首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The objective of this study was to examine the substrate specificity of several ruminal strains of a Lactobacillus sp. which previously was shown to produce skatole (3-methylindole) by the decarboxylation of indoleacetic acid. A total of 13 compounds were tested for decarboxylase activity. The Lactobacillus strains produced p-cresol (4-methylphenol) by the decarboxylation of p-hydroxyphenylacetic acid, but did not produce either o-cresol or m-cresol from the corresponding hydroxyphenylacetic acid isomers. These strains also decarboxylated 5-hydroxyindoleacetic acid to 5-hydroxyskatole and 3,4-dihydroxyphenylacetic acid to methylcatechol. Skatole and p-cresol were produced in a 0.5:1 ratio, when indoleacetic acid and p-hydroxyphenylacetic acid were combined in equimolar concentrations. Competition studies with indoleacetic acid and p-hydroxyphenylacetic acid suggested that two different decarboxylating enzymes are involved in the production of skatole and p-cresol by these strains. This is the first demonstration of both skatole production and p-cresol production by a single bacterium.  相似文献   

2.
Production of Skatole and para-Cresol by a Rumen Lactobacillus sp.   总被引:7,自引:3,他引:4       下载免费PDF全文
The objective of this study was to examine the substrate specificity of several ruminal strains of a Lactobacillus sp. which previously was shown to produce skatole (3-methylindole) by the decarboxylation of indoleacetic acid. A total of 13 compounds were tested for decarboxylase activity. The Lactobacillus strains produced p-cresol (4-methylphenol) by the decarboxylation of p-hydroxyphenylacetic acid, but did not produce either o-cresol or m-cresol from the corresponding hydroxyphenylacetic acid isomers. These strains also decarboxylated 5-hydroxyindoleacetic acid to 5-hydroxyskatole and 3,4-dihydroxyphenylacetic acid to methylcatechol. Skatole and p-cresol were produced in a 0.5:1 ratio, when indoleacetic acid and p-hydroxyphenylacetic acid were combined in equimolar concentrations. Competition studies with indoleacetic acid and p-hydroxyphenylacetic acid suggested that two different decarboxylating enzymes are involved in the production of skatole and p-cresol by these strains. This is the first demonstration of both skatole production and p-cresol production by a single bacterium.  相似文献   

3.
AIM: To screen rumen bacterial cultures and fresh ruminal isolates for indole and skatole production. METHODS AND RESULTS: Culture collection strains and fresh bacterial isolates from rumen contents of sheep and dairy cows were screened for the production of indolic compounds. Clostridium aminophilum FT, Peptostreptococcus ssp. S1, Fusobacterium necrophorum D4 produced indole and Clostridium sticklandii SR produced indoleacetic acid. Fresh isolates from sheep (TrE9262 and TrE7262) and dairy cows (152R-1a, 152R-1b, 152R-3 and 152R-4) produced indole, indolepropionic acid, tryptophol and skatole from the fermentation of tryptophan and indoleacetic acid. Glucose altered the indolic compounds produced in some, but not all, isolates. TrE7262 and 152R-4 were identified as Clostridium sporogenes and 152R-1b as a new Cl. aminophilum strain. Isolates TrE9262, 152R-1a and 152R-3 were not closely related to any described species but belong to Megasphaera, Prevotella and Actinomyces genera, respectively. CONCLUSIONS: Rumen bacteria that produced a range of indolic compounds were identified. Some isolates are distinct from the previously described bacteria and may represent novel species. SIGNIFICANCE AND IMPACT OF THE STUDY: These observations will contribute to understanding skatole and indole formation in the rumen and will lead to methods that control the formation of indolic compounds in pasture-grazed ruminants.  相似文献   

4.
5.
The oxidative decarboxylation of L-tryptophan to yield 3-indoleacetamide, catalyzed by tryptophan 2-monooxygenase, represents a controlling reaction in the synthesis of indoleacetic acid by Pseudomonas savastanoi (Pseudomonas syringae pv. savastanoi), a gall-forming pathogen of olive (Olea europea L.) and oleander (Nerium oleander L.). Production of indoleacetic acid is essential for virulence of the bacterium in its hosts. Tryptophan 2-monooxygenase was characterized to determine its role in indoleacetic acid metabolism in the bacterium. The enzyme was purified to apparent homogeneity from Escherichia coli cells containing the genetic locus for this enzyme obtained from P. savastanoi. The preparation contained a single polypeptide with a mass of 62,000 that cross-reacted immunologically with a homologous protein in P. savastanoi. The holoenzyme contained one FAD moiety/subunit with properties consistent with a catalytic function. The enzyme preparation catalyzed an L-tryptophan-dependent O2 uptake and yielded 3-indoleacetamide as a product. Enzyme activity fit simple Michaelis Menten kinetics with a Km for L-tryptophan of 50 microM. 3-Indoleacetamide and 3-indoleacetic acid were identified as regulatory effectors. The apparent Ki for 3-indoleacetamide was 7 microM; that for indoleacetic acid was 225 microM. At Km concentrations of tryptophan, enzyme activity was inhibited 50% by 25 microM 3-indoleacetamide. In contrast, 230 microM indoleacetic acid was required to effect a similar inhibition. Phenylalanine and tyrosine were ineffective as regulatory metabolites. These results indicate that IAA synthesis in P. savastanoi is regulated by limiting tryptophan and by feedback inhibition from indoleacetamide and indoleacetic acid.  相似文献   

6.
Skatole (3-methylindole) is a malodorous chemical in stored swine manure and is implicated as a component of foul-tasting pork. Definitive evidence for the skatole pathway is lacking. Deuterium-labeled substrates were employed to resolve this pathway in the acetogenic bacterium Clostridium drakei and Clostridium scatologenes and to determine if a similar pathway is used by microorganisms present in stored swine manure. Indoleacetic acid (IAA) was synthesized from tryptophan by both bacteria, and skatole was synthesized from both IAA and tryptophan. Microorganisms in swine manure produced skatole and other oxidation products from tryptophan, but IAA yielded only skatole. A catabolic mechanism for the synthesis of skatole is proposed.  相似文献   

7.
Fifty-one strains of the genus Bifidobacterium have been found to accumulate indole-3-lactic acid in culture broth. The isolated metabolite was identified through mass and nuclear magnetic resonance spectroscopy. All the microorganisms tested, as resting cells, have been shown to be able to convert L-tryptophan into L-indole-3-lactic acid.  相似文献   

8.
Valuable endophytic strains facilitating plants growth and detoxification of heavy metals are required because the application of plant–endophyte symbiotic system is a promising potential technique to improve efficiency of phytoremediation. In this study, endophytic bacterium LRE07 was isolated from cadmium hyperaccumulator Solanum nigrum L. It was identified as Serratia sp. by 16S rRNA sequence analysis. The endophytic bacterium LRE07 was resistant to the toxic effects of heavy metals, solubilized mineral phosphate, and produced indoleacetic acid and siderophore. The heavy metal detoxification was studied in growing LRE07 cells. The strain bound over 65% of cadmium and 35% of zinc in its growing cells from single metal solutions 72 h after inoculation. Besides the high removal efficiencies in single-ion system, an analogous removal phenomenon was also observed in multi-ions system, indicating that the endophyte possesses specific and remarkable heavy metal remediation abilities.  相似文献   

9.
Summary.  In vitro experiments were conducted to examine the degradation of d- and l-isomers of tryptophan (Trp) and 10 related indolic compounds by mixed rumen bacteria (B), protozoa (P) and a combination of the two (BP). The analyses were carried out by HPLC. d-Trp (1.0 mM) was not degraded by rumen microorganisms during the 24-h incubation period. The net degradation of 1 mM l-Trp was 46.5%, 8.7% and 80.0% by B, P and BP suspensions, respectively. Trp was degraded into indoleacetic acid, indolelactic acid and indole by rumen bacteria and protozoa, and into skatole, p-cresol and indolepropionic acid by rumen bacteria only. Of them, indoleacetic acid was the major product of Trp found in B (15.4%) and P (3.1%), and skatole in BP (43.2%). This is the first report of the production of indolelactic acid and p-cresol from Trp by rumen microbes. Starch, d-glucose, salinomycin and monensin inhibited the production of skatole and indole from Trp, and skatole from indoleacetic acid by rumen bacteria. Received August 2, 2001 Accepted June 21, 2002 Published online November 14, 2002 Acknowledgements The authors are extremely grateful to Dr. H. Ogawa, Professor, the University of Tokyo and Dr. T. Hasegawa, Associate Professor, Miyazaki University, for inserting a permanent fistula in goats. The present study was financially supported by research grants from Kyowa Hakko Kogyo Co. Ltd. and Daiichi Seiyaku Co., Japan. Nazimuddin Mohammed thanks the Ministry of Education, Science, Sports and Culture of Japan (Monbusho) for the award of a research studentship from 1996. Authors' address: Dr. Nazimuddin Mohammed, Laboratory of Agricultural Production Technology, Faculty of Agriculture, Field Science Center, Tokyo University of Agriculture and Technology, Saiwai-cho 3-5-8, Fuchu-shi, Tokyo 183-8509, Japan  相似文献   

10.
Fifty-one strains of the genus Bifidobacterium have been found to accumulate indole-3-lactic acid in culture broth. The isolated metabolite was identified through mass and nuclear magnetic resonance spectroscopy. All the microorganisms tested, as resting cells, have been shown to be able to convert L-tryptophan into L-indole-3-lactic acid.  相似文献   

11.
The lipopolysaccharides (LPS) of Proteus penneri 28 and Proteus vulgaris O31 (PrK 55/57) were degraded with dilute acetic acid and structurally identical high-molecular-mass O-polysaccharides were isolated by gel-permeation chromatography. Sugar analysis and nuclear magnetic resonance (NMR) spectroscopic studies showed that both polysaccharides contain D-GlcNAc, 2-acetamido-2,6-dideoxy-L-glucose (L-2-acetamido-2,6-dideoxyglucose (N-acetylquinovosamine)) and 2-acetamido-3-O-[(S)-1-carboxyethyl]-2-deoxy-D-glucose (N-acetylisomuramic acid) and have the following structure: [carbohydrate structure: see text] where (S)-1-carboxyethyl [a residue of (S)-lactic acid] (S-Lac) is an ether-linked residue of (S)-lactic acid. The O-polysaccharide studied is structurally similar to that of P. penneri 26, which differs only in the absence of S-Lac from the GlcNAc residue. Based on the O-polysaccharide structures and serological data of the LPS, it was suggested classifying these strains in one Proteus serogroup, O31, as two subgroups: O(31a), 31b for P. penneri 28 and P. vulgaris PrK 55/57 and O31a for P. penneri 26. A serological relatedness of the LPS of Proteus O(31a), 31b and P. penneri 62 was revealed and substantiated by sharing epitope O31b, which is associated with N-acetylisomuramic acid. It was suggested that a cross-reactivity of P. penneri 28 O-antiserum with the LPS of several other P. penneri strains is due to a common epitope(s) on the LPS core.  相似文献   

12.
Activity of indoleacetic acid oxidase was shown to increase following a period of water stress. Two fractions of indoleacetic acid oxidase were extracted from plant extracts. Similarly, two protein peaks (determined by ultraviolet absorption) were isolated. One peak, associated with an indoleacetic acid oxidase peak, increased following water stress. The second peak, not associated with extractable indoleacetic acid oxidase, decreased after water stress. The results are discussed in terms of general growth effects.  相似文献   

13.
14.
Summary Fermentation of L-(+)-lactic acid from soluble starch by Lactobacillus amylophilus was studied. The bacterium produced about 30 g of L-(+)-lactic acid from 50 g of soluble starch when the pH of the culture was ranging from pH 5 to pH 6.8 at 28°C. 53.4 g of L-(+)-lactic acid was produced when 100 g of starch was added in the medium. The fermentation procedures will reduce the cost of complete hydrolysis of starch to glucose prior to fermentation.  相似文献   

15.
Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 °C and pH 5.0 and ferments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 °C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemicellulose. This bacterium is also considered as a potential probiotic. Complete genome sequence of a representative strain, B. coagulans strain 36D1, is presented and discussed.  相似文献   

16.
Both enantiomers of lactic acid, l-lactic acid and d-lactic acid, can be produced in a sustainable way by a photosynthetic microbial cell factory and thus from CO2, sunlight, and water. Several properties of polylactic acid (a polyester of polymerized lactic acid) depend on the controlled blend of these two enantiomers. Recently, cyanobacterium Synechocystis sp. strain PCC6803 was genetically modified to allow formation of either of these two enantiomers. This report elaborates on the d-lactic acid production achieved by the introduction of a d-specific lactate dehydrogenase from the lactic acid bacterium Leuconostoc mesenteroides into Synechocystis. A typical batch culture of this recombinant strain initially shows lactic acid production, followed by a phase of lactic acid consumption, until production “outcompetes” consumption at later growth stages. We show that Synechocystis is able to use d-lactic acid, but not l-lactic acid, as a carbon source for growth. Deletion of the organism''s putative d-lactate dehydrogenase (encoded by slr1556), however, does not eliminate this ability with respect to d-lactic acid consumption. In contrast, d-lactic acid consumption does depend on the presence of glycolate dehydrogenase GlcD1 (encoded by sll0404). Accordingly, this report highlights the need to match a product of interest of a cyanobacterial cell factory with the metabolic network present in the host used for its synthesis and emphasizes the need to understand the physiology of the production host in detail.  相似文献   

17.
Indole-3-lactic acid (ILA) is a naturally occurring indole derivative, preferably detected in soil bacteria and fungi and only in low amounts in plants. T-DNA gene 5 of Agrobacterium tumefaciens was found to be involved in the synthesis of ILA in transformed plant tissues, but the physiologic relevance for ILA production in plants is unclear. The related molecular structure of ILA to the natural auxin indole-3-acetic acid (IAA) makes ILA a good candidate for an auxin analogue. We examined the possible auxin activity of ILA on elongation, proliferation, and differentiation in Pisum sativum L. Results presented in this paper indicate that there are no or only weak effects of ILA toward the activity of auxins when used in the physiologic concentration range. Furthermore, no antagonistic effects of ILA were found. Biochemical analysis using the equilibrium dialysis binding system resulted in no high affinity ILA binding to an enriched protein fraction containing auxin-binding protein (ABP44), whereas 1-naphthaleneacetic acid exhibited high affinity auxin binding.Abbreviations IAA indoleacetic acid - ILA indole-3-lactic acid - T-DNA transferred DNA - ABP auxin-binding protein - NAA naphthaleneacetic acid - MS Murashige and Skoog - MES 2-(N-morpholino)ethanesulfonic acid - BAP 6-benzylaminopurine  相似文献   

18.
We isolated and characterized a d-lactic acid-producing lactic acid bacterium (d-LAB), identified as Lactobacillus delbrueckii subsp. lactis QU 41. When compared to Lactobacillus coryniformis subsp. torquens JCM 1166 T and L. delbrueckii subsp. lactis JCM 1248 T, which are also known as d-LAB, the QU 41 strain exhibited a high thermotolerance and produced d-lactic acid at temperatures of 50 °C and higher. In order to optimize the culture conditions of the QU 41 strain, we examined the effects of pH control, temperature, neutralizing reagent, and initial glucose concentration on d-lactic acid production in batch cultures. It was found that the optimal production of 20.1 g/l d-lactic acid was acquired with high optical purity (>99.9% of d-lactic acid) in a pH 6.0-controlled batch culture, by adding ammonium hydroxide as a neutralizing reagent, at 43 °C in MRS medium containing 20 g/l glucose. As a result of product inhibition and low cell density, continuous cultures were investigated using a microfiltration membrane module to recycle flow-through cells in order to improve d-lactic acid productivity. At a dilution rate of 0.87 h−1, the high cell density continuous culture exhibited the highest d-lactic acid productivity of 18.0 g/l/h with a high yield (ca. 1.0 g/g consumed glucose) and a low residual glucose (<0.1 g/l) in comparison with systems published to date.  相似文献   

19.
Nonsulfur photosynthetic purple bacteria isolated from the Dzhermuk mineral springs (Armenia) were grown on sugar-containing media and found to be capable of synthesizing L(+)-lactic acid. Various organic compounds were tested as possible sole sources of carbon and an electron donors required to support bacterial growth and biosynthesis of lactic acid under various growth conditions.  相似文献   

20.
Nonsulfur photosynthetic purple bacteria isolated from the Dzhermuk mineral springs (Armenia) were grown on sugar-containing media and found to be capable of synthesizing L(+)-lactic acid. Various organic compounds were tested as possible sole sources of carbon and an electron donors required to support bacterial growth and biosynthesis of lactic acid under various growth conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号