首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microsporocytes sometimes undergo an achiasmatic meiosis when placed into culture early in the season at a time after premeiotic S but prior to leptonema. Trillium meiocytes were examined by light and electron microscopy to analyze the frequency of cells in various stages of meiotic prophase and the occurrence of the synaptonemal complex at different times of culture. On the basis of the results, a hypothesis is proposed that suggests there is a tripartite sensitive period that occurs between S phase and leptonema. Where the cells are in this sensitive period at the time of transplantation into culture determines whether the cells do not enter meiotic prophase, enter but produce achiasmatic division figures, or enter and develop normally.This work was supported in part by grants from the National Science Foundation (GB 5173X and GB 6476) and the National Institute of Health (GM 16882)  相似文献   

2.
Synaptonemal complexes and telomeric nucleoli are involved in the spatial organization and regular distribution of homologous chromosomes in meiosis of the achiasmatic female carob moth. The bivalents are held together from zygotene to metaphase by the Synaptonemal complexes. These are attached to telomeric nucleoli which appear during early meiotic prophase and are unique to the oocyte. The telomeric nucleoli fuse during prophase and the chromosomes concentrate into a small karyosphere before prometaphase. During the final stages of prophase elements of the Synaptonemal complex are found in the periphery of the fibrillar region of the telomeric nucleoli.  相似文献   

3.
The meiotic behavior of the sex chromosomes of Pitymys duodecimcostatus was studied by electron microscopy of whole-mount synaptonemal complex preparations. The results established that the sex chromosomes of this species are achiasmatic and remain unassociated throughout meiotic prophase I in most spermatocytes. In other cells, nonspecific association of the X and Y occurred by means of filamentous bridges. Pitymys duodecimcostatus represents an additional example of a mammalian species lacking a homologous pairing segment in its sex chromosomes and extends current knowledge about this controversial subject. In this regard, we suggest that sex-chromosome association is a characteristic that probably followed different evolutionary paths in different mammals, leading to loss of the homologous segment in some species and its conservation in others. It is also suggested that in P. duodecimcostatus, and probably in many other species as well, three mechanisms may act in concert to permit joining of the X and Y chromosomes during meiotic prophase, and, consequently, to ensure proper segregation during anaphase I: (1) joining of the sex-chromosome axes at their ends to the nuclear membrane, (2) formation of fibrillar structures to hold the sex chromosomes together, and (3) cohesiveness due to sex-vesicle formation.  相似文献   

4.
5.
Genomic methylation patterns are established during maturation of primordial germ cells and during gametogenesis. While methylation is linked to DNA replication in somatic cells, active de novo methylation and demethylation occur in post-replicative spermatocytes during meiotic prophase (1). We have examined differentiating male germ cells for alternative forms of DNA (cytosine-5)-methyltransferase (DNA MTase) and have found a 6.2 kb DNA MTase mRNA that is present in appreciable quantities only in testis; in post-replicative pachytene spermatocytes it is the predominant form of DNA MTase mRNA. The 5.2 kb DNA MTase mRNA, characteristic of all somatic cells, was detected in isolated type A and B spermatogonia and haploid round spermatids. Immunobolt analysis detected a protein in spermatogenic cells with a relative mass of 180,000-200,000, which is close to the known size of the somatic form of mammalian DNA MTase. The demonstration of the differential developmental expression of DNA MTase in male germ cells argues for a role for testicular DNA methylation events, not only during replication in premeiotic cells, but also during meiotic prophase and postmeiotic development.  相似文献   

6.
All components of the double-stranded DNA break (DSB) repair complex DNA-dependent protein kinase (DNA-PK), including Ku70, Ku86, and DNA-PK catalytic subunit (DNA-PKcs), were found in the radiosensitive spermatogonia. Although p53 induction was unaffected, spermatogonial apoptosis occurred faster in the irradiated DNA-PKcs-deficient scid testis. This finding suggests that spermatogonial DNA-PK functions in DNA damage repair rather than p53 induction. Despite the fact that early spermatocytes lack the Ku proteins, spontaneous apoptosis of these cells occurred in the scid testis. The majority of these apoptotic spermatocytes were found at stage IV of the cycle of the seminiferous epithelium where a meiotic checkpoint has been suggested to exist. Meiotic synapsis and recombination during the early meiotic prophase induce DSBs, which are apparently less accurately repaired in scid spermatocytes that then fail to pass the meiotic checkpoint. The role for DNA-PKcs during the meiotic prophase differs from that in mitotic cells; it is not influenced by ionizing radiation and is independent of the Ku heterodimer.  相似文献   

7.
Michio Ito  Yasuo Hotta 《Chromosoma》1973,43(4):391-398
Zygotene cells of Lilium were cultured in the presence of 3H-thymidine for 24 hours and the culture continued in isotope-free medium. Radioautographs of the cells at subsequent stages of meiosis showed the zygotene label to be chromosomal and to be more or less generally distributed over all the chromosomes. Exposure of cells to 3H-thymidine for periods longer than 24 hours resulted in widespread incorporation of thymidine catabolites into a variety of acid-insoluble compounds. Such catabolism is characteristic of meiotic prophase and is virtually absent at premeiotic interphase.This work was supported by a grant from the National Science Foundation, GB 29562 and the Ministry of Education of Japan.  相似文献   

8.
Previously, the activity of DNA polymerase alpha was found in the meiotic prophase I including non-S phase stages, in the basidiomycetes, Coprinus cinereus. To study DNA polymerase alpha during meiosis, we cloned cDNAs for the C. cinereus DNA polymerase alpha catalytic subunit (p140) and C. cinereus primase small subunit (p48). Northern analysis indicated that both p140 and p48 are expressed not only at S phase but also during the leptotene/zygotene stages of meiotic prophase I. In situ immuno-staining of cells at meiotic prophase I revealed a sub population of p48 that does not colocalize with p140 in nuclei. We also purified the pol alpha-primase complex from meiotic cells by column chromatography and characterized its biochemical properties. We found a subpopulation of primase that was separated from the pol alpha-primase complex by phosphocellulose column chromatography. Glycerol gradient density sedimentation results indicated that the amount of intact pol alpha-primase complex in crude extract is reduced, and that a smaller complex appears upon meiotic development. These results suggest that the form of the DNA polymerase alpha-primase complex is altered during meiotic development.  相似文献   

9.
Marsupial sex chromosomes break the rule that recombination during first meiotic prophase is necessary to ensure reductional segregation during first meiotic division. It is widely accepted that in marsupials X and Y chromosomes do not share homologous regions, and during male first meiotic prophase the synaptonemal complex is absent between them. Although these sex chromosomes do not recombine, they segregate reductionally in anaphase I. We have investigated the nature of sex chromosome association in spermatocytes of the marsupial Thylamys elegans, in order to discern the mechanisms involved in ensuring their proper segregation. We focused on the localization of the axial/lateral element protein SCP3 and the cohesin subunit STAG3. Our results show that X and Y chromosomes never appear as univalents in metaphase I, but they remain associated until they orientate and segregate to opposite poles. However, they must not be tied by a chiasma since their separation precedes the release of the sister chromatid cohesion. Instead, we show they are associated by the dense plate, a SCP3-rich structure that is organized during the first meiotic prophase and that is still present at metaphase I. Surprisingly, the dense plate incorporates SCP1, the main protein of the central element of the synaptonemal complex, from diplotene until telophase I. Once sex chromosomes are under spindle tension, they move to opposite poles losing contact with the dense plate and undergoing early segregation. Thus, the segregation of the achiasmatic T. elegans sex chromosomes seems to be ensured by the presence in metaphase I of a synaptonemal complex-derived structure. This feature, unique among vertebrates, indicates that synaptonemal complex elements may play a role in chromosome segregation.  相似文献   

10.
The status of an extra univalent, if it is a B chromosome or an achiasmatic Y chromosome, associating with the X chromosome in male meiosis of Cacopsylla peregrina (Frst.) (Homoptera, Psylloidea) was analysed. One extra univalent was present in all males collected from three geographically well separated populations, it was mitotically stable, and showed precise segregation from the X chromosome. These findings led us to propose that the univalent represents in fact a Y chromosome. The behaviour of the X and Y chromosomes during meiotic prophase suggested that their regular segregation was based on an achiasmatic segregation mechanism characterised by a 'touch and go' pairing of segregating chromosomes at metaphase I. To explain the formation of the achiasmatic Y within an insect group with X0 sex chromosome system, it was suggested that the Y chromosome has evolved from a mitotically stable B chromosome that was first integrated into an achiasmatic segregation system with the X chromosome, and has later become fixed in the karyotype as a Y chromosome.  相似文献   

11.
In many organisms, telomeres cluster to form a bouquet arrangement of chromosomes during meiotic prophase. Previously, we reported that two meiotic proteins, Bqt1 and -2, are required for tethering telomeres to the spindle pole body (SPB) during meiotic prophase in fission yeast. This study has further identified two novel, ubiquitously expressed inner nuclear membrane (INM) proteins, Bqt3 and -4, which are required for bouquet formation. We found that in the absence of Bqt4, telomeres failed to associate with the nuclear membranes in vegetative cells and consequently failed to cluster to the SPB in meiotic prophase. In the absence of Bqt3, Bqt4 protein was degraded during meiosis, leading to a phenotype similar to that of the bqt4-null mutant. Collectively, these results show that Bqt4 anchors telomeres to the INM and that Bqt3 protects Bqt4 from protein degradation. Interestingly, the functional integrity of telomeres is maintained even when they are separated from the nuclear envelope in vegetative cells.  相似文献   

12.
Sensitivity of meiotic yeast cells to ultraviolet light   总被引:8,自引:4,他引:4       下载免费PDF全文
Simchen G  Salts Y  Piñon R 《Genetics》1973,73(4):531-541
Sporulating cells of Saccharomyces cerevisiae show an increasing sensitivity to ultraviolet irradiation. Maximum sensitivity is reached at a time comparable to meiotic prophase. Sensitivity is expressed as reduced sporulation after the irradiation. The uv effect can be efficiently reversed by photoreactivating light. Viability is also more severely affected during premeiotic DNA synthesis and during meiosis than in earlier stages in sporulation. Cells left in sporulation medium after the irradiation show a reduced viability compared with the cells plated immediately after the irradiation. Non-sporulating diploids do not acquire sensitivity when exposed to sporulation medium, hence the sensitivity is related to the sporulation process. That meiosis itself is affected, rather than spore formation alone, is evident from experiments in which the uv irradiation interferes with the uncovering of a recessive marker and with commitment to meiosis. It is proposed that during meiotic prophase, the DNA repair system is different from that found in vegetative cells.  相似文献   

13.
Autoradiographs show that tritiated leucine is incorporated into protein continually at an almost linear rate during meiotic prophase of lily microsporocytes in in vitro culture. Although label is mostly in the cytoplasm for the first hour, it becomes almost evenly distributed throughout the cell after a few hours. The amount of label decreases slightly, if at all, during a chase period extending through the rest of the prophase — a period of 3 to 4 days. — The incorporation of label was blocked by 95% by the protein inhibitor, cycloheximide, at a concentration of 3.5 × 10-6 M. In the presence of this inhibitor, meiosis was arrested at all stages through metaphase I and even later. After temporary inhibition, however, or in low drug concentrations, characteristic cytological abnormalities subsequently developed, depending on the meiotic stage at which the inhibition occurred. One important observation was that the formation of chiasmata between homologs could be blocked if the inhibition was applied during the late zygotene or early pachytene stages.This work was supported by a grant from the National Science Foundation (GB-5173 X).USPHS postdoctoral fellow.  相似文献   

14.
The Rad51 is a highly conserved protein throughout the eukaryotic kingdom and an essential enzyme in DNA repair and recombination. It possesses DNA binding activity and ATPase activity, and interacts with meiotic chromosomes during prophase I of meiosis. Drosophila Rad51, Spindle-A (SpnA) protein has been shown to be involved in repair of DNA damage in somatic cells and meiotic recombination in female germ cells. In this study, DNA binding activity of SpnA is demonstrated by both agarose gel mobility shift assay and restriction enzyme protection assay. SpnA is also shown to interact with meiotic chromosomes during prophase I in the primary spermatocytes of hsp26-spnA transgenic flies. In addition, SpnA is highly expressed in embryos, and the depletion of SpnA by RNA interference (RNAi) leads to embryonic lethality implying that SpnA is involved in early embryonic development. Therefore, these results suggest that Drosophila SpnA protein possesses properties similar to mammalian Rad51 homologs.  相似文献   

15.
Mice were treated with mitomycin C, cyclophosphamide, amsacrine, colchicine, or vinblastine sulfate, and meiotic prophase cells analyzed for synaptonemal complex (SC) damage. All test agents caused synaptonemal complex breakage and synapsis irregularities, although propensities for inducing specific types of damage at S-phase or prophase stages varied among the chemicals. The data indicate that SC analysis can reveal chemical-specific alterations to meiotic homologue pairing/synapsis which have not generally been recognized, and which theoretically may be implicated in non-disjunction.  相似文献   

16.
A novel gene, prom-1, was isolated in a screen for Caenorhabditis elegans mutants with increased apoptosis in the germline. prom-1 encodes an F-box protein with limited homology to the putative human tumor suppressor FBXO47. Mutations in the prom-1 locus cause a strong reduction in bivalent formation, which results in increased embryonic lethality and a Him phenotype. Furthermore, retarded and asynchronous nuclear reorganization as well as reduced homologous synapsis occur during meiotic prophase. Accumulation of recombination protein RAD-51 in meiotic nuclei suggests disturbed repair of double-stranded DNA breaks. Nuclei in prom-1 mutant gonads timely complete mitotic proliferation and premeiotic replication, but they undergo prolonged delay upon meiotic entry. We, therefore, propose that prom-1 regulates the timely progression through meiotic prophase I and that in its absence the recognition of homologous chromosomes is strongly impaired.  相似文献   

17.
Summary The effect of taxol, an inhibitor of microtubule degradation, on the seminiferous epithelium was studied. Taxol arrested spermatogenesis at metaphase in both mitotic and meiotic germ cell division. Microtubules were seen to accumulate, especially in the cytoplasm of the spermatogonia, and also in the early spermatids and Sertoli cells. No microtubule accumulation was observed in germ cells during meiotic prophase. Formation of the flagellum was affected in developing spermatids. Peculiar lamellar structures, probably derived from degenerating mitochondria, were seen in the cytoplasm of late spermatids and Sertoli cells.The results are compared with the effects of other mitotic inhibitors such as colchicine and vinca alcaloids.  相似文献   

18.
The ability of the antineoplastic agent epirubicin to induce aneuploidy and meiotic delay in the somatic and germinal cells of male mice was investigated by fluorescence in situ hybridization assay using labeled DNA probes and BrdU-incorporation assay. Mitomycin C and colchicine were used as positive controls for clastogen and aneugen, respectively, and these compounds produced the expected responses. The fluorescence in situ hybridization assay with a centromeric DNA probe for erythrocyte micronuclei showed that epirubicin is not only clastogenic but also aneugenic in somatic cells in vivo. By using the BrdU-incorporation assay, it could be shown that the meiotic delay caused by epirubicin in germ cells was approximately 48 h. Disomic and diploid sperm were shown in epididymal sperm hybridized with DNA probes specific for chromosomes 8, X and Y after epirubicin treatment. The observation that XX- and YY-sperm significantly prevailed over XY-sperm indicates missegregation during the second meiotic division. The results also suggest that earlier prophase stages contribute less to epirubicin-induced aneuploidy. Both the clastogenic and aneugenic potential of epirubicin can give rise to the development of secondary tumors and abnormal reproductive outcomes in cured cancer patients and medical personnel exposed to epirubicin.  相似文献   

19.
The molecular cause of germ cell meiotic defects in azoospermic men is rarely known. During meiotic prophase I, a proteinaceous structure called the synaptonemal complex (SC) appears along the pairing axis of homologous chromosomes and meiotic recombination takes place. Newly-developed immunofluorescence techniques for SC proteins (SCP1 and SCP3) and for a DNA mismatch repair protein (MLH1) present in late recombination nodules allow simultaneous analysis of synapsis, and of meiotic recombination, during the first meiotic prophase in spermatocytes. This immunofluorescent SC analysis enables accurate meiotic prophase substaging and the identification of asynaptic pachytene spermatocytes. Spermatogenic defects were examined in azoospermic men using immunofluorescent SC and MLH1 analysis. Five males with obstructive azoospermia, 18 males with nonobstructive azoospermia and 11 control males with normal spermatogenesis were recruited for the study. In males with obstructive azoospermia, the fidelity of chromosome pairing (determined by the percentage of cells with gaps [discontinuities]/splits [unpaired chromosome regions] in the SCs, and nonexchange SCs [bivalents with 0 MLH1 foci]) was similar to those in normal males. The recombination frequencies (determined by the mean number of MLH1 foci per cell at the pachytene stage) were significantly reduced in obstructive azoospermia compared to that in controls. In men with nonobstructive azoospermia, a marked heterogeneity in spermatogenesis was found: 45% had a complete absence of meiotic cells; 5% had germ cells arrested at the zygotene stage of meiotic prophase; the rest had impaired fidelity of chromosome synapsis and significantly reduced recombination in pachytene. In addition, significantly more cells were in the leptotene and zygotene meiotic prophase stages in nonobstructive azoospermic patients, compared to controls. Defects in chromosome pairing and decreased recombination during meiotic prophase may have led to spermatogenesis arrest and contributed in part to this unexplained infertility.  相似文献   

20.
Cyclic variation in mutation induction and lethality was found following X-irradiation during meiosis in Saccharomyces cerevisiae. An enhanced mutagenic response was found in meiotic G1 phase cells in comparison to cells later in meiosis, similar to the response shown during mitosis, but meiotic G1 phase cells appeared more resistant to the lethal effects of X-irradiation than mitotic G1 phase cells. Resistance to the lethal effects of X-rays was found during meiotic DNA synthesis in the strain SK1, which may indicate the operation of a sister-chromatid exchange repair mechanism. A difference was found between gene conversion which appeared to be at a maximum by the end of meiotic DNA synthesis and reciprocal recombination, which could be induced up to prophase I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号