首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On the way from the roots to the seeds during reproductive developmentin soybean (Glycine max), a large proportion of the mineralspass through the leaves rather than travelling directly viathe xylem. This direct and indirect movement of mineral nutrientshas important implications for mineral redistribution, seeddevelopment and leaf senescence. Therefore, we have studiedthe role of cytokinin and mineral flux from the roots in regulatingmineral redistribution from the leaves to the seeds using explants,i.e. a leaf, a pod and a subtending stem segment, with theirbases immersed in treatment solutions. Thus, defined solutionscontaining cytokinin and/or minerals can be substituted forthe roots. When explants (excised at early-mid podfill) aresupplied H2O only, leaf N, P, K, Mo, Mg, Zn, Fe, B, Cu, Ca,and Mn decline, ranging from 93% for Mo to 38% for Fe. In explantson H2O, N, P, K, Mo, Mg, Zn, and Fe appear to be redistributedfrom the leaves to the seeds, while the B, Cu, Ca, and Mn lostfrom the leaves do not seem to move to the seeds. Although amixture of minerals resembling xylem sap can delay net lossof these elements from the leaves, it does not prevent the decreases.The cytokinin zeatin (4.6 µM) inhibits the loss of N,IC, Mo, Mg, Zn, Fe, B, Cu, Ca, and Mn from the leaves, but notthat of P. When combined with minerals, zeatin not only preventsthe loss of the minerals from the leaves but may even greatlyincrease them with the possible exception of Zn, Fe, and Cu.Supplying the mineral nutrient mixture increases the quantitiesof N, P, K, Mg, Cu, and B in the seeds but not Zn, Fe, Mn, Ca,and Mo. For those minerals, especially N, where zeatin inhibitsefflux from the leaves, it may reduce the amounts in the seeds,but it does not change P, K, Mg, and Ca. The accumulation andredistribution patterns of the different mineral nutrients showmany dissimilarities thereby suggesting differences in the controlof their distribution. Key words: Cytokinin, mineral transport, seed development, senescence  相似文献   

2.
 The nutrient concentrations and contents of needles and shoots of 22-year-old European larch (Larix decidua Mill.) were evaluated with respect to crown position, age of tissues and sampling date during a complete growing season. Concentrations of N, P, K, Ca, Mg and Zn in the needles and of N, P and K in the shoots differed significantly among the dates of sampling. The concentrations of N and Mn in the needles and all nutrients in the shoots (except Mg) also differed significantly with crown position. Maximum needle biomass was observed in the middle crown position (55% of the total) and maximum shoot biomass, in the lower crown position (52% of the total). Maximum needle and shoot nutrient contents were observed in the middle position of the living crown for long shoot, short shoot-1, short shoot-2, short shoot-3 and, short shoot-4 age classes while highest contents for short shoot-5 and short shoot-6 age classes were observed in the lower crown position. Biases up to 42% for Mg in the needles and 200% for K in the shoots were obtained when only long shoot tissues are used for content evaluation. For needles and shoots, Mg and K are more difficult nutrients to evaluate. A sampling methodology is proposed for evaluating nutrient contents of the living crown. Accepted: 10 August 1995  相似文献   

3.
Aims Conversion of secondary forests to pure larch plantations is a common management practice driven by the increasing demand for timber production in Northeast China, resulting in a reduction in soil nutrient availability after a certain number of years following conversion. Nutrient resorption prior to leaf senescence was related to soil fertility, an important nutrient conservation strategy for plants, being especially significant in nutrient-poor habitats. However, the seasonal dynamics of leaf nutrients and nutrient resorption in response to secondary forest conversion to larch plantations is not well understood.Methods A comparative experiment between larch plantations (Larix spp.) and adjacent secondary forests (dominant tree species including Quercus mongolica, Acer mono, Juglans mandshurica and Fraxinus rhynchophylla) was conducted. We examined the variations in leaf nutrient (macronutrients: N, P, K, Ca and Mg; micronutrients: Cu and Zn) concentrations of these tree species during the growing season from May to October in 2013. Nutrient resorption efficiency and proficiency were compared between Larix spp. and the broadleaved species in the secondary forests.Important findings Results show that the seasonal variation of nutrient concentrations in leaves generally exhibited two trends, one was a downward trend for N, P, K, Cu and Zn, and another was an upward trend for Ca and Mg. The variations in foliar nutrient concentrations were mainly controlled by the developmental stage of leaves rather than by tree species. Resorption of the observed seven elements varied among the five tree species during leaf senescence. Nutrient resorption efficiency varied 6–75% of N, P, K, Mg, Cu and Zn, while Ca was not retranslocated in the senescing leaves of all species, and Mg was not retranslocated in Larix spp. Generally, Larix spp. tended to be more efficient and proficient (higher than 6–30% and 2–271% of nutrient resorption efficiency and resorption proficiency, respectively) in resorbing nutrients than the broadleaved species in the secondary forests, indicating that larch plantations had higher leaf nutrient resorption and thus nutrient use efficiency. Compared with Larix spp., more nutrients would remain in the leaf litter of the secondary forests, indicating an advantage of secondary forests in sustaining soil fertility. In contrast, the larch plantation would reuse internal nutrients rather than lose nutrients with litter fall and thus produce a positive feedback to soil nutrient availability. In summary, our results suggest that conversion from secondary forests to pure larch plantations would alter nutrient cycling through a plant-mediated pathway.  相似文献   

4.
加拿大一枝黄花对土壤营养元素吸收与转运特征   总被引:3,自引:0,他引:3  
选择临海沿江镇加拿大一枝黄花重度入侵区域,分别收集植物与土壤样品,研究加拿大一枝黄花对土壤中7种营养元素的吸收、转运特征。研究结果表明:7种营养元素在植物组织中的平均含量排序为:Zn〉K〉Ca〉N〉Mg〉P〉Mn。而且不同器官对同一种元素的积累存在显著差异,总体规律表现为叶和花蕾积累元素最多,其次是枝条和根状茎,根和茎则积累最少。地上器官对各元素的转移能力表现出明显差异,但各器官均对氮素有较强的转运能力,转运因子均明显高于1。地下器官(根和根状茎)对氮素有较高的富集能力,富集因子同样明显高于1。7种元素在加拿大一枝黄花不同器官的吸收转运存在着一定的促进或者拮抗作用。在花蕾、枝条和根中,磷吸收分别与Mg、Mn和Zn吸收呈现显著负相关;在花蕾中,氮的吸收和Mn的吸收呈现显著正相关;在不同器官里,K、Ca、Mg、Zn和Mn吸收之间多呈现正相关。  相似文献   

5.
Hocking  Peter J. 《Annals of botany》1993,71(6):495-509
The seasonal dynamics of the accumulation, distribution andredistribution of dry matter and 12 mineral nutrients by a weedyspecies of gladiolus (Gladiolus caryophyllaceus) were studiedat Perth, Western Australia, where it has colonized the nutrient-poorsandy soils. Parent corms sprouted in autumn, and the plantshad completed their growth cycle by early summer. The maturereplacement corm had 15-25% of the plant's P, Ca, Na, Zn andCu, 5-15% of its K, N, Cl, Mg, S and dry matter, and < 5%of its Fe and Mn. Seeds had 26% of the plant's dry matter, 60%of its N and P, 21-33% of its S, Mg, Cu and K, 5-20% of itsFe, Mn and Zn, and < 5% of its Ca and Na. The mature vegetativeshoot had 47% of the plant's dry matter and over 40% of eachnutrient, except for N, P and Cu. Phosphorus, K and N were redistributedfrom the parent corm with over 85% efficiency, S, Mg, Zn andCu with 60-70% efficiency, but there was < 10% redistributionof Ca, Na, Cl, Fe and Mn. The efficiency of redistribution fromthe leafy shoot was over 70% for N and P, 29-52% for K, Mg andCu, 16-20% for S, Zn and Cl, but negligible for Ca, Na, Fe andMn. Redistribution from the shoot could have provided the replacementcorm and seeds with 53-98% of their Cu, Mg, N, P and K, and29-38% of their S, Zn and dry matter. Seeds contained over 60%of each nutrient in a capsule, except for Ca, Na and Fe. Redistributionfrom the capsule walls could have provided 13-19% of the P,Cu and Zn, and 3-7% of the N, K, Mg and dry matter accumulatedby seeds. Each plant produced an average of 520 seeds. Removalof flowers and buds at first anthesis resulted in a larger replacementcorm containing a greater quantity of most nutrients, indicatingcompetition between the replacement corm and seeds for nutrients.Redistribution from parent to replacement cormlets in the absenceof shoot and root development was high, with over 50% of thedry matter and each nutrient, except for Ca, being transferred.Concentration of nutrients were low in all organs of G. caryophyllaceus,especially the replacement corm. It was concluded that the effectiveredistribution of key nutrients, such as N and P, to reproductivestructures and tolerance of low internal concentrations of nutrientscontribute to the capacity of G. caryophyllaceus to colonizeand persist on infertile soils.Copyright 1993, 1999 AcademicPress Gladiolus caryophyllaceus, corm, distribution, dry matter, gladiolus, mineral nutrients, nutrient accumulation, nutrient redistribution, seasonal growth, weed  相似文献   

6.
Abstract. Seasonal variation in nutrient concentration in leaves and branches of Quercus pyrenaica was studied in natural Q. pyrenaica forest in the Sierra de Gata (Salamanca Province, Spain). Two permanent plots were established at the two extremes of a rainfall gradient in this area: annual mean precipitation from 720 mm at Fuenteguinaldo (granite bedrock) to 1580 mm at Navasfrias (schists and graywackes). Leaf and branch samples were collected every three weeks during the growing season from May to October, at three height levels of the tree canopy. Seasonal changes and internal nutrient dynamics were investigated for N, Ca, Mg, K, Na, Mn, Fe and P during a two-year period. The concentrations of all nutrients varied among the seasons; these variations were related to nutrient mobility and the annual physiological cycle. Nutrient concentrations decrease in the case of K and P, while the sparse mobile nutrients Ca, Mg, Mn and Fe gradually accumulated during each growing season. In Navasfrias a considerable resorption of P from senescing leaves was detected. Different patterns were found for the other nutrients studied (Na and N).  相似文献   

7.
Lateral exchange of water and nutrients between xylem and surrounding tissues helps to de‐couple uptake from utilization in all parts of a plant. We studied the dynamics of these exchanges, using stable isotope tracers for water (H218O), magnesium (26Mg), potassium (41K) and calcium (44Ca) delivered via a cut stem for various periods to the transpiration stream of bean shoots (Phaseolus vulgaris cv. Fardenlosa Shiny). Tracers were subsequently mapped in stem cross‐sections with cryo‐secondary ion mass spectrometry. The water tracer equilibrated within minutes across the entire cross‐section. In contrast, the nutrient tracers showed a very heterogeneous exchange between xylem vessels and the different stem tissues, even after 4 h. Dynamics of nutrients in the tissues revealed a fast and extensive exchange of nutrients in the xylem parenchyma, with, for example, calcium being completely replaced by tracer in less than 5 min. Dilution of potassium tracer during its 30 s transit in xylem sap through the stem showed that potassium concentration was up‐regulated over many hours, to the extent that some of it was probably supplied by phloem recirculation from the shoot.  相似文献   

8.
毛果苔草湿地植物营养元素分布及其相关性   总被引:15,自引:3,他引:12  
研究生物与环境中化学因子之间的相互作用过程 ,主要是指化学物质在生态系统中的运移、转化及归趋与效应。化学物质包括营养物质、污染物质和在生物与环境之间、生物与生物之间起媒介作用的次生代谢物质[1] 。对植物不同组织营养成分的季节性变化研究多集中于叶子 ,但对其他部分的研究则较少[10 ] ,分解过程并不是完全始于凋落物到达地面 ,在凋落前就受到渗滤、裂解和真菌的作用[12 ] ;对枯落物中的有机物质和营养物质浓度的了解可以预测枯落物的分解速率[11] 。目前 ,湿地的研究偏重于资源的开发与利用 ,而对湿地生态系统的生态过程的定位…  相似文献   

9.
Evidence from earlier studies with explants (stem cutting with a leaf and a pod) indicates that a decline in the supply of mineral nutrients from the roots may prepare the leaves for induction of monocarpic senescence in soybean [ Glycine max (L.) Merrill cv. Anoka). In order to assess the changes in mineral flux from the root system, xylem sap was collected from a decapitated plant under 100 kPa pressure over 50 min. The sap volume yield declines after flowering starts, but increases during pod extension and then decreases again during podfill. The concentrations of K, Ca, Mg, P, S, Zn, Fe, Mn, Cu, Mo and Si rise and then fall during reproductive development, but the exact timing differs among the elements. In contrast, B, Al and Na concentrations show a slow rise initially with a large increase in late pod development. Depodding, which prevents the early death of the plant, inhibits the changes of some elements (K, Mg) but not others (Ca. Mg, P, S, Zn. Fe. Mn, B, Cu, Al), and it does not prevent the decrease in sap volume delivered. Inasmuch as the mineral concentration of xylem sap quantitatively reflects upward mineral flux, the supply of most minerals to the shoot declines, and this decrease seems to be an important factor in the preparatory phase of monocarpic senescence. The different minerals show different patterns of change, which indicate differences in the transport mechanisms and their regulation.  相似文献   

10.
Summary twenty seven field experiments were conducted to determine if there were differences between five barley cultivars in their ability to utilize soil nutrients. There were significant differences among cultivars in yield of grain and in concentration of all macro and micro nutrients examined in both the whole plant and grain.Gateway ranked the highest for the concentration of Na, Mn, and Cu in the whole plant and was among the cultivars with highest concentration of Ca, Fe, and Zn. Centennial had generally the lowest concentration of all the nutrients determined in the whole plant. For the concentrations of Na, Mg, and Cu in grain Gateway ranked highest, but ranked third for the concentrations of K, Ca, Fe, Mn, and Zn in grain. Galt had the highest K and Mg concentration and lowest Mn, Cu and Zn concentration in grain. Except for K concentration in grain, Centennial had the lowest concentrations of all other cationic nutrients in grain.Yield of grain rather than nutrient concentration was the most important criteria in determining the ranking of nutrient yields per hectare. Because of its high grain yield, Bonanza produced the largest yield of micronutrient cations and was second to Galt in production of macronutrient cations, although it was lowest in macronutrient cation concentration. Similarly, Bonanza and Galt had the lowest protein concentration, but produced the highest yield of protein per hectare.The implications for animal nutrition of different levels of nutrients between cultivars are discussed.  相似文献   

11.
赵欢  李会合  吕慧峰  王正银 《生态学报》2013,33(23):7364-7372
在涪陵区选取30个茎瘤芥种植农户,采用大田调查和室内化学分析方法,研究了茎瘤芥不同生长期(苗期、快速膨大期、采收期)叶片和茎瘤10种必需营养元素含量的变化特征及其与产量的关系。结果表明:茎瘤芥在整个生育期内,除K、S含量较高外,其余大、微量元素均在大多植物含量范围内;不同生育期茎瘤芥叶片、茎瘤中各养分含量变化具有明显的规律性,苗期叶片大量元素含量次序为N>K>Ca>P>S>Mg,快速膨大期和采收期叶片大量元素含量次序均为N>K>Ca>S>P>Mg,茎瘤中大量元素含量次序均为K>N>P>S>Ca>Mg,3个生长期叶片和茎瘤的微量元素含量,除快速膨大期茎瘤中略有不同(Fe>Zn>Mn>Cu)外,其余均为Fe>Mn>Zn>Cu;从苗期到快速膨大期再到采收期养分变化规律看,叶片中N、P、K、Fe、Cu和Zn含量呈降低趋势,而Ca、Mg、S和Mn则呈现先降低后升高的趋势,从快速膨大期到采收期茎瘤中除N、S、Fe和Cu元素呈降低趋势外,其余养分元素均呈上升趋势。从茎瘤芥不同器官养分含量高低看,快速膨大期和采收期叶片中N、P、K、Cu和Zn含量较茎瘤中低,而Ca、Fe和Mn含量的变化特点则相反,S和Mg差异较小,表明茎瘤芥不同部位对不同养分的敏感程度各异。相关分析表明,各生育期不同器官的Mg、Fe、Mn和Zn与产量呈显著或极显著的负相关关系,K、Cu与产量呈正的相关关系。通过逐步回归分析建立茎瘤芥各生育期植株营养元素与产量的回归预测模型,其中苗期叶片营养元素与产量的最优回归方程为Y= 36768 3583XK-6.328XFe-76.09XMn;快速膨大期叶片和茎瘤营养元素与产量的最优回归方程分别为Y=50458 21557XP 7925XCa-88092XMg-1145XCu和Y=32487 7294XK-116122XMg;采收期叶片和茎瘤营养元素与产量的最优回归方程分别为Y=36064 3413XK-30.15XFe和Y= 11791 7334XK-385XZn。因此,在茎瘤芥各生长期均应注意钾肥的合理施用,快速膨大期应重视磷肥的施用。而几种微量元素和镁素对茎瘤芥产量的负效应,则可通过增施充分腐熟的有机肥料加以调控。  相似文献   

12.
Under-storey Nutrient Content in an Age Sequence of Douglas-fir Stands   总被引:1,自引:0,他引:1  
TURNER  J.; LONG  J. N.; BACKIEL  A. 《Annals of botany》1978,42(5):1045-1055
The nutrient concentrations and contents of the under-storeyspecies were estimated for a series of Pacific North-west Douglas-fir[Pseudotsuga menxiessii (Mirb.) Franco] stands ranging in agefrom 9 to 95 years. Analyses were carried out for ash, N, P,K, Ca, Mg, Mn, Fe, Zn and Na and significant differences innutrient concentrations were found to exist between species;species rejecting certain nutrients and accumulating others.General trends for mean concentrations of some nutrients areassociated with stand maturity in that ash, K and Mg decline,P and Mn increase and N and Ca reaches a peak at 20–30years and then declines. The nutrient contents (kg ha–1)of the under-storey component of the stands are presented andtrends discussed. Mineral nutrient content, under-storey vegetation, Pseudotsuga menziessii stands, Douglas-fir  相似文献   

13.
Elevated CO2 is expected to lower plant nutrient concentrations via carbohydrate dilution and increased nutrient use efficiency. Elevated CO2 consistently lowers plant foliar nitrogen, but there is no consensus on CO2 effects across the range of plant nutrients. We used meta-analysis to quantify elevated CO2 effects on leaf, stem, root, and seed concentrations of B, Ca, Cu, Fe, K, Mg, Mn, P, S, and Zn among four plant functional groups and two levels of N fertilization. CO2 effects on plant nutrient concentration depended on the nutrient, plant group, tissue, and N status. CO2 reduced B, Cu, Fe, and Mg, but increased Mn concentration in the leaves of N2 fixers. Elevated CO2 increased Cu, Fe, and Zn, but lowered Mn concentration in grass leaves. Tree leaf responses were strongly related to N status: CO2 significantly decreased Cu, Fe, Mg, and S at high N, but only Fe at low N. Elevated CO2 decreased Mg and Zn in crop leaves grown with high N, and Mn at low N. Nutrient concentrations in crop roots were not affected by CO2 enrichment, but CO2 decreased Ca, K, Mg and P in tree roots. Crop seeds had lower S under elevated CO2. We also tested the validity of a “dilution model.” CO2 reduced the concentration of plant nutrients 6.6% across nutrients and plant groups, but the reduction is less than expected (18.4%) from carbohydrate accumulation alone. We found that elevated CO2 impacts plant nutrient status differently among the nutrient elements, plant functional groups, and among plant tissues. Our synthesis suggests that differences between plant groups and plant organs, N status, and differences in nutrient chemistry in soils preclude a universal hypothesis strictly related to carbohydrate dilution regarding plant nutrient response to elevated CO2.  相似文献   

14.
The magnitude of debarking by elephants was investigated in Samburu and Buffalo Springs National Reserves. About 1617 plants were monitored for debarking intensities for 6 months spanning through dry and wet seasons. Debarking indices ranged from no debarking at all during the wet months to complete stem girding at the height of the dry season. A negative correlation was found between rainfall and debarking indices. It was hypothesized that nutrient content of the bark influenced the magnitude to which trees were debarked. Bark samples were collected from least, moderate and intensely debarked plants throughout the 6 months. These were analysed for calcium (Ca), sodium (Na), phosphorus (P), magnesium (Mg), potassium (K), nitrogen (N), iron (Fe), copper (Cu), manganese (Mn) and zinc (Zn). Significant positive correlations were found between debarking intensity and each of the nutrients N [crude protein (CP)], P, K and Zn. Bark was found to be richest in CP and Calcium. Neutral detergent fibre content was on average 67%. Monthly variations in nutrient composition were minimal. Acacia elatior, the most preferred species had significantly higher quantities of each of the four elements N, P, K and Zn than Acacia tortilis, the second most preferred woody species.  相似文献   

15.
较系统地研究了鼎湖山黄果厚壳桂(Cryptocaryaconcinna)-鼎湖钓樟(Linderachunii)群落植物主要营养元素(P、K、Ca、Mg)的分配和生物循环特征。营养元素含量随群落层次、组分(器官)和元素不同而异。群落植物营养元素贮量为(kghm-2):P61.253,K928.764,Ca1212.771和Mg79.349。各元素贮量在不同层次中的大小分布序列为:乔木(94.3%-97.8%)>藤本(1.3%-4.1%)>灌木(0.8%-1.4%)>草本(0.05%-0.15%)。在乔木层,元素贮量则主要分布在树干和树枝两组分(38.6%-61.7%)。各元素在植物组分中的贮量序列为:Ca>K>Mg>P(根、干和皮)和K>Ca>Mg>P(其余器官)。群落植物营养元素年积累量为(kghm-2):P2.677,K41.550,Ca63.309和Mg3.693,其在群落植物中的分配格局与贮量的相类似。群落植物营养元素利用系数为:P0.18,K0.11,Ca0.09和Mg0.28;循环系数:P0.76,K0.61,Ca0.41和Mg0.84;周转期(a):P7.36,K15.12,Ca28.05和Mg4.30。  相似文献   

16.
The nutrient cycling and foliar status for the elements Ca, Mg, K, N, P, S, Fe, Mn, Zn and Cu were investigated in an urban forest of Aleppo pine (Pinus halepensis) in 2004 in Athens, Greece in order to draw conclusions on the productivity status and health of the ecosystem. The fluxes of bulk and throughfall deposition were characterized by the high amounts of Ca, organic N and sulfate S. The magnitude of the sulfate S fluxes indicated a polluted atmosphere. The nutrient enrichment in throughfall was appreciable for ammonium N, P and Mn. The mineral soil formed the largest pool for all the elements followed by the forest floor, trunk wood and trunk bark. The understory vegetation consisting of annual plants proved important for storing N, P and K. Compared to current year needles of Aleppo pine in remote forests of Spain, the needles of the Aleppo pine trees in Athens had significantly higher concentrations of Ca, N, P and Cu and significantly lower concentrations of Mg and Zn. The soil had a high concentration of calcium carbonate and accordingly high pH values. When all inputs to the forest floor were taken into account, the mean residence time of nutrients in the forest floor followed the order Fe > Mn > Cu > Ca > Mg > P > Zn > N > K > S.  相似文献   

17.
Barley seedlings (Hordeum vulgare L. cv Herta) were grown in N-(2-hydroxyethyl)ethylenedinitrilotriacetic acid-buffered nutrient solutions with or without adequate Zn supplies. Fifteen-d-old Zn-deficient seedlings contained higher concentrations of Mn, Ca, Mg, and P in their shoots and more Fe, Mn, Cu, K, Ca, and P in their roots than did similar Zn-adequate seedlings, confirming results reported in our companion study (W.A. Norvell and R.M. Welch [1993] Plant Physiol 101: 619-625). Zn-deficient roots leaked greater quantities of K, Mn, Cu, and Cl than did roots supplied adequately with Zn; they also leaked significant amounts of Zn even though the seedlings were not supplied Zn during growth. Calculated uptake rates of P, Mn, and Na were sharply reduced, but uptake rates of K and Mg were stimulated by increasing the Zn2+ activity in nutrient solutions. Intact roots of Zn-deficient seedlings contained lower concentrations of 5,5[prime] -dithio-bis(2-nitrobenzoic acid) reactive sulfhydryl groups in comparison to Zn-adequate roots. Apparently, Zn is required for the uptake and retention of several mineral nutrients by roots, possibly by playing a protective role in preventing the oxidation of sulfhydryl groups to disulfides in root-cell plasma membrane proteins involved in ion channel-gating phenomena.  相似文献   

18.
为了探讨上杭种源马尾松Pinus massoniana叶营养与生长对不同镁肥水平的响应,以其优良种源1年生苗为材料,设置4个镁肥梯度(42 g·m-2、85 g·m-2、170 g·m-2、339 g·m-2),测定移栽1年后苗木生长指标及叶内营养含量。结果表明,施镁能够促进元素P、K、Ca、Fe、Cu、Zn积累,抑制N、Mg、Mn积累;镁施肥量为85 g·m-2时,对N、Mg、Mn积累的抑制作用不显著,对P、K、Ca、Fe、Cu、Zn积累的促进作用最大,苗木生长最好,为最佳施肥量。施镁并不能促进苗木对镁的吸收,而是改变了营养供应的土壤环境,从而改变植物对其他营养的吸收比例,进而影响植物的生长。苗木的生长与Fe、P、K的关系最为密切,其次是Mg、Mn、Ca、N、Cu、Zn。  相似文献   

19.

Background and Aims

Elucidating the stoichiometry and resorption patterns of multiple nutrients is an essential requirement for a holistic understanding of plant nutrition and biogeochemical cycling. However, most studies have focused on nitrogen (N) and phosphorus (P), and largely ignored other nutrients. The current study aimed to determine relationships between resorption patterns and leaf nutrient status for 13 nutrient elements in a karst vegetation region.

Methods

Plant and soil samples were collected from four vegetation types in the karst region of south-western China and divided into eight plant functional types. Samples of newly expanded and recently senesced leaves were analysed to determine concentrations of boron (B), calcium (Ca), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn), molybdenum (Mo), N, sodium (Na), P, sulphur (S) and zinc (Zn).

Key Results

Nutrient concentrations of the karst plants were lower than those normally found in other regions of China and the rest of the world, and plant growth was mainly limited by P. Overall, four nutrients revealed resorption [N (resorption efficiency 34·6 %), P (48·4 %), K (63·2 %) and Mg (13·2 %)], seven nutrients [B (–16·1 %), Ca (–44·0 %), Cu (–14·5 %), Fe (–205·5 %), Mn (–72·5 %), Mo (–35·6 %) and Zn (–184·3 %)] showed accumulation in senesced leaves and two nutrients (Na and S) showed no resorption or accumulation. Resorption efficiencies of K and Mg and accumulation of B, Ca, Fe and Mn differed among plant functional types, and this strongly affected litter quality. Resorption efficiencies of N, P and K and accumulation of Ca and Zn increased with decreasing concentrations of these nutrients in green leaves. The N:P, N:K and N:Mg ratios in green leaves predicted resorption proficiency for N, K and Mg, respectively.

Conclusions

The results emphasize the fact that nutrient resorption patterns strongly depend on element and plant functional type, which provides new insights into plant nutrient use strategies and nutrient cycling in karst ecosystems.  相似文献   

20.
Since most experiments regarding the symbiosis between arbuscular mycorrhizal (AM) fungi and their host plants under salinity stress have been performed only under greenhouse conditions, this research work was also conducted under field conditions. The effects of three AM species including Glomus mosseae, G.?etunicatum and G.?intraradices on the nutrient uptake of different wheat cultivars (including Roshan, Kavir and Tabasi) under field and greenhouse (including Chamran and Line 9) conditions were determined. At field harvest, the concentrations of N, Ca, Mg, Fe, Cu, and Mn, and at greenhouse harvest, plant growth, root colonization and concentrations of different nutrients including N, K, P, Ca, Mg, Mn, Cu, Fe, Zn, Na and Cl were determined. The effects of wheat cultivars on the concentrations of N, Ca, and Mn, and of all nutrients were significant at field and greenhouse conditions, respectively. In both experiments, AM fungi significantly enhanced the concentrations of all nutrients including N, K, P, Ca, Mg, Mn, Cu, Fe, Zn, Na and Cl. The synergistic and enhancing effects of co-inoculation of AM species on plant growth and the inhibiting effect of AM species on Na(+) rather than on Cl(-) uptake under salinity are also among the important findings of this research work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号