首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously shown that SV40 small t antigen (st) cooperates with deregulated cyclin E to activate CDK2 and bypass quiescence in normal human fibroblasts (NHF). Here we show that st expression in serum-starved and density-arrested NHF specifically induces up-regulation and loading of CDC6 onto chromatin. Coexpression of cyclin E results in further accumulation of CDC6 onto chromatin concomitantly with phosphorylation of CDK2 on Thr-160 and CDC6 on Ser-54. Investigation of the mechanism leading to CDC6 accumulation and chromatin loading indicates that st is a potent inducer of cdc6 mRNA expression and increases CDC6 protein stability. We also show that CDC6 expression in quiescent NHF efficiently promotes cyclin E loading onto chromatin, but it is not sufficient to activate CDK2. Moreover, we show that CDC6 expression is linked to phosphorylation of the activating T loop of CDK2 in serum-starved NHF stimulated with mitogens or ectopically expressing cyclin E and st. Our data suggest a model where the combination of st and deregulated cyclin E result in cooperative and coordinated activation of both an essential origin licensing factor, CDC6, and an activity required for origin firing, CDK2, resulting in progression from quiescence to S phase.Upon mitogenic stimulation mammalian G1 CDKs4 trigger passage through the restriction point and the transition into DNA replication. In particular, cyclin E/CDK2 is activated in mid to late G1 and phosphorylates a variety of substrates that play critical roles in these processes. CDK2 cooperates with D-type cyclin/CDKs to inactivate E2F/pocket protein repressor complexes inducing the expression of DNA synthesis factors and other cell cycle regulators (reviewed in Refs. 1 and 2). CDK2 also phosphorylates DNA replication factors facilitating prereplication complex assembly and origin firing and plays additional roles in centrosome duplication and histone synthesis (reviewed in Ref. 1). In particular, it has been proposed that CDK2 phosphorylates the essential origin licensing factor CDC6 promoting its stabilization prior to inactivation of the APCCdh1 ubiquitin ligase (3). This is thought to ensure that CDC6 accumulation precedes accumulation of other APC substrates that inhibit origin licensing. Moreover, CDK2-independent cyclin E functions have also been reported to be important for prereplication complex assembly in cells in transit from G0 into G1 (4, 5). In keeping with its role as positive regulator of major G1 transitions, deregulation of the cyclin E via gene amplification or defective protein turnover is commonly seen in primary tumors and is associated with poor prognosis (68). In normal fibroblasts, ectopic expression of cyclin E has been associated with shortening of the G1 phase of the cell cycle (9, 10), and with induction of DNA damage (reviewed in Ref. 8). Cyclin E deregulation in certain human tumor cell lines and immortalized rat fibroblasts is associated with mitogen-independent cell cycle entry and progression through the cell cycle (11). However, when cyclin E is ectopically expressed in quiescent normal human fibroblasts (NHF), cells remain in G0 (12).We have recently reported that coexpression of SV40 small t antigen (st) in quiescent NHF with deregulated cyclin E expression is sufficient to trigger mitogen-independent cell cycle progression, proliferation beyond cell confluence, and foci formation. The bypass of quiescence induced by the expression of st and cyclin E is dependent on CDK2 activation (12). Thus, contrary to what is seen in normal murine cells (13), CDK2 activity appears essential for cell cycle progression when it is oncogenically driven by cyclin E and st expression (12). Because st is known to target pathways uniquely required for the transformation of human cells (14, 15), tumor cells with altered pathways that mimic st/cyclin E expression could predictably be sensitive to selective inhibition of CDK2 activity.Given the critical role of CDK2 activity in cyclin E and st cooperation in inducing cell proliferation and transformation of NHF, we sought to determine the factors and mechanisms by which st modulates CDK2 activation. In this report we have identified the CDC6 replication licensing factor as a cellular target of st. We also uncover CDC6 as a participant in the events leading to chromatin association of cyclin E and CDK2 and in phosphorylation of CDK2 on its activating T loop both in response to mitogenic stimulation, as well as expression of cyclin E and st in NHF.  相似文献   

2.
Restitution of lost tumor-suppressor activities may be a promising strategy to target specifically cancer cells. However, the action of ectopically expressed tumor-suppressor genes depends on genetic background of tumoral cells. Ectopic expression of p16(INK4a) induces either cell cycle arrest or apoptosis in different pancreatic cancer cell lines. We examined the molecular mechanisms mediating these two different cellular responses to p16 overexpression. Ectopic expression of p16 leads to G1 arrest in NP-9 cells by redistributing p21/p27 CKIs and inhibiting cyclin-dependent kinase CDK2 activity. In contrast, in NP-18 cells cyclin E (CycE)/CDK2 activity is significantly higher and is not downregulated by p16-mediated redistribution of p21/p27. Moreover, inhibition of CDK4 activity with fascaplysine, which does not affect CycE/CDK2 activity, reduces pocket protein phosphorylation in both cell lines, but fails to induce growth arrest. Like overexpression of p16, fascaplysine induces apoptosis in NP-18 cells, suggesting that inhibition of D-type cyclin/CDK activity in cells with high levels of CycE/CDK2 activity activates an apoptotic pathway. Inhibition of CycE/CDK2 activity via ectopic expression of p21 in NP-18 cells overexpressing p16 induces growth arrest and prevents p16-mediated apoptosis. Accordingly, silencing of p21 expression by using small interfering RNA switches the fate of p16-expressing NP-9 cells from cell cycle arrest to apoptosis. Our data suggest that, after CDK4/6 inactivation, the fate of pancreatic tumor cells depends on the ability to modulate CDK2 activity.  相似文献   

3.
Mitogenic stimulation leads to activation of G(1) cyclin-dependent kinases (CDKs), which phosphorylate pocket proteins and trigger progression through the G(0)/G(1) and G(1)/S transitions of the cell cycle. However, the individual role of G(1) cyclin-CDK complexes in the coordinated regulation of pocket proteins and their interaction with E2F family members is not fully understood. Here we report that individually or in concert cyclin D1-CDK and cyclin E-CDK complexes induce distinct and coordinated phosphorylation of endogenous pocket proteins, which also has distinct consequences in the regulation of pocket protein interactions with E2F4 and the expression of p107 and E2F1, both E2F-regulated genes. The up-regulation of these two proteins and the release of p130 and pRB from E2F4 complexes allows formation of E2F1 complexes not only with pRB but also with p130 and p107 as well as the formation of p107-E2F4 complexes. The formation of these complexes occurs in the presence of active cyclin D1-CDK and cyclin E-CDK complexes, indicating that whereas phosphorylation plays a role in the abrogation of certain pocket protein/E2F interactions, these same activities induce the formation of other complexes in the context of a cell expressing endogenous levels of pocket and E2F proteins. Of note, phosphorylated p130 "form 3," which does not interact with E2F4, readily interacts with E2F1. Our data also demonstrate that ectopic overexpression of either cyclin is sufficient to induce mitogen-independent growth in human T98G and Rat-1 cells, although the effects of cyclin D1 require downstream activation of cyclin E-CDK2 activity. Interestingly, in T98G cells, cyclin D1 induces cell cycle progression more potently than cyclin E. This suggests that cyclin D1 activates pathways independently of cyclin E that ensure timely progression through the cell cycle.  相似文献   

4.
In the present study, we examined the role of PLC delta 1 (phospholipase C delta 1) in the regulation of cellular proliferation. We demonstrate that RNAi (RNA interference)-mediated knockdown of endogenous PLC delta 1, but not PLC beta 3 or PLC epsilon, induces a proliferation defect in Rat-1 and NIH 3T3 fibroblasts. The decreased proliferation was not due to an induction of apoptosis or senescence, but was associated with an approx. 60% inhibition of [(3)H]thymidine incorporation. Analysis of the cell cycle with BrdU (bromodeoxyuridine)/propidium iodide-labelled FACS (fluorescence-activated cell sorting) demonstrated an accumulation of cells in G(0)/G(1)-phase and a corresponding decrease in cells in S-phase. Further examination of the cell cycle after synchronization by serum-starvation demonstrated normal movement through G(1)-phase but delayed entry into S-phase. Consistent with these findings, G(1) cyclin (D2 and D3) and CDK4 (cyclin-dependent kinase 4) levels and associated kinase activity were not affected. However, cyclin E-associated CDK2 activity, responsible for G(1)-to-S-phase progression, was inhibited. This decreased activity was accompanied by unchanged CDK2 protein levels and paradoxically elevated cyclin E and cyclin E-associated CDK2 levels, suggesting inhibition of the cyclin E-CDK2 complex. This inhibition was not due to altered stimulatory or inhibitory phosphorylation of CDK2. However, p27, a Cip/Kip family CKI (CDK inhibitor)-binding partner, was elevated and showed increased association with CDK2 in PLC delta 1-knockdown cells. The result of the present study demonstrate a novel and critical role for PLC delta 1 in cell-cycle progression from G(1)-to-S-phase through regulation of cyclin E-CDK2 activity and p27 levels.  相似文献   

5.
Transforming growth factor-beta (TGF-beta) induces a potent G(1)/S-phase cell cycle arrest of epithelial cells by inhibiting the activities of cyclin D- and cyclin E-associated kinase complexes. Downregulation of the kinase activities is mediated by induction of cyclin dependent kinase (CDK) inhibitor p15(Ink4b) which blocks CDK4 and CDK6 kinases and leads to binding of p27(Kip1) to CDK2-cyclin E complex. Levels of several of these factors are controlled by the ubiquitin-proteasome pathway. We demonstrate here that proteasomal inhibitors release the cells from TGF-beta imposed G(1)-phase arrest and instigate the entry of the cells into S-phase. Proteasomal inhibitors are shown to specifically increase the activity of the cyclin D-kinase complex by increasing the levels of p27(Kip1) and cyclin D and by maintaining CDK4/6 protein levels leading to phosphorylation of the retinoblastoma protein without increasing cyclin E-associated kinase activity. The results indicate caution in the potential therapeutic use of the proteasome inhibitors due to unscheduled initiation of DNA replication in the presence of a physiological growth inhibitor.  相似文献   

6.
Indole-3-carbinol (I3C), a dietary compound found in cruciferous vegetables, induces a robust inhibition of CDK2 specific kinase activity as part of a G1 cell cycle arrest of human breast cancer cells. Treatment with I3C causes a significant shift in the size distribution of the CDK2 protein complex from an enzymatically active 90 kDa complex to a larger 200 kDa complex with significantly reduced kinase activity. Co-immunoprecipitations revealed an increased association of both a 50 kDa cyclin E and a 75 kDa cyclin E immunoreactive protein with the CDK2 protein complex under I3C-treated conditions, whereas the 90 kDa CDK2 protein complexes detected in proliferating control cells contain the lower molecular mass forms of cyclin E. I3C treatment caused no change in the level of CDK2 inhibitors (p21, p27) or in the inhibitory phosphorylation states of CDK2. The effects of I3C are specific for this indole and not a consequence of the cell cycle arrest because treatment of MCF-7 breast cancer cells with either the I3C dimerization product DIM or the anti-estrogen tamoxifen induced a G1 cell cycle arrest with no changes in the associated cyclin E or subcellular localization of the CDK2 protein complex. Taken together, our results have uncovered a unique effect of I3C on cell cycle control in which the inhibition of CDK2 kinase activity is accompanied by selective alterations in cyclin E composition, size distribution, and subcellular localization of the CDK2 protein complex.  相似文献   

7.
We have analyzed the mechanism by which the combination of insulin-like growth factor I (IGF-I) and 17 beta-estradiol (E2) induces cell cycle progression in MCF-7S cells. This cell line differs from many other breast cancer-derived cell lines in that E2 (1 nM) does not induce cell cycle progression, whereas the combination of submitogenic concentrations of IGF-I (2 ng/ml) and E2 does. We find that addition of IGF-I to MCF-7S cells leads to a dose-dependent activation of the IGF type I receptor and of the MAP kinase and PI3-kinase signaling pathways. No synergy of IGF-I and E2 was detected in the activation of these signaling cascades. In terms of cell cycle-related molecules, we find that IGF-I dose-dependently raises cyclin D1 levels in serum-starved cells. Subsequent activation of cyclin E/CDK2, hyperphosphorylation of pRb, and DNA synthesis are only induced by mitogenic concentrations of IGF-I (> or =20 ng/ml). Treatment of the cells with E2 also results in the induction of cyclin D1, but in the absence of IGF-I the cells remain arrested in G1 phase. We conclude that in MCF-7S cells, the synergistic action of E2 and IGF-I derives from the ability of both hormones to induce cyclin D1 expression. The action of IGF-I is required in these cells to induce activity of the cyclin D1/CDK4 complex, which triggers progression through the cell cycle.  相似文献   

8.
RACK1 regulates G1/S progression by suppressing Src kinase activity   总被引:14,自引:0,他引:14       下载免费PDF全文
Cancer genes exert their greatest influence on the cell cycle by targeting regulators of a critical checkpoint in late G(1). Once cells pass this checkpoint, they are fated to replicate DNA and divide. Cancer cells subvert controls at work at this restriction point and remain in cycle. Previously, we showed that RACK1 inhibits the oncogenic Src tyrosine kinase and NIH 3T3 cell growth. RACK1 inhibits cell growth, in part, by prolonging G(0)/G(1). Here we show that RACK1 overexpression induces a partial G(1) arrest by suppressing Src activity at the G(1) checkpoint. RACK1 works through Src to inhibit Vav2, Rho GTPases, Stat3, and Myc. Consequently, cyclin D1 and cyclin-dependent kinases 4 and 2 (CDK4 and CDK2, respectively) are suppressed, CDK inhibitor p27 and retinoblastoma protein are activated, E2F1 is sequestered, and G(1)/S progression is delayed. Conversely, downregulation of RACK1 by short interference RNA activates Src-mediated signaling, induces Myc and cyclin D1, and accelerates G(1)/S progression. RACK1 suppresses Src- but not mitogen-activated protein kinase-dependent platelet-derived growth factor signaling. We also show that Stat3 is required for Rac1 induction of Myc. Our results reveal a novel mechanism of cell cycle control in late G(1) that works via an endogenous inhibitor of the Src kinase.  相似文献   

9.
Cyclin E, a positive regulator of the cell cycle, controls the transition of cells from G(1) to S phase. Deregulation of the G(1)-S checkpoint contributes to uncontrolled cell division, a hallmark of cancer. We have reported previously that cyclin E is overexpressed in breast cancer and such overexpression is usually accompanied by the appearance of low molecular weight isoforms of cyclin E protein, which are not present in normal cells. Furthermore, we have shown that the expression of cyclin E low molecular weight isoforms can be used as a reliable prognostic marker for breast cancer to predict patient outcome. In this study we examined the role of cyclin E in directly activating cyclin-dependent kinase (CDK) 2. For this purpose, a series of N-terminal deleted forms of cyclin E corresponding to the low molecular weight forms detected only in cancer cells were translated in vitro and mixed with cell extracts. These tumor-specific N-terminal deleted forms of cyclin E are able to activate CDK2. Addition of cyclin E into both normal and tumor cell extracts was shown to increase the levels of CDK2 activity, along with an increase in the amount of phosphorylated CDK2. The increase in CDK2 activity was because of cyclin E binding to endogenous CDK2 in complex with endogenous cyclin E, cyclin A, or unbound CDK2. The increase in CDK2 phosphorylation was through a pathway involving cyclin-activating kinase, but addition of cyclin E to an extract containing unphosphorylated CDK2 can still lead to increase in CDK2 activity. Our data suggest that the ability of high levels of full-length and low molecular weight forms of cyclin E to activate CDK2 may be one mechanism that leads to the constitutive activation of cyclin E.CDK2 complexes leading to G(1)/S deregulation and tumor progression.  相似文献   

10.
Jia X  Liu B  Shi X  Gao A  You B  Ye M  Shen F  Du H 《Cell biology international》2006,30(2):183-189
Benzo(a)pyrene [B(a)P] is a potent environmental carcinogen, which induces cell cycle changes. All-trans retinoic acid (ATRA) is a promising agent in prevention and treatment of human cancers. In the present study, we investigated the inhibition of B(a)P-induced cell cycle progression by ATRA in human embryo lung fibroblast (HELF). Our results showed that after treatment with B(a)P, the expression of cyclin D1 and E2F-1 were both increased significantly in HELF. There were almost no changes of CDK4 and E2F-4 expression by treatment with B(a)P. As expected, pretreatment with ATRA could efficiently decrease B(a)P-induced overexpression of cyclin D1 and E2F-1. In a further study, we stably transfected antisense cyclin D1 and antisense CDK4 plasmid into HELF. The inhibition of cyclin D1 expression and the inhibition of CDK4 expression significantly impaired the B(a)P-induced overexpression of E2F-1 respectively. Pretreatment with ATRA, cells expressing antisense cyclinD1 or antisense CDK4 showed a lesser decrease of B(a)P-induced overexpression of E2F-1 compared with similarly treated HELF. Furthermore, flow cytometry analysis showed that B(a)P promoted cell cycle progression from G(1) phase to S phase, while pretreatment with ATRA could inhibit B(a)P-induced cell cycle progression by an accumulation of cells in the G(1) phase. It was suggested that ATRA could block B(a)P-induced cell cycle promotion partly through the cyclin D1/E2F-1 pathway in HELF.  相似文献   

11.
Human cyclin A is required for mitosis until mid prophase.   总被引:12,自引:0,他引:12  
We have used microinjection and time-lapse video microscopy to study the role of cyclin A in mitosis. We have injected purified, active cyclin A/cyclin-dependent kinase 2 (CDK2) into synchronized cells at specific points in the cell cycle and assayed its effect on cell division. We find that cyclin A/CDK2 will drive G2 phase cells into mitosis within 30 min of microinjection, up to 4 h before control cells enter mitosis. Often this premature mitosis is abnormal; the chromosomes do not completely condense and daughter cells fuse. Remarkably, microinjecting cyclin A/CDK2 into S phase cells has no effect on progress through the following G2 phase or mitosis. In complementary experiments we have microinjected the amino terminus of p21(Cip1/Waf1/Sdi1) (p21N) into cells to inhibit cyclin A/CDK2 activity. We find that p21N will prevent S phase or G2 phase cells from entering mitosis, and will cause early prophase cells to return to interphase. These results suggest that cyclin A/CDK2 is a rate-limiting component required for entry into mitosis, and for progress through mitosis until late prophase. They also suggest that cyclin A/CDK2 may be the target of the recently described prophase checkpoint.  相似文献   

12.
Zhang J  Ghio AJ  Gao M  Wei K  Rosen GD  Upadhyay D 《FEBS letters》2007,581(27):5315-5320
We hypothesized that the ambient air pollution particles (particulate matter; PM) induce cell cycle arrest in alveolar epithelial cells (AEC). Exposure of PM (25microg/cm(2)) to AEC induced cells cycle arrest in G1 phase, inhibited DNA synthesis, blocked cell proliferation and caused decrease in cyclin E, A, D1 and Cyclin E- cyclin-dependent kinase (CDK)-2 kinase activity after 4h. PM induced upregulation of CDK inhibitor, p21 protein and p21 activity in AEC. SiRNAp21 blocked PM-induced downregulation of cyclins and AEC G1 arrest. Accordingly, we provide the evidence that PM induces AEC G1 arrest by altered regulation of G1 cyclins and CDKs.  相似文献   

13.
Alam S  Sen E  Brashear H  Meyers C 《Journal of virology》2006,80(10):4927-4939
Adeno-associated virus type 2 (AAV2) seropositivity is negatively correlated with the development of human papillomavirus (HPV)-associated cervical cancer. We have begun analysis of the molecular mechanisms underlying AAV2-mediated onco-suppression through cell cycle regulation in HPV-infected keratinocytes isolated from a low-grade cervical lesion. AAV2 superinfection of HPV type 31b (HPV31b)-positive cells at early times postinfection resulted in degradation of the cyclin-dependent kinase (CDK) inhibitor p21(WAF1) protein in a proteosome-dependent manner. Downstream consequences of lowering p21(WAF1) levels included a proportional loss of cyclin E/CDK2 complexes bound to p21(WAF1). The loss of stable p21(WAF1)/cyclin E/CDK2 complexes coincided with an increase in CDK2-associated kinase activity and cyclin E levels. Both events have the potential to enhance the G(1)/S transition point mediated by active cyclin E/CDK2 complexes. Concurrently, cyclin A and E2F levels were decreased, conditions reminiscent of delayed entrance into the S phase of the cell cycle. On the other hand, infection of primary human foreskin keratinocytes with AAV2 resulted in upregulation of p21(WAF1) protein levels, reminiscent of a block in G(1) phase progression. We propose that by down regulating p21(WAF1), AAV2 initiates cell cycle activities leading to enhanced G(1)/S phase-like conditions which may be favorable for AAV2-specific functions and may lead to downstream interference with HPV-associated cervical cancer progression.  相似文献   

14.
Human TopBP1 with eight BRCA1 C terminus domains has been mainly reported to be involved in DNA damage response pathways. Here we show that TopBP1 is also required for G(1) to S progression in a normal cell cycle. TopBP1 deficiency inhibited cells from entering S phase by up-regulating p21 and p27, resulting in down-regulation of cyclin E/CDK2. Although co-depletion of p21 and p27 with TopBP1 restored the cyclin E/CDK2 kinase activity, however, cells remained arrested at the G(1)/S boundary, showing defective chromatin-loading of replication components. Based on these results, we suggest a dual role of TopBP1 necessary for the G(1)/S transition: one for activating cyclin E/CDK2 kinase and the other for loading replication components onto chromatin to initiate DNA synthesis.  相似文献   

15.
16.
Efficient S phase entry is essential for development, tissue repair, and immune defences. However, hyperactive or expedited S phase entry causes replication stress, DNA damage and oncogenesis, highlighting the need for strict regulation. Recent paradigm shifts and conflicting reports demonstrate the requirement for a discussion of the G1/S transition literature. Here, we review the recent studies, and propose a unified model for the S phase entry decision. In this model, competition between mitogen and DNA damage signalling over the course of the mother cell cycle constitutes the predominant control mechanism for S phase entry of daughter cells. Mitogens and DNA damage have distinct sensing periods, giving rise to three Commitment Points for S phase entry (CP1-3). S phase entry is mitogen-independent in the daughter G1 phase, but remains sensitive to DNA damage, such as single strand breaks, the most frequently-occurring lesions that uniquely threaten DNA replication. To control CP1-3, dedicated hubs integrate the antagonistic mitogenic and DNA damage signals, regulating the stoichiometric cyclin: CDK inhibitor ratio for ultrasensitive control of CDK4/6 and CDK2. This unified model for the G1/S cell cycle transition combines the findings of decades of study, and provides an updated foundation for cell cycle research.  相似文献   

17.
18.
19.
Conditional overexpression of human cyclins B1, D1, and E was accomplished by using a synthetic cDNA expression system based on the Escherichia coli tetracycline repressor. After induction of these cyclins in asynchronous Rat-1 fibroblasts, a decrease in the length of the G1 interval was observed for cyclins D1 and E, consistent with an acceleration of the G1/S phase transition. We observed, in addition, a compensatory lengthening of S phase and G2 so that the mean cell cycle length in populations constitutively expressing these cyclins was unchanged relative to those of their uninduced counterparts. We found that expression of cyclin B1 had no effect on cell cycle dynamics, despite elevated levels of cyclin B-associated histone H1 kinase activity. Induction of cyclins D1 and E also accelerated entry into S phase for synchronized cultures emerging from quiescence. However, whereas cyclin E exerted a greater effect than cyclin D1 in asynchronous cycling cells, cyclin D1 conferred a greater effect upon stimulation from quiescence, suggesting a specific role for cyclin D1 in the G0-to-G1 transition. Overexpression of cyclins did not prevent cells from entering into quiescence upon serum starvation, although a slight delay in attainment of quiescence was observed for cells expressing either cyclin D1 or cyclin E. These results suggest that cyclins D1 and E are rate-limiting activators of the G1-to-S phase transition and that cyclin D1 might play a specialized role in facilitating emergence from quiescence.  相似文献   

20.
Centrosome duplication in mammalian cells is a highly regulated process, occurs in coordination of other cell cycle events. However, molecular exploration of this important cellular process had been difficult due to unavailability of a simple assay system. Here, using centrosomes loosely associated with nuclei isolated from cultured cells, we developed a cell-free centriole (duplication unit of the centrosome) duplication system: unduplicated centrosomes bound to the nuclei are able to undergo duplication in the presence of G1/S extracts. We show that the ability of G1/S extracts to induce centriole duplication in vitro depends on the presence of active CDK2/cyclin E. It has been shown that dissociation of centrosomal nucleophosmin (NPM)/B23 triggered by CDK2/cyclin E-mediated phosphorylation is required for initiation of centrosome duplication. We show that centriole duplication is blocked when nuclei were preincubated with the anti-NPM/B23 antibody that prevents phosphorylation of NPM/B23 by CDK2/cyclin E. These studies provide not only direct evidence for the requirement of CDK2/cyclin E and phosphorylation of NPM/B23 for centrosomes to initiate duplication, but a valuable experimental system for further exploration of the molecular regulation of centrosome duplication in somatic cells of higher animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号