共查询到20条相似文献,搜索用时 0 毫秒
1.
A diffusion enrichment technique is presented which allows for chemical enrichment of soft surficial and shallow subsurface sediments and subsequent measurement of O2 production. The sediment is enriched by inserting a perforated tube containing dialysis tubing filled with a nutrient/agar mixture. O2 production by surficial sediment is measured using an inverted, translucent, polyethylene chamber over the sediment. The inside of the chamber contains a collapsible bag connected to the water outside the chamber. When water overlying the sediment is withdrawn from a sampling port, it is displaced with water from outside the chamber, thus preventing contamination of water samples with pore water from below. The technique was tested by enriching near-shore sediments in a large oligotrophic lake with inorganic N and P. NHinf4/p+ additions significantly stimulated benthic primary production as measured by 02 production, whereas enrichment with POinf4/3- had no effect. 相似文献
2.
We measured porewater profiles of inorganic (NH4+, NO3–(+NO2–), PO43– (hereafter referred to as DIP)) and organic (DON, DOP) nutrients in seagrass-vegetated sediments at two sites in a shallow bay in Bermuda within close proximity (200 m) but subject to different nutrient loading. At both sites, total dissolved and inorganic nutrient concentrations were usually 1–2 orders of magnitude higher in the sediments than in the water column, with the exception of NO3–. Organic N and P were significant components of the total dissolved nutrient pools both in the sediment porewater and in the overlying water column (up to 75% for DON and 40% for DOP), and may be important in meeting plant nutrient demands. We used two approaches to examine how well porewater nutrient concentrations reflected the relative availabilities of N and P for seagrasses: (1) a simple stoichiometric nutrient regeneration model based on the N:P ratio of decomposing organic matter and porewater NH4+ concentrations to predict porewater DIP, and (2) fitting of the porewater profiles to estimate rates of net nutrient production (or consumption), which reflects the balance between nutrient sources and sinks in the rhizosphere. The stoichiometric model indicated that sediment porewaters were depleted in P relative to N in the low-nutrient outer bay site, and enriched in P relative to N in the higher-nutrient inner bay site. These results are consistent with the mechanism of carbonate sediments in oligotrophic tropical environments being a strong sink for dissolved inorganic P and our previous work suggesting that nutrient enrichment causes P to become disproportionately more available than N. Net nutrient production rates of porewater P at both sites and N at the inner bay site were low (typically < 2%) relative to the nutrient demands of the seagrasses. The implications of the profile interpretation are two-fold: (1) the low rates of net nutrient production indicate diffusive losses from the root zone were insignificant and that nutrient turnover rates were high, except in the P-limited outer bay where N accumulated in sediment porewaters; and (2) because standing stock nutrient concentrations often represent a small fraction of the total nutrients cycled in the sediments, they are in many cases a poor indicator of nutrient availability. Based on our estimates of losses from the root zone, decomposition, and plant uptake we have constructed a rough budget for the cycling of P and N at our two sites. 相似文献
3.
Long term 15N studies in a catena of the shortgrass steppe 总被引:1,自引:0,他引:1
J. A. Delgado A. R. Mosier D. W. Valentine D. S. Schimel W. J. Parton 《Biogeochemistry》1996,32(1):41-52
A set of long term15N studies was initiated during the summers of 1981 and 1982 on the backslope and footslope, respectively, of a catena in the shortgrass steppe of northeastern Colorado. Microplots labeled with15N urea were sampled for15N and total N content in 1981 and 1982 and again in 1992. In November, 1982, 100% of the added N was recovered in the soil-plant system of the finer-textured footslope, compared to 39% in the coarser-textured backslope microplots. Ten years later,15N recovery of the applied N decreased at both topographic positions to 85% in the footslope and 29% in the backslope. Average losses since the time of application were 3.5 g N m–2yr–1 in the backslope and 0.8 g N m–2yr–1 in the footslope. In 1992, soil organic matter was physically fractionated into particulate (POM) and mineral associated (MAON) fractions and 21-day mineralization incubations were conducted to assess the relative amounts of15N that were in the slow, passive and active soil organic matter pools, respectively, of the two soils. Our findings confirm the assumptions that POM represents a large portion of the slow organic compartment and that the MAON represents a large fraction of the passive compartment defined in the Century model. The N located in the MAON had the lowest availability for plant uptake. Isotopic data were consistent with textural effects and with the Century model compartmentalization of soil organic N based on the residence time of the organic N. 相似文献
4.
The importance of Chironomus plumosus larvae onbenthic metabolism and nutrient exchange across thesediment–water interface was evaluated in a shalloweutrophic lake (Lake Arreskov, Denmark) following aphytoplankton sedimentation. Chironomus plumosuslarvae were added to laboratory sediment microcosms,corresponding to a density of 2825 larvae m−2.Non-inhabited microcosms served as controls. Asedimentation pulse of organic matter was simulated byadding fresh algal material (Chlamydomonasreinhardii) to sediment cores (36 g dryweight m−2). The mineralization was followed bymeasuring fluxes of O2, CO2, dissolvedinorganic nitrogen and phosphate. A rapid clearance ofalgae from the water column in faunated microcosmssuggested that chironomids may be of major importancein controlling phytoplankton concentrations in shalloweutrophic lakes. Chironomids increased the sedimentO2 uptake ≈ 3 times more than what wouldbe expected from their own respiration, indicating astimulation of microbial activity and decomposition oforganic matter in the sediment. Addition of algaeenhanced the release of CO2, NH+ 4 ando-P. The excess inorganic C, N and P released inamended non-inhabited sediment after 36 dayscorresponded to 65, 31 and 58% of the C, N and P inthe added algae. In sediment inhabited by Chironomus plumosus the corresponding numbers were147, 45 and 73%, indicating that mineralization oforganic matter also from the indigenous sediment poolwas stimulated by chironomids. This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
5.
Concentrations of total phosphorus (TP), inorganic and organic nitrogen, organic matter, and chlorophyll-a were studied in ten mountain lakes at various stages of acidification, trophy, and type of watershed during each July and October from 1987 to 1990. Concentrations of TP and total organic matter were higher in July than in October. Concentrations of NH44
+-N decreased and NO3
–-N increased from July to October. The relative composition of total nitrogen (TN) and its concentration were strongly dependent on the type of watershed: the lowest TN concentrations were observed in lakes with forested watersheds, increasing above the timberline and reaching maximum values in acidified lakes with rocky watersheds. In the pool of TN, nitrate was most important in lakes above the timberline (70–86% of TN), and organic nitrogen in forest lakes (> 90% of TN). Lakes with rocky watersheds were characterized by high ratios of TN:TP (> 250 by mass). The concentration of chlorophyll-a varied widely, from 0.01 to 22.6 µg l–1, without any consistent change between July and October, and were P limited. 相似文献
6.
The influence of dissolved nutrients and particulate organic matter quality on microbial respiration and biomass in a forest stream 总被引:4,自引:0,他引:4
1. Although dissolved nutrients and the quality of particulate organic matter (POM) influence microbial processes in aquatic systems, these factors have rarely been considered simultaneously. We manipulated dissolved nutrient concentrations and POM type in three contiguous reaches (reference, nitrogen, nitrogen + phosphorus) of a low nutrient, third‐order stream at Hubbard Brook Experimental Forest (U.S.A). In each reach we placed species of leaves (mean C : N of 68 and C : P of 2284) and wood (mean C : N of 721 and C : P of 60 654) that differed in elemental composition. We measured the respiration and biomass of microbes associated with this POM before and after nutrient addition. 2. Before nutrient addition, microbial respiration rates and biomass were higher for leaves than for wood. Respiration rates of microbes associated with wood showed a larger response to increased dissolved nutrient concentrations than respiration rates of microbes associated with leaves, suggesting that the response of microbes to increased dissolved nutrients was influenced by the quality of their substrate. 3. Overall, dissolved nutrients had strong positive effects on microbial respiration and fungal, but not bacterial, biomass, indicating that microbial respiration and fungi were nutrient limited. The concentration of nitrate in the enriched reaches was within the range of natural variation in forest streams, suggesting that natural variation in nitrate among forest streams influences carbon mineralisation and fungal biomass. 相似文献
7.
The fertility of the coastal and estuarine waters is of great concern because of its influence on the productivity of these waters. Seasonal variations in the distribution of organic carbon, total nitrogen and total phosphorus in the sediments of Kuttanad Waters, a part of the tropical Cochin Estuary on the south west coast of India, are examined to identify the contribution of sediments to the fertility of the aquatic systems. The adjoining region has considerable agricultural activity. The fresh water zones had higher quantities of silt and clay whereas the estuarine zone was more sandy. Organic carbon, total phosphorus and total nitrogen were higher in the fresh water zones and lower in the estuarine zones. Total phosphorus and organic carbon showed the lowest values during monsoon periods. No significant trends were observed in the seasonal distributions of total nitrogen. Ratios of C/N, C/P and N/P, and the phosphorus and nitrogen content indicate significant modification in the character of the organic matter. Substantial amounts of the organic matter can contribute to reducing conditions and modify diagenetic processes. 相似文献
8.
A field and laboratory based bioassay has been developed to investigate the effects of the quantity and duration of simulated pollutant nitrogen (N) deposition on root-surface phosphomonoesterase (PME) activities in calcareous and acid grasslands. Seedlings of Plantago lanceolata were transplanted to a calcareous grassland and Agrostis capillaris seedlings were grown in microcosms containing soil from an acid grassland that had received either 7 yr (long-term) N additions or 18 months (short-term) N and phosphorus (P) additions. The bioassay revealed that short-term N treatments had little effect on the enzyme activity, whereas long-term N additions significantly increased PME activity within 7 d of transplanting into the field plots. Root-surface PME activity of A. capillaris was significantly reduced in soil that received additions of P. In the plots receiving long-term additions of N, a strong relationship was observed between extractable soil ammonium and root-surface PME activity. Soil ammonium concentrations accounted for 67% of the variation in PME activity of P. lanceolata in the calcareous grassland, and 86% of the variation in PME activity of A. capillaris in the acid grassland. These results provide evidence that N deposition may have considerable effects on the demand and turnover of P in ecosystems that are approaching or have reached N saturation. 相似文献
9.
10.
Release of oxygen from the roots ofaquatic macrophytes into anaerobic sediments canaffect the quantity of interstitial dissolved organicmatter and nutrients that are available to bacteria. Nutrient and dissolved organic carbon (DOC)concentrations were compared between subsurface(interstitial) waters of unvegetated sediments andsediments among stands of the emergent herbaceousmacrophyte Juncus effusus L. in a lotic wetlandecosystem. Concentrations of inorganic nitrogen(NH4+, NO3-, and NO2-)were greater from sediments of the unvegetatedcompared to the vegetated zone. DOC concentrations ofinterstitial waters were greater in sediments of theunvegetated zone both in the winter and springcompared to those from the vegetated zone. AlthoughDOC concentrations in hydrosoils collected from bothzones increased from winter to spring, bacterialproductivity per mg DOC in spring decreased comparedto winter. Greater initial bacterial productivityoccurred on DOM collected from the vegetated comparedto the unvegetated zone in winter samples (days 1 and4), with increased bacterial productivity on samplescollected from the unvegetated zone at the end of thestudy (day 20). Bacterial productivity wassignificantly greater on all sampling days on DOM fromvegetated samples compared to unvegetated samples. In nutrient enrichment experiments, bacterialproductivity was significantly increased (p < 0.05)with phosphorus but not nitrogen only amendments. 相似文献
11.
IVAN J. FERNANDEZ STEPHEN A. NORTON TSUTOMU OHNO H. MAURICE VALETT KEVIN S. SIMON 《Freshwater Biology》2013,58(2):248-260
1. Chronic nitrogen (N) deposition may alter the bioavailability of dissolved organic matter (DOM) in streams by multiple pathways. Elevated N deposition may alter the nutrient stoichiometry of DOM as well as nutrient availability in stream water. 2. We evaluated the influence of a decadal‐scale experimental N enrichment on the relative importance of DOM nutrient content and inorganic nutrient availability on the bioavailability of DOM. We measured the consumption of dissolved organic carbon (DOC) and changes in nutrient concentration, DOM components and enzyme activity in a bottle incubation assay with different DOM and nutrient treatments. To evaluate the effect of DOM stoichiometry, we used leaf leachates of different carbon/N/phosphorus (C : N :P) ratio, made from leaf litter sourced in the reference and N‐enriched catchments at the Bear Brook Watershed in Maine (BBWM). We also manipulated the concentration of inorganic N and P to compare the effect of nutrient enrichment with DOM stoichiometry. 3. DOC from the N‐enriched catchment was consumed 14% faster than that from the reference catchment. However, mean DOC consumption for both leachates was more than doubled by the simultaneous addition of N and P, compared to controls, while the addition of N or P alone increased consumption by 42 and 23%, respectively. The effect of N and/or P enrichment consistently had a greater effect than DOM source for all response variables considered. 4. We subsequently conducted DOC uptake measurements using leaf leachate addition under ambient and elevated N and P in the streams draining the reference and N‐enriched catchments at BBWM. In both streams, DOC uptake lengths were shorter when N and P were elevated. 5. Although both DOM stoichiometry and inorganic nutrient availability affect DOM bioavailability, N and P co‐limitation appears to be the dominant driver of reach‐scale processing of DOM. 相似文献
12.
Dynamics of C,N, P and S in grassland soils: a model 总被引:42,自引:8,他引:42
We have developed a model to simulate the dynamics of C, N, P, and S in cultivated and uncultivated grassland soils. The model uses a monthly time step and can simulate the dynamics of soil organic matter over long time periods (100 to 10,000 years). It was used to simulate the impact of cultivation (100 years) on soil organic matter dynamics, nutrient mineralization, and plant production and to simulate soil formation during a 10,000 year run. The model was validated by comparing the simulated impact of cultivation on soil organic matter C, N, P, and S dynamics with observed data from sites in the northern Great Plains. The model correctly predicted that N and P are the primary limiting nutrients for plant production and simulated the response of the system to inorganic N, P, and S fertilizer. Simulation results indicate that controlling the C:P and C:S ratios of soil organic matter fractions as functions of the labile P and S levels respectively, allows the model to correctly simulate the observed changes in C:P and C:S ratios in the soil and to simulate the impact of varying the labile P and S levels on soil P and S net mineralization rates. 相似文献
13.
F. Restituito 《Hydrobiologia》1984,109(3):229-234
Sediments were collected from a oligomesotrophic lake at different depths: they have been analysed for Ca, Mg, Zn, Na, K, Mn and Fe and organic matter. In the –30 m layer the iron concentration was found to be relatively high, the organic matter concentration low and the C/N ratio very high. 相似文献
14.
Evaluation of a eutrophic coastal lagoon ecosystem from the study of bottom sediments 总被引:3,自引:0,他引:3
Morphological reconstruction and biogeochemical characterisation of the lagoon of Comacchio (Italy) were carried out in order to provide recommendations for the recovery, conservation and sustainable management of the Fattibello-Spavola coastal lagoon ecosystem. Samples were taken in two seasons: July 1997 and November 1998. The irregular morphology of the Fattibello lagoon affects depositional processes and seawater exchange (tidal currents). Several depressions retain part of the dense water of the saline wedge; these stagnant waters became sinks for fine terrigenous and organic matter. The basin is already extensively supplied with N and P compounds from land. The inflow is demonstrated by the large quantity of organic C, N and organic and inorganic P compounds in the superficial sediment. The ratios between the various forms of macronutrients indicate that the organic matter is primarily of autochthonous origin, with relatively low C/N ratios (8.4±0.6 and 8.1±0.6 in July and November, respectively). Shallow areas were almost always oxygenated by tidal currents and thus rich in organisms, with a predominance of molluscs and Ficopomatus enigmaticus. However, the trophic equilibrium of the ecosystem was affected by the accumulation of organic matter in the depressions, favoured by the increased hydrodynamics during the autumn. These accumulations generate high oxygen consumption and release considerable quantities of nutrients into the water column, with the risk of serious dystrophy throughout the basin during the summer. Local dredging and an improvement of the circulation have been suggested and carried out to contain these processes. Reclamation measures in the longer term were proposed. 相似文献
15.
Levels of tPCB and organic matter content were determined in surface sediments from Sado and Tagus estuaries and Ria Formosa lagoon, and in particles collected in sediment traps in Ria Formosa. Significant relationships (p<0.001) between concentrations of tPCB and organic matter content were obtained when the most contaminated samples and the less contaminated organic-rich sediments were excluded. The excluded samples originated from nearby PCB and organic matter sources. Organic matter appears, thus, the most important indicator of a sediment's sorptive capacity in these estuarine systems, except near the sources where the organic seeking effect is masked. On the basis of the relationship slopes one may conclude that Tagus and Sado estuaries are more contaminated than Alcacer channel (upper Sado estuary) and Ria Formosa. 相似文献
16.
土壤氮库对生态系统的养分循环至关重要。目前多数研究主要关注氮沉降对土壤总氮的影响, 而对土壤不同有机质组分的氮库对氮沉降响应的研究较为缺乏。该研究基于内蒙古典型草地的长期多水平施氮(0、8、32、64 g·m-2·a-1)实验平台, 利用土壤密度分级方法, 探究氮添加处理13年后典型草地中两种土壤有机质组分(颗粒态有机质(POM), 矿质结合态有机质(MAOM))氮含量的变化及调控机制。结果显示: 土壤总碳含量、POM和MAOM的碳含量在施氮处理间均没有显著差异。土壤总氮含量则随着施氮水平增加呈显著增加的趋势, 同时施氮处理下POM的氮含量显著上升, 而MAOM的氮含量没有变化。进一步分析发现, 施氮促进植物地上生物量积累, 增加了凋落物量及其氮含量, 从而导致POM的氮含量增加。由于MAOM主要通过黏土矿物等吸附土壤中小分子有机质形成, 其氮含量受土壤中黏粒与粉粒含量影响, 而与氮添加水平无显著相关关系。该研究结果表明长期氮添加促进土壤氮库积累, 但增加的氮主要分布在稳定性较低的POM中, 受干扰后容易从生态系统中流失。为了更准确地评估和预测氮沉降对陆地生态系统的氮循环过程的影响, 应考虑土壤中不同有机质组分的差异响应。 相似文献
17.
青岛近海及其临近海域冬季微微型浮游植物的分布 总被引:2,自引:0,他引:2
微微型浮游植物(0.2~2.0 μm) 是海水中最小的自养浮游生物, 在世界各海域广泛分布, 并在海洋有机物质循环中起着非常重要的作用.利用荧光显微技术对青岛近海及其邻近海域冬季微微型浮游植物丰度进行了调查,研究了微微型浮游植物的空间变化和昼夜变化的特征, 并分析了微微型浮游植物丰度与环境因子的相关性. 结果显示, 冬季该海域以富含藻红素(Phycoerythrin-rich, PE)的聚球藻(Synechococcus, Syn)细胞占优势,微微型真核藻类(Picoeukaryote, Euk)次之,而富含藻蓝素(Phycocyanin-rich, PC)的聚球藻细胞数量很低, 未发现原绿球藻(Prochlorococcus, Pro)的存在.Syn 的变化范围为8.97×103~1.95×105 cells·ml-1, 平均4.67×104 cells·ml-1; Euk的变化范围为1.95×102~1.01×104 cells·ml-1, 平均2.39×103 cells·ml-1. Syn丰度在胶南以南海域出现高值区域, 在即墨海域和崂山东南海域出现低值区域. Euk丰度在日照海域出现高值区域; 崂山海域为低值区域; 各水层Syn和Euk丰度均无明显差异(P﹥0.05). 对胶州湾中部连续站4层水体的24 h昼夜连续变化进行观测发现, Syn、Euk丰度都有明显昼夜波动.相关性分析表明: Syn与温度、 电导率呈正相关, 与溶氧浓度呈显著负相关; Euk与盐度和溶氧浓度呈显著负相关. 微微型浮游植物对总浮游植物生物量的贡献约为20%. 相似文献
18.
JEREMY B. JONES JR 《Freshwater Biology》2002,47(5):971-983
1. Groundwater fluxes of nitrogen and dissolved organic carbon (DOC) were investigated in Grape Vine Canyon Stream in the Mojave Desert focusing on the rate of inputs and the fate of groundwater-derived nutrients in the stream. Discharge rates from different ground waters were measured using an end-member mixing model coupled with injections of a conservative solute tracer into the stream channel.
2. In surface water, nitrate concentration averaged 1.13 mg N L–1 and DOC concentration averaged 1.82 mg C L–1 .
3. Groundwater discharge into Grape Vine Canyon Stream was derived from three sources. Nitrate concentration varied among the three groundwater sources with mean concentrations of 0.56, 0.94 and 0.08 mg N L–1 . DOC, in contrast, did not vary among ground water sources, with an overall average concentration of 2.96 mg C L–1 .
4. In the surface stream, nitrate concentration was two-fold greater than the concentration predicted from groundwater input, indicating that in-stream processes generated nitrate. Stream DOC concentration was lower than predicted based upon groundwater input rate. The production of nitrate and loss of DOC suggest that DOC is lost through mineralisation of dissolved organic matter, possibly resulting in the mineralisation of dissolved organic nitrogen to ammonium and subsequent transformation to nitrate via nitrification. In further support of this hypothesised linkage, DOC loss explained 80–89% of the variance in nitrate production in Grape Vine Canyon Stream. 相似文献
2. In surface water, nitrate concentration averaged 1.13 mg N L
3. Groundwater discharge into Grape Vine Canyon Stream was derived from three sources. Nitrate concentration varied among the three groundwater sources with mean concentrations of 0.56, 0.94 and 0.08 mg N L
4. In the surface stream, nitrate concentration was two-fold greater than the concentration predicted from groundwater input, indicating that in-stream processes generated nitrate. Stream DOC concentration was lower than predicted based upon groundwater input rate. The production of nitrate and loss of DOC suggest that DOC is lost through mineralisation of dissolved organic matter, possibly resulting in the mineralisation of dissolved organic nitrogen to ammonium and subsequent transformation to nitrate via nitrification. In further support of this hypothesised linkage, DOC loss explained 80–89% of the variance in nitrate production in Grape Vine Canyon Stream. 相似文献
19.
基于4省野外调查样点和农户调研数据,对中南4省(湖南、湖北、广东、广西)农田有机物质与化肥投入量以及农田氮、磷、钾收支状况进行研究.结果表明: 农田有机物质投入量大小为广西(8993 kg·hm-2)>湖南(6390 kg·hm-2)>湖北(5012 kg·hm-2)>广东(4630 kg·hm-2);平均化肥投入量为广西(777.5 kg·hm-2)>湖南(501.6 kg·hm-2)>湖北(486.4 kg·hm-2)>广东(340.4 kg·hm-2).4省农田氮和磷收支为氮磷盈余,其中广西农田氮盈余率(67.2%)、磷盈余率(99.0%)明显超过湖南(氮盈余率33.2%,磷盈余率50.8%)、湖北(氮盈余率11.8%,磷盈余率11.0%)以及广东(氮盈余率7.8%、磷盈余率30.0%).湖南、湖北、广东3省为钾亏缺,亏缺率分别为湖南6.6%、湖北18.7%、广东12.4%,而广西收支为钾盈余19.5%. 相似文献
20.
Alan R. Hill 《Biogeochemistry》1991,14(3):209-224
Ground water inputs and outputs of N were studied for a small ground water discharge swamp situated in a headwater drainage
basin in southern Ontario, Canada. Darcy's equation with data for piezometers was used to measure inputs of shallow local
ground water at the swamp margin and deep regional ground water beneath the swamp. Ground water flux was also quantified by
measuring ground water discharge to the outlet stream draining the swamp in combination with a chemical mixing model to separate
shallow and deep ground water components based on chloride differences. Estimates of shallow ground water flux determined
by these two approaches agreed closely however, the piezometer data seriously underestimated the deep ground water input to
the swamp. An average ground water input-output budget of total N (TN) total organic nitrogen (TON) ammonium (NH4
+-N) and nitrate (NO3
--N) was estimated for stream base flow periods which occurred on an average of 328 days each year during 1986–1990. Approximately
90% of the annual NO3
--N input was contributed by shallow ground water at the swamp margin. Deep ground water represented about 65% of the total
ground water input and a similar proportion of TON and NH4
+-N inputs. Annual ground water NO3
--N inputs and outputs were similar whereas NH4
+-N retention was 4 kg ha-1 representing about 68% of annual ground water input. Annual TON inputs in ground water exceeded outputs by 7.7 kg ha (27%).
The capacity of the swamp to regulate ground water N fluxes was influenced by the N chemistry of ground water inputs and the
hydrologic pathways of transport within the swamp. 相似文献