首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The investigation and development of the cancer stem cell (CSC) model has received much focus during these years. CSC is characterized as a small fraction of cancer cells that have an indefinite ability for self-renewal and pluripotency and are responsible for initiating and sustaining of the bulk of cancer. So, whether current treatment strategies, most of which target the rapid division of cancer cells, could interfere with the slow-cycling CSCs is broadly questioned. Meanwhile, however, the new understanding of tumorigenesis has led to the development of new drug screening strategies. Both stem cells and mesenchymal stem cells have been vigorously used in pre-clinical studies of their anti-tumor potential, mainly due to their inherent tumoritropic migratory properties and their ability to carry anti-tumor transgenes. Here, based on the tumorigenic and tumoritropic characteristics of CSCs, we proposed two hypotheses exploring possible usage of CSCs as novel anti-tumor agents and potential sources for tissue regeneration. Further experimental validation of these hypotheses may unravel some new research topics.  相似文献   

2.
Cancer stem cells (CSCs) are a small subset of heterogeneous cells existed in tumour tissues or cancer cell lines with self‐renewal and differentiation potentials. CSCs were considered to be responsible for the failure of conventional therapy and tumour recurrence. However, CSCs are not a static cell population, CSCs and non‐CSCs are maintained in dynamic interconversion state by their self‐differentiation and dedifferentiation. Therefore, targeting CSCs for cancer therapy is still not enough,exploring the mechanism of dynamic interconversion between CSCs and non‐CSCs and blocking the interconversion seems to be imperative. Exosomes are 30‐100 nm size in diameter extracellular vesicles (EVs) secreted by multiple living cells into the extracellular space. They contain cell‐state‐specific bioactive materials, including DNA, mRNA, ncRNA, proteins, lipids, etc. with their specific surface markers, such as, CD63, CD81, Alix, Tsg101, etc. Exosomes have been considered as information carriers in cell communication between cancer cells and non‐cancer cells, which affect gene expressions and cellular signalling pathways of recipient cells by delivering their contents. Now that exosomes acted as information carriers, whether they played role in maintaining dynamic equilibrium state between CSCs and non‐CSCs and their mechanism of activity are unknown. This review summarized the current research advance of exosomes’ role in maintaining CSC dynamic interconversion state and their possible mechanism of action, which will provide a better understanding the contribution of exosomes to dedifferentiation and stemness acquisition of non‐CSCs, and highlight that exosomes might be taken as the attractive target approaches for cancer therapeutics.  相似文献   

3.
4.
Increased evidence shows that normal stem cells may contribute to cancer development and progression by acting as cancer-initiating cells through their interactions with abnormal environmental elements.We postulate that normal stem cells and cancer stem cells (CSC) possess similar mechanisms of self-renewal and differentiation.CSC can be the key to the elaboration of anti-cancer-based therapy.In this article,we focus on a controversial new theme relating to CSC.Tumorigenesis may have a critical stage characterized as a "therapeutic window",which can be identified by asso-ciation of molecular,biochemical and biological events.Identifying such a stage can allow the production of more effective therapies (e.g.manipulated stem cells) to treat several cancers.More importantly,confirming the existence of a similar therapeutic window during the conversion of normal stem cells to malignant CSC may lead to targeted therapy specifically against CSC.This conversion information may be derived from investigating the biological behaviour of both normal stem cells and cancerous stem cells.Currently,there is little knowledge about the cellular and molecular mechanisms that govern the initiation and maintenance of CSC.Studies on co-evolution and interdependence of cancer with normal tissues may lead to a useful treatment paradigm of cancer.The crosstalk between normal stem cells and cancer formation may converge developmental stages of different types of stem cells (e.g.normal stem cells,CSC and embryonic stem cells).The differential studies of the convergence may result in novel therapies for treating cancers.  相似文献   

5.
近年来,肿瘤干细胞(cancer stem cell,CSC)学说研究认为CSC与肿瘤发生、发展、转移和复发关系极为密切。研究还发现CSC具有明显的异质性,即CSC可分为增生、耐药、侵袭和转移等行为不同的亚群细胞,其中具有转移生物学特性的CSC亚群细胞称为肿瘤转移干细胞(migrating cancer stem cell,MCSC)。目前认为,上皮-间质转变、趋化因子和靶器官微环境可能在肿瘤转移过程中起着重要作用。针对MCSC及其相关机制的靶向治疗有望能更有效地遏制肿瘤的转移。  相似文献   

6.
Autophagy is a highly regulated catabolic process in which superfluous,damaged organelles and other cytoplasmic constituents are delivered to the lysosome for clearance and the generation of macromolecule substrates during basal or stressed conditions. Autophagy is a bimodal process with a context dependent role in the initiation and the development of cancers. For instance,autophagy provides an adaptive response to cancer stem cells to survive metabolic stresses, by influencing disease propagation via modulation of essential signaling pathways or by promoting resistance to chemotherapeutics. Autophagy has been implicated in a cross talk with apoptosis. Understanding the complex interactions provides an opportunity to improve cancer therapy and the clinical outcome for the cancer patients. In this review, we provide a comprehensive view on the current knowledge on autophagy and its role in cancer cells with a particular focus on cancer stem cell homeostasis.  相似文献   

7.
Cancer stem cells (CSCs) comprise a subpopulation of cancer cells with stem cell properties, which exhibit the characteristics of high tumorigenicity, self-renewal, and tumor initiation and are associated with the occurrence, metastasis, therapy resistance, and relapse of cancer. Compared with differentiated cells, CSCs have unique metabolic characteristics, and metabolic reprogramming contributes to the self-renewal and maintenance of stem cells. It has been reported that CSCs are highly dependent on lipid metabolism to maintain stemness and satisfy the requirements of biosynthesis and energy metabolism. In this review, we demonstrate that lipid anabolism alterations promote the survival of CSCs, including de novo lipogenesis, lipid desaturation, and cholesterol synthesis. In addition, we also emphasize the molecular mechanism underlying the relationship between lipid synthesis and stem cell survival, the signal trans-duction pathways involved, and the application prospect of lipid synthesis reprogramming in CSC therapy. It is demonstrated that the dependence on lipid synthesis makes targeting of lipid synthesis metabolism a promising therapeutic strategy for eliminating CSCs. Targeting key molecules in lipid synthesis will play an important role in anti-CSC therapy.  相似文献   

8.
Malignant tumors comprise a small proportion of cancer-initiating cells (CIC), capable of sustaining tumor formation and growth. CIC are the main potential target for anticancer therapy. However, the identification of molecular therapeutic targets in CIC isolated from primary tumors is an extremely difficult task. Here, we show that after years of passaging under differentiating conditions, glioblastoma, mammary carcinoma, and melanoma cell lines contained a fraction of cells capable of forming spheroids upon in vitro growth under stem cell-like conditions. We found an increased expression of surface markers associated with the stem cell phenotype and of oncogenes in cell lines and clones cultured as spheroids vs. adherent cultures. Also, spheroid-forming cells displayed increased tumorigenicity and an altered pattern of chemosensitivity. Interestingly, also from single retrovirally marked clones, it was possible to isolate cells able to grow as spheroids and associated with increased tumorigenicity. Our findings indicate that short-term selection and propagation of CIC as spheroid cultures from established cancer cell lines, coupled with gene expression profiling, represents a suitable tool to study and therapeutically target CIC: the notion of which genes have been down-regulated during growth under differentiating conditions will help find CIC-associated therapeutic targets.  相似文献   

9.
Recently, our group purified a rare population of primitive Sca1(+)/Lin(-)/CD45(-) cells from murine bone marrow by employing multiparameter cell sorting. Based on flow cytometric and gene expression analysis, these cells have been shown to express several markers of embryonic stem cells and were accordingly termed Very Small Embryonic-Like stem cells (VSELs). In order to better characterize VSELs, we focused on their morphological parameters (e.g. diameter, nuclear to cytoplasmic ratio, cytoplasmic area) as well as expression of Oct-4. To examine the morphological features of VSELs, we employed a multi-dimensional approach, including (i) traditional flow cytometry, (ii) a novel approach, which is ImageStream (IS) cytometry and (iii) confocal microscopy. We demonstrate by all of the sensitive and precise methods employed, that VSELs are a population of very small cells, which are significantly smaller than haematopoetic stem cells (HSC) (3.63 +/- 0.09 versus 6.54 +/-0.17 microm in diameter). They also exhibit higher nuclear to cytoplasmic ratio and lower cytoplasmic area as compared with HSCs and mature granulocytes. Besides confirming the size characteristics, confocal microscopic analysis also confirmed that VSELs express Oct-4, a marker of pluripotent embryonic stem cells. Morphological examination reveals that VSELs are unusually small eukaryotic cells that posses several characteristics of embryonic cells. Thus, FACS-based sorting strategies should consider that adult tissues harbour small primitive cells that are larger than platelets and smaller than erythrocytes.  相似文献   

10.
Cancer stem cells (CSCs) can be operationally defined as a subset of neoplastic cells which are responsible for the growth and re-growth of primary and metastatic tumors. Although the existence of perpetually dividing cells is a logical necessity to explain the malignant properties of human tumors, experimental data supporting their existence have only recently been obtained. New knowledge in basic stem cell biology and the availability of several cell surface markers for the definition and isolation of small subsets of immature cells coupled to the use of the classical model of xenotransplantation in immune deficient mice has identified putative CSCs in several solid tumors such as mammary, colon, brain, pancreas, prostate, melanoma and others. However, the theory must be considered as still in its infancy, since tumors grown in mice only partially recapitulate the biology of human cells. In addition, whether the “transformed” cell is the neoplastic counterpart of a normal stem cell or whether complete malignant behaviour can occur in a more differentiated cell has still to be demonstrated. In spite of these difficulties, the CSC hypothesis could be of clinical relevance, especially in the definition of new ways to assay drug sensitivity of primary human tumors.  相似文献   

11.
The emergence of cancer stem cell theory has profound implications for cancer chemoprevention and therapy. Cancer stem cells give rise to the tumor bulk through continuous self-renewal and differentiation. Understanding the mechanisms that regulate self-renewal is of greatest importance for discovery of anticancer drugs targeting cancer stem cells. Naturally occurring dietary compounds have received increasing attention in cancer chemoprevention. The anticancer effects of many dietary components have been reported for both in vitro and in vivo studies. Recently, a number of studies have found that several dietary compounds can directly or indirectly affect cancer stem cell self-renewal pathways. Herein we review the current knowledge of most common natural dietary compounds for their impact on self-renewal pathways and potential effect against cancer stem cells. Three pathways (Wnt/β-catenin, Hedgehog and Notch) are summarized for their functions in self-renewal of cancer stem cells. The dietary compounds, including curcumin, sulforaphane, soy isoflavone, epigallocatechin-3-gallate, resveratrol, lycopene, piperine and vitamin D3, are discussed for their direct or indirect effect on these self-renewal pathways. Curcumin and piperine have been demonstrated to target breast cancer stem cells. Sulforaphane has been reported to inhibit pancreatic tumor-initiating cells and breast cancer stem cells. These studies provide a basis for preclinical and clinical evaluation of dietary compounds for chemoprevention of cancer stem cells. This may enable us to discover more preventive strategies for cancer management by reducing cancer resistance and recurrence and improving patient survival.  相似文献   

12.
Beyond tumorigenesis: cancer stem cells in metastasis   总被引:38,自引:0,他引:38  
The importance of cancer stem cells (CSCs) in tumor-initiation has been firmly established in leukemia and recently reported for a variety of solid tumors. However, the role of CSCs in multistage cancer progression, particularly with respect to metastasis, has not been well-defined. Cancer metastasis requires the seeding and successful colonization of specialized CSCs at distant organs. The biology of normal stem cells and CSCs share remarkable similarities and may have important implications when applied to the study of cancer metastasis. Furthermore, overlapping sets of molecules and pathways have recently been identified to regulate both stem cell migration and cancer metastasis. These molecules constitute a complex network of cellular interactions that facilitate both the initiation of the pre-metastasis niche by the primary tumor and the formation of a nurturing organ microenvironment for migrating CSCs. In this review, we surveyed the recent advances in this dynamic field and propose a unified model of cancer progression in which CSCs assume a central role in both tumorigenesis and metastasis. Better understanding of CSCs as a fundamental component of the metastatic cascade will lead to novel therapeutic strategies against metastatic cancer.  相似文献   

13.
We isolated a stem cell subpopulation from human lung cancer A549 cells using FACS/Hoechst 33342. This side population (SP), which comprised 24% of the total cell population, totally disappeared after treatment with the selective ABCG 2 inhibitor fumitremorgin C. In a repopulation study, isolated SP and non-SP cells were each able to generate a heterogeneous population of SP and non-SP cells, but this repopulation occurred more rapidly in SP cells than non-SP. An MTT assay and cell cycle distribution analysis reveal a similar profile between SP and non-SP groups. However, in the presence of doxorubicin (DOX) and methotrexate (MTX), SP cells showed significantly lower Annexin V staining when compared to non-SP cells. Taken together, these results demonstrate that SP cells have an active regeneration capacity and high anti-apoptotic activity compared with non-SP cells. Furthermore, our GeneChip® data revealed a heightened mRNA expression of ABCG2 and ABCC2 in SP cells. Overall these data explain why the SP of A549 has a unique ability to resist DOX and MTX treatments. Therefore, we suggest that the expression of the ABCG2 transporter plays an important role in the multidrug resistance phenotype of A549 SP cells.  相似文献   

14.
Being the second leading cause of death globally, cancer has been a long-standing and rapidly evolving focus of biomedical research and practice in the world. A tremendous effort has been made to understand the origin of cancer cells, the formation of cancerous tissues, and the mechanism by which they spread and relapse, but the disease still remains mysterious. Here, we made an attempt to scrutinize evidences that indicate the role of stem cells in tumorigenesis and metastasis, and cancer relapse. We also looked into the influence of cancers on stem cells, which in turn represent a major constituent of tumor microenvironment. Based on current understandings of the properties of (cancer) stem cells and their relation to cancers, we can foresee that novel therapeutic approaches would become the next wave of cancer treatment.  相似文献   

15.
DDX4 (DEAD box polypeptide 4), characterized by the conserved motif Asp-Glu-Ala-Asp (DEAD), is an RNA helicase which is implicated in various cellular processes involving the alteration of RNA secondary structure, such as translation initiation, nuclear and mitochondrial splicing, and ribosome and spliceosome assembly. DDX4 is known to be a germ cell-specific protein and is used as a sorting marker of germline stem cells for the production of oocytes. A recent report about DDX4 in ovarian cancer showed that DDX4 is overexpressed in epithelial ovarian cancer and disrupts a DNA damage-induced G2 checkpoint.  相似文献   

16.
Head and neck squamous cell carcinoma is the seventh most common cancer worldwide with high mortality rates. Amongst oral cavity cancers, tongue carcinoma is a very common and aggressive oral cavity carcinoma. Despite the implementation of a multimodality treatment regime including surgical intervention, chemo-radiation as well as targeted therapy, tongue carcinoma shows a poor overall 5-year survival pattern, which is attributed to therapy resistance and recurrence of the disease. The presence of a rare population, i.e., cancer stem cells (CSCs) within the tumor, are involved in therapy resistance, recurrence, and distant metastasis that results in poor survival patterns. Therapeutic agents targeting CSCs have been in clinical trials, although they are unable to reach into therapy stage which is due to their failure in trials. A more detailed understanding of the CSCs is essential for identifying efficient targets. Molecular signaling pathways, which are differentially regulated in the CSCs, are one of the promising targets to manipulate the CSCs that would provide an improved outcome. In this review, we summarize the current understanding of molecular signaling associated with the maintenance and regulation of CSCs in tongue squamous cell carcinoma in order to emphasize the need of the hour to get a deeper understanding to unravel novel targets.  相似文献   

17.
The role of p53 as the “guardian of the genome” in differentiated somatic cells, triggering various biological processes, is well established. Recent studies in the stem cell field have highlighted a profound role of p53 in stem cell biology as well. These studies, combined with basic data obtained 20 years ago, provide insight into how p53 governs the quantity and quality of various stem cells, ensuring a sufficient repertoire of normal stem cells to enable proper development, tissue regeneration and a cancer free life. In this review we address the role of p53 in genomically stable embryonic stem cells, a unique predisposed cancer stem cell model and adult stem cells, its role in the generation of induced pluripotent stem cells, as well as its role as the barrier to cancer stem cell formation.  相似文献   

18.
Cancer treatment generally relies on tumor ablative techniques that can lead to major functional or disfiguring defects. These post-therapy impairments require the development of safe regenerative therapy strategies during cancer remission. Many current tissue repair approaches exploit paracrine (immunomodulatory, pro-angiogenic, anti-apoptotic and pro-survival effects) or restoring (functional or structural tissue repair) properties of mesenchymal stem/stromal cells (MSC). Yet, a major concern in the application of regenerative therapies during cancer remission remains the possible triggering of cancer recurrence. Tumor relapse implies the persistence of rare subsets of tumor-initiating cancer cells which can escape anti-cancer therapies and lie dormant in specific niches awaiting reactivation via unknown stimuli. Many of the components required for successful regenerative therapy (revascularization, immunosuppression, cellular homing, tissue growth promotion) are also critical for tumor progression and metastasis. While bi-directional crosstalk between tumorigenic cells (especially aggressive cancer cell lines) and MSC (including tumor stroma-resident populations) has been demonstrated in a variety of cancers, the effects of local or systemic MSC delivery for regenerative purposes on persisting cancer cells during remission remain controversial. Both pro- and anti-tumorigenic effects of MSC have been reported in the literature. Our own data using breast cancer clinical isolates have suggested that dormant-like tumor-initiating cells do not respond to MSC signals, unlike actively dividing cancer cells which benefited from the presence of supportive MSC. The secretome of MSC isolated from various tissues may partially diverge, but it includes a core of cytokines (i.e. CCL2, CCL5, IL-6, TGFβ, VEGF), which have been implicated in tumor growth and/or metastasis. This article reviews published models for studying interactions between MSC and cancer cells with a focus on the impact of MSC secretome on cancer cell activity, and discusses the implications for regenerative therapy after cancer.  相似文献   

19.
20.
Resistance of oral squamous cell carcinomas (OSCC) to conventional chemotherapy or radiation therapy might be due to cancer stem cells (CSCs). The development of novel anticancer drugs requires a simple method for the enrichment of CSCs. CSCs can be enriched from OSCC cell lines, for example, after cultivation in serum-free cell culture medium (SFM). In our study, we analyzed four OSCC cell lines for the presence of CSCs. CSC-like cells could not be enriched with SFM. However, cell lines obtained from holoclone colonies showed CSC-like properties such as a reduced rate of cell proliferation and a reduced sensitivity to Paclitaxel in comparison to cells from the parental lineage. Moreover, these cell lines differentially expressed the CSC-marker CD133, which is also upregulated in OSCC tissues. Interestingly, CD133+ cells in OSCC tissues expressed little to no Ki67, the cell proliferation marker that also indicates reduced drug sensitivity. Our study shows a method for the isolation of CSC-like cell lines from OSCC cell lines. These CSC-like cell lines could be new targets for the development of anticancer drugs under in vitro conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号