin truncation and desensitization of thrombin-dependent Ca2+ signaling and converts PAR1 into a plasmin-activated receptor with full agonist activity for plasmin. Plasmin does not desensitize the Ca2+ response of platelets or COS7 cells to SFLLRN consistent with intermolecular ligand-binding sites being located to the C-terminal side of K82. Truncation of the wild-type receptor at the C-terminal plasmin-cleavage sites removes the N-terminal tethered ligand or preligand, thereby providing an effective pathway for PAR1 desensitization in vivo.  相似文献   

7.
Key hemostatic serine proteases such as thrombin and activated protein C (APC) are signaling molecules controlling blood coagulation and inflammation, tissue regeneration, neurodegeneration, and some other processes. By interacting with protease-activated receptors (PARs), these enzymes cleave a receptor exodomain and liberate new amino acid sequence known as a tethered ligand, which then activates the initial receptor and induces multiple signaling pathways and cell responses. Among four PAR family members, APC and thrombin mainly act via PAR1, and they trigger divergent effects. APC is an anticoagulant with antiinflammatory and cytoprotective activity, whereas thrombin is a protease with procoagulant and proinflammatory effects. Hallmark features of APC-induced effects result from acting via different pathways: limited proteolysis of PAR1 localized in membrane caveolae with coreceptor (endothelial protein C receptor) as well as its targeted proteolytic action at a receptor exodomain site differing from the canonical thrombin cleavage site. Hence, a new noncanonical tethered PAR1 agonist peptide (PAR1-AP) is formed, whose effects are poorly investigated in inflammation, tissue regeneration, and neurotoxicity. In this review, a concept about a role of biased agonism in effects exerted by APC and PAR1-AP via PAR1 on cells involved in inflammation and related processes is developed. New evidence showing a role for a biased agonism in activating PAR1 both by APC and PAR1-AP as well as induction of antiinflammatory and cytoprotective cellular responses in experimental inflammation, wound healing, and excitotoxicity is presented. It seems that synthetic PAR1 peptide-agonists may compete with APC in controlling some inflammatory and neurodegenerative diseases.  相似文献   

8.
Protease-activated receptor 4 (PAR4) is cleaved by thrombin at the R47-G48 peptide bond. Unlike PAR1, PAR4 does not contain a sequence readily predicted to interact with thrombin anion binding exosite-I. HPLC kinetic results on hydrolysis of PAR4 peptides (38-51 and 38-62) reveal that extending the sequence from the active site toward the exosite does not promote further binding interactions with thrombin. One-dimensional-proton line-broadening NMR indicates that the amino acids occupying the P(4)-P(1) positions of PAR4 (38-47), 44PAPR(47), come into direct contact with the thrombin surface. Less contact arises from the Leu43 at the P(5) position. Two-dimensional total correlation spectroscopy and two-dimensional transferred nuclear Overhauser effect spectroscropy studies on this complex reveal that Leu43 is flexible and can exhibit two conformational states. The binding mode observed for PAR4 peptides is similar to that of PAR1 peptides. PAR4 takes advantage of a distinctive sequence to optimize its interactions with the thrombin active site surface.  相似文献   

9.
Arg-Pro-Pro-Gly-Phe (RPPGF, BK[1–5]), is a stable metabolite of the peptide hormone bradykinin. Considering the short half-life of bradykinin (BK, 15 secs), RPPGF has been used as a marker for BK’s endogenous generation. A lack of a radioiodinated RPPGF has precluded the development of a radioimmunoassay for this peptide. The present study describes a two-step reaction that allows for the incorporation of 125I into the aromatic ring of the phenylalanine of RPPGF. This radioiodinated analog is recognized by an antibody to RPPGF, demonstrating its utility for the development of a radioimmunoassay for measurements of RPPGF, a stable metabolic product of bradykinin.  相似文献   

10.
This paper describes the development of galactosidase protease-activated receptor (GPAR) as a recombinant protein obtained by fusion of beta-galactosidase, the extracellular domains of protease-activated receptors (PARs), and a biotin acceptor domain. Used as an immobilized substrate, this protein allows the detection of thrombin in the sub-picomolar range. A comparative analysis for proteolytic cleavage of murine PAR1, PAR2, and PAR3 and human PAR4 was performed, involving mutated and nonmutated GPAR fusion proteins. Thrombin cleaved GPAR1 (2.6 mol(beta-galactosidase)/(mol(thrombin) * min)), GPAR3 (410 mmol(beta-galactosidase)/(mol(thrombin) * min)), and GPAR4 (4.3 mmol(beta-galactosidase)/(mol(thrombin) * min)) specifically at the proteolytic activation site. A second possible cleavage site for thrombin is present in murine PAR1 and PAR3. Trypsin and plasmin cleaved all receptor fusion proteins with little specificity for the activation site, except for a marked preference of trypsin for cleavage at the activation site of GPAR2. Chymotrypsin cleaves GPAR1 at a rate (58 mmol(beta-galactosidase)/(mol(thrombin) * min)) that suggests the possibility of chymotryptic inactivation of PAR1. Elastase may inactivate PAR1 and PAR3, but probably not PAR2 and PAR4. Neither activated protein C nor the plasminogen activators cleave any GPAR fusion protein at considerable rates.  相似文献   

11.
嵌合水蛭肽的构建与活性分析   总被引:3,自引:0,他引:3  
血管成形术或动脉粥样斑块破裂等因素所致血管壁损伤而引起的血栓形成过程中 ,血小板的激活和凝血酶的形成起着关键作用 .因此 ,抗血小板和抗凝是治疗血栓的两个重要方面 .血小板膜糖蛋白GPⅡb Ⅲa受体拮抗剂 ,如含Arg Gly Asp(RGD)序列的多肽 ,在临床上已显示了良好的抗血小板  相似文献   

12.
Protease-activated receptors [PARs] are a family of G-protein-coupled seven-transmembrane domain receptors that are activated by proteolytic cleavage of their amino-terminal exodomain. To characterize the cleavage rate of human PAR-1 / 2 / 3 and 4 by trypsin and thrombin, four synthetic quenched-fluorescent peptide substrates have been synthesized. Each substrate consisted of a ten-residue peptide spanning the receptor activation cleavage site and using progress-curve kinetics, k(cat) / K(m) values were determined.  相似文献   

13.
Factor Xa (FXa) elicits intracellular signaling responses through the activation of protease-activated receptor 2 (PAR2) and possibly also through PAR1 in endothelial cells. In this study, we investigated FXa signaling in endothelial cells when the protease was either in free form or assembled into the prothrombinase complex. Furthermore, we prepared several wild-type and mutant PAR1 and PAR2 cleavage-reporter constructs in which their exodomains were fused to cDNA encoding for a soluble alkaline phosphatase (ALP). In the mutants, P2 residues were exchanged between PAR1 and PAR2 cleavage-reporter constructs and the hirudin-like binding site (HLBS) of PAR1 was inserted into the homologous site of PAR2. In non-transfected cells, FXa elicited a protective response which could be blocked by a specific anti-PAR2 but not by an anti-PAR1 antibody. A similar protective activity was observed for FXa in the prothrombinase complex. Further studies revealed that neither the Gla- nor EGF1-domain of FXa is required for its signaling activity, however, the N-terminus Arg-86 and Lys-87 of the EGF2-domain were essential. In the cleavage-reporter transfected cells, FXa cleaved the PAR2 construct effectively, however, replacing its P2-Gly with P2-Pro of PAR1 impaired its cleavage by FXa but improved it by thrombin. A PAR2 construct containing both P2-Pro and HLBS of PAR1 was poorly cleaved by FXa, but effectively by thrombin. A PAR1 construct containing P2 and P3 residues of PAR2 was poorly cleaved by thrombin but effectively by FXa. These results provide new insight into mechanisms through which coagulation proteases specifically interact with their target PAR receptors.  相似文献   

14.
Of the four known protease-activated receptors (PARs), PAR1 and PAR4 are expressed by human platelets and mediate thrombin signaling. Whether these receptors are redundant, interact, or play at least partially distinct roles is unknown. It is possible that PAR1 and/or PAR4 might confer responsiveness to proteases other than thrombin. The neutrophil granule protease, cathepsin G, is known to cause platelet secretion and aggregation. We now report that this action of cathepsin G is mediated by PAR4. Cathepsin G triggered calcium mobilization in PAR4-transfected fibroblasts, PAR4-expressing Xenopus oocytes, and washed human platelets. An antibody raised against the PAR4 thrombin cleavage site blocked platelet activation by cathepsin G but not other agonists. Desensitization with a PAR4 activating peptide had a similar effect. By contrast, inhibition of PAR1 function had no effect on platelet responses to cathepsin G. When neutrophils were present, the neutrophil agonist fMet-Leu-Phe triggered calcium signaling in Fura-2-loaded platelets. Strikingly, this neutrophil-dependent platelet activation was blocked by the PAR4 antibody. These data show that PAR4 mediates platelet responses to cathepsin G and support the hypothesis that cathepsin G might mediate neutrophil-platelet interactions at sites of vascular injury or inflammation.  相似文献   

15.
BACKGROUND: Thrombin is a serine protease that elicits a variety of cellular responses. Molecular cloning of a thrombin receptor revealed a G protein-coupled receptor that is activated by a novel proteolytic mechanism. Recently, a second protease-activated receptor was discovered and dubbed PAR2. PAR2 is highly related to the thrombin receptor by sequence and, like the thrombin receptor, is activated by cleavage of its amino terminal exodomain. Also like the thrombin receptor, PAR2 can be activated by the hexapeptide corresponding to its tethered ligand sequence independent of receptor cleavage. Thus, functionally, the thrombin receptor and PAR2 constitute a fledgling receptor family that shares a novel proteolytic activation mechanism. To further explore the relatedness of the two known protease-activated receptors and to examine the possibility that a protease-activated gene cluster might exist, we have compared the structure and chromosomal locations of the thrombin receptor and PAR2 genes. MATERIALS AND METHODS: The genomic structures of the two protease-activated receptor genes were determined by analysis of lambda phage, P1 bacteriophage, and bacterial artificial chromosome (BAC) genomic clones. Chromosomal location was determined with fluorescent in situ hybridization (FISH) on metaphase chromosomes, and the relative distance separating the two genes was evaluated both by means of two-color FISH and analysis of YACs and BACs containing both genes. RESULTS: Analysis of genomic clones revealed that the two protease-activated receptor genes share a two-exon genomic structure in which the first exon encodes 5'-untranslated sequence and signal peptide, and the second exon encodes the mature receptor protein and 3'-untranslated sequence. The two receptor genes also share a common locus with the two human genes located at 5q13 and the two mouse genes at 13D2, a syntenic region of the mouse genome. These techniques also suggest that the physical distance separating these two genes is less than 100 kb. CONCLUSIONS: The fact that the thrombin receptor and PAR2 genes share an identical structure and are located within approximately 100 kb of each other in the genome demonstrates that these genes arose from a gene duplication event. These results define a new protease-activated receptor gene cluster in which new family members may be found.  相似文献   

16.
Protease-activated receptors (PARs) mediate cell activation after proteolytic cleavage of their extracellular amino terminus. Thrombin selectively cleaves PAR1, PAR3, and PAR4 to induce activation of platelets and vascular cells, while PAR2 is preferentially cleaved by trypsin. In pathological situations, other proteolytic enzymes may be generated in the circulation and could modify the responses of PARs by cleaving their extracellular domains. To assess the ability of such proteases to activate or inactivate PARs, we designed a strategy for locating cleavage sites on the exofacial NH(2)-terminal fragments of the receptors. The first extracellular segments of PAR1 (PAR1E) and PAR2 (PAR2E) expressed as recombinant proteins in Escherichia coli were incubated with a series of proteases likely to be encountered in the circulation during thrombosis or inflammation. Kinetic and dose-response studies were performed, and the cleavage products were analyzed by MALDI-TOF mass spectrometry. Thrombin cleaved PAR1E at the Arg41-Ser42 activation site at concentrations known to induce cellular activation, supporting a native conformation of the recombinant polypeptide. Plasmin, calpain and leukocyte elastase, cathepsin G, and proteinase 3 cleaved at multiple sites and would be expected to disable PAR1 by cleaving COOH-terminal to the activation site. Cleavage specificities were further confirmed using activation site defective PAR1E S42P mutant polypeptides. Surface plasmon resonance studies on immobilized PAR1E or PAR1E S42P were consistent with cleavage results obtained in solution and allowed us to determine affinities of PAR1E-thrombin binding. FACS analyses of intact platelets confirmed the cleavage of PAR1 downstream of the Arg41-Ser42 site. Mass spectrometry studies of PAR2E predicted activation of PAR2 by trypsin through cleavage at the Arg36-Ser37 site, no effect of thrombin, and inactivation of the receptor by plasmin, calpain and leukocyte elastase, cathepsin G, and proteinase 3. The inhibitory effect of elastase was confirmed on native PAR1 and PAR2 on the basis of Ca(2+) signaling studies in endothelial cells. It was concluded that none of the main proteases generated during fibrinolysis or inflammation appears to be able to signal through PAR1 or PAR2. This strategy provides results which can be extended to the native receptor to predict its activation or inactivation, and it could likewise be used to study other PARs or protease-dependent processes.  相似文献   

17.
Structural basis of thrombin-protease-activated receptor interactions   总被引:1,自引:0,他引:1  
Aggregation of platelets is an essential step in the formation of a stable blood clot during vascular injury. The trypsin-like protease thrombin acts as the dominant agonist of platelet activation on engagement of protease-activated receptors (PARs). Important details on the molecular aspects of thrombin-PAR interactions have been revealed recently by structural biology. In the case of human platelets, PAR1 engages thrombin via an extended surface of recognition encompassing the active site and exosite I. In the case of murine platelets, PAR4 binds to the active site in a conformation that leaves exosite I free for interaction with cofactors like PAR3. Human PAR4 mimics the murine receptor binding mechanism for residues upstream of the scissile bond. This information is consistent with existing functional data and provides a solid background for future structural and mutagenesis studies of PAR interaction with thrombin and related proteases.  相似文献   

18.
Human thrombin utilizes Na+ as a driving force for the cleavage of substrates mediating its procoagulant, prothrombotic, and signaling functions. Murine thrombin has Asp-222 in the Na+ binding site of the human enzyme replaced by Lys. The charge reversal substitution abrogates Na+ activation, which is partially restored with the K222D mutation, and ensures high activity even in the absence of Na+. This property makes the murine enzyme more resistant to the effect of mutations that destabilize Na+ binding and shift thrombin to its anticoagulant slow form. Compared with the human enzyme, murine thrombin cleaves fibrinogen and protein C with similar k(cat)/K(m) values but activates PAR1 and PAR4 with k(cat)/K(m) values 4- and 26-fold higher, respectively. The significantly higher specificity constant toward PAR4 accounts for the dominant role of this receptor in platelet activation in the mouse. Murine thrombin can also cleave substrates carrying Phe at P1, which potentially broadens the repertoire of molecular targets available to the enzyme in vivo.  相似文献   

19.
The effects of the pleiotropic serine protease thrombin on tumor cells are commonly thought to be mediated by the thrombin receptor protease-activated receptor 1 (PAR1). We demonstrate here that PAR1 activation has a role in experimental metastasis using the anti-PAR1 antibodies ATAP2 and WEDE15, which block PAR1 cleavage and activation. Thrombin also stimulates chemokinesis of human melanoma cells toward fibroblast conditioned media and soluble matrix proteins. Thrombin-enhanced migration is abolished by anti-PAR1 antibodies, demonstrating that PAR1 cleavage and activation are required. The PAR1-specific agonist peptide TFLLRNPNDK, however, does not stimulate migration, indicating that PAR1 activation is not sufficient. In contrast, a combination of TFLLRNPNDK and the PAR2 agonist peptide SLIGRL mimics the thrombin effect on migration, whereas PAR2 agonist alone has no effect. Agonist peptides for the thrombin receptors PAR3 and PAR4 used alone or with PAR1 agonist also have no effect. Similarly, activation of PAR1 and PAR2 also enhances chemokinesis of prostate cancer cells. Desensitization with PAR2 agonist abolishes thrombin-enhanced cell motility, demonstrating that thrombin acts through PAR2. PAR2 is cleaved by proteases with trypsin-like specificity but not by thrombin. Thrombin enhances migration in the presence of a cleavage-blocking anti-PAR2 antibody, suggesting that thrombin activates PAR2 indirectly and independent of receptor cleavage. Treatment of melanoma cells with trypsin or PAR2 agonist peptide enhances experimental metastasis. Together, these data confirm a role for PAR1 in migration and metastasis and demonstrate an unexpected role for PAR2 in thrombin-dependent tumor cell migration and in metastasis.  相似文献   

20.
Thrombin activates protease-activated receptors (PARs) by specific cleavage of their amino-terminal exodomains to unmask a tethered ligand that binds intramolecularly to the body of the receptor to effect transmembrane signaling. Peptides that mimic such ligands are valuable as agonists for probing PAR function, but the tethered ligand peptide for PAR4, GYPGKF, lacks potency and is of limited utility. In a structure-activity analysis of PAR4 peptides, AYPGKF was approximately 10-fold more potent than GYPGKF and, unlike GYPGKF, elicited PAR4-mediated responses comparable in magnitude to those elicited by thrombin. AYPGKF was relatively specific for PAR4 in part due to the tyrosine at position 2; substitution of phenylalanine or p-fluorophenylalanine at this position produced peptides that activated both PAR1 and PAR4. Because human platelets express both PAR1 and PAR4, it might be desirable to inhibit both receptors. Identifying a single agonist for both receptors raises the possibility that a single antagonist for both receptors might be developed. The AYPGKF peptide is a useful new tool for probing PAR4 function. For example, AYPGKF activated and desensitized PAR4 in platelets and, like thrombin, triggered phosphoinositide hydrolysis but not inhibition of adenylyl cyclase in PAR4-expressing cells. The latter shows that, unlike PAR1, PAR4 couples to G(q) and not G(i).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号