首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An affinity purification procedure is employed for the isolation of FL-specific binding proteins from MM6 cell membranes using magnetobeads coated with glycated polylysine and elution with FL and glycated 6-aminocaproic acid. Two main binding proteins were identified as membrane-bound nucleolin and cellular myosin heavy chain, which are glycosylated. This study shows that in these cells binding of short-term glycated albumin leads to activation of PKC, especially its isoform epsilon and this is linked to translocation of AP-1 and NF-kappaB into the nucleus. Consequently, an increased formation of IL-1ss mRNA is observed. The PKC inhibitor GO6976 prevents all these effects. Glycated albumin also stimulates activation of PTK. The PTK inhibitor genistein prevents activation of AP-1 indicating that PTK is also involved in this process, whereas NF-kappaB translocation is only dependent on PKC activation.  相似文献   

2.
3.
The silent information regulator 2 (Sir2) family of proteins (sirtuins or SIRTs), which belong to class III histone/protein deacetylases, have been implicated in calorie restriction, aging, and inflammation. We hypothesized that cigarette smoke-mediated proinflammatory cytokine release is regulated by SIRT1 by its interaction with NF-kappaB in a monocyte-macrophage cell line (MonoMac6) and in inflammatory cells of rat lungs. Cigarette smoke extract (CSE) exposure to MonoMac6 cells caused dose- and time-dependent decreases in SIRT1 activity and levels, which was concomitant to increased NF-kappaB-dependent proinflammatory mediator release. Similar decrements in SIRT1 were also observed in inflammatory cells in the lungs of rats exposed to cigarette smoke as well as with increased levels of several NF-kappaB-dependent proinflammatory mediators in bronchoalveolar lavage fluid and in lungs. Sirtinol, an inhibitor of SIRT1, augmented, whereas resveratrol, an activator of SIRT1, inhibited CSE-mediated proinflammatory cytokine release. CSE-mediated inhibition of SIRT1 was associated with increased NF-kappaB levels. Furthermore, we showed that SIRT1 interacts with the RelA/p65 subunit of NF-kappaB, which was disrupted by cigarette smoke, leading to increased acetylation RelA/p65 in MonoMac6 cells. Thus our data show that SIRT1 regulates cigarette smoke-mediated proinflammatory mediator release via NF-kappaB, implicating a role of SIRT1 in sustained inflammation and aging of the lungs.  相似文献   

4.
The alterations in glomerular cell biology induced by glycated albumin resemble those caused by high ambient glucose, but are operative in physiologic (5.5 mM) glucose concentration. Recently, high glucose has been shown to activate extracellular signal-related kinase (ERK) in mesangial cells, but whether the mitogen-activated protein kinase (MAPK) cascade participates in signal transduction triggered by glycated albumin is unknown. Using a specific inhibitor of MAPK/ERK kinase, we demonstrate for the first time that activation of ERK is required for the inhibition of cell growth and enhanced elaboration of extracellular matrix protein provoked by glycated albumin. These findings indicate that the MAPK/ERK pathway mediates biologic activities of this glycated protein.  相似文献   

5.
Nitric oxide (NO), produced by the inducible isoform of the NO synthase (iNOS), plays an important role in the pathophysiology of arthritic diseases. This work aimed at elucidating the role of the mitogen-activated protein kinases (MAPK), p38MAPK and p42/44MAPK, and of protein tyrosine kinases (PTK) on interleukin-1beta (IL-1)-induced iNOS expression in bovine articular chondrocytes. The specific inhibitor of the p38MAPK, SB 203580, effectively inhibited IL-1-induced iNOS mRNA and protein synthesis, as well as NO production, while the specific inhibitor of the p42/44MAPK, PD 98059, had no effect. These responses to IL-1 were also inhibited by treatment of the cells with the tyrosine kinase inhibitors, genistein and tyrphostin B42, which also prevented IL-1-induced NF-kappaB activation. The p38MAPK inhibitor, SB 203580, had no effect on IL-1-induced NF-kappaB activation. Finally, the p42/44MAPK inhibitor, PD 98059, prevented IL-1-induced AP-1 activation in a concentration that did not inhibit iNOS expression. In conclusion, this study shows that (1) PTK are part of the signaling pathway that leads to IL-1-induced NF-kappaB activation and iNOS expression; (2) the p38MAPK cascade is required for IL-1-induced iNOS expression; (3) the p42/44MAPK and AP-1 are not involved in IL-1-induced iNOS expression; and (4) NF-kappaB and the p38MAPK lie on two distinct pathways that seem to be independently required for IL-1-induced iNOS expression. Hence, inhibition of any of these two signaling cascades is sufficient to prevent iNOS expression and the subsequent production of NO in articular chondrocytes.  相似文献   

6.
Spleen tyrosine kinase (Syk), a nonreceptor protein kinase initially found to be expressed only in hemopoietic cells, has now been shown to be expressed in nonhemopoietic cells and to mediate signaling of various cytokines. Whether Syk plays any role in TNF signaling was investigated. Treatment of Jurkat T cells with TNF activated Syk kinase but not ZAP70, another member of Syk kinase family, and the optimum activation occurred at 10 s and with 1 nM TNF. TNF also activated Syk in myeloid and epithelial cells. TNF-induced Syk activation was abolished by piceatannol (Syk-selective inhibitor), which led to the suppression of TNF-induced activation of c- JNK, p38 MAPK, and p44/p42 MAPK. Jurkat cells that did not express Syk (JCaM1, JCaM1/lck) showed lack of TNF-induced Syk, JNK, p38 MAPK, and p44/p42 MAPK activation, as well as TNF-induced IkappaBalpha phosphorylation, IkappaBalpha degradation, and NF-kappaB activation. TNF-induced NF-kappaB activation was enhanced by overexpression of Syk by Syk-cDNA and suppressed when Syk expression was down-regulated by expression of Syk-small interfering RNA (siRNA-Syk). The apoptotic effects of TNF were reduced by up-regulation of NF-kappaB by Syk-cDNA, and enhanced by down-regulation of NF-kappaB by siRNA-Syk. Immunoprecipitation of cells with Syk Abs showed TNF-dependent association of Syk with both TNFR1 and TNFR2; this association was enhanced by up-regulation of Syk expression with Syk-cDNA and suppressed by down-regulation of Syk using siRNA-Syk. Overall, our results demonstrate that Syk activation plays an essential role in TNF-induced activation of JNK, p38 MAPK, p44/p42 MAPK, NF-kappaB, and apoptosis.  相似文献   

7.
8.
9.
10.
In this study, we examined the signal transduction of dibutyryl cyclic adenosine monophosphate (dBcAMP) to stimulate the release of nitric oxide (NO) and interleukin-6 (IL-6) from J774 macrophages. These actions of dBcAMP were diminished by the presence of the inhibitors of protein kinase A (PKA), protein kinase C (PKC), p38 MAPK and nuclear factor-kappa B (NF-kappaB). In contrast, Go 6976 and PD98059 had no significant effects. Consistently, dBcAMP caused membrane translocation of PKCbetaII, delta, mu, lambda and zeta isoforms, and increased atypical protein kinase C (aPKC) and p38 MAPK activities. The nuclear translocation and DNA-binding study revealed that dBcAMP stimulated NF-kappaB, activator protein-1 (AP-1), and CAAT/enhancer-binding protein (c/EBPbeta). Via PKA, PKC and p38 MAPK-dependent signals, dBcAMP also induced inhibitory subunit of NF-kappaB (IkappaB) degradation, IkappaB kinase (IKK) activation, nuclear translocation of NF-kappaB subunit p65 and its association with the CREB-binding protein (CBP). These results illustrate that PKA activation in macrophages is able to stimulate PKC and p38 MAPK, which lead to IKK-dependent NF-kappaB activation and contribute to the induction of inducible nitric oxide synthase (iNOS) and IL-6 genes.  相似文献   

11.
12.
13.
14.
15.
Je JH  Lee JY  Jung KJ  Sung B  Go EK  Yu BP  Chung HY 《FEBS letters》2004,566(1-3):183-189
4-Hydroxyhexenal (HHE) is known to affect redox balance during aging, included are vascular dysfunctions. To better understand vascular abnormality through the molecular alterations resulting from HHE accumulation in aging processes, we set out to determine whether up-regulation of mitogen-activated protein kinase (MAPK) by HHE is mediated through nuclear factor kappa B (NF-kappaB) activation in endothelial cells. HHE induced NF-kappaB activation by inhibitor of kappaB (IkappaB) phosphorylation via the IkappaB kinase (IKK)/NF-kappaB inducing kinase (NIK) pathway. HHE increased the activity of p38 MAPK and extracellular signal regulated kinase (ERK), but not c-jun NH(2)-terminal kinase, indicating that p38 MAPK and ERK are closely involved in HHE-induced NF-kappaB transactivation. Pretreatment with ERK inhibitor PD98059, and p38 MAPK inhibitor SB203580, attenuated the induction of p65 translocation, IkappaB phosphorylation, and NF-kappaB luciferase activity. These findings strongly suggest that HHE induces NF-kappaB activation through IKK/NIK pathway and/or p38 MAPK and ERK activation associated with oxidative stress in endothelial cells.  相似文献   

16.
17.
18.
Lipid peroxidation plays a major role in vascular dysfunction and age-related cardiovascular diseases. A major product of lipid peroxidation, tert-butyl hydroperoxide (t-BHP), has been reported to modulate vascular reactivity and cellular signaling. To better understand vascular abnormality, we set out to delineate the activation mechanism of nuclear factor kappa B (NF-kappaB) by t-BHP and the regulation of MAPK in endothelial cells. The results showed that t-BHP induces NF-kappaB activation by an inhibitor of kappaB (IkappaB) phosphorylation through IkappaB kinase (IKK) activation. Our data from this t-BHP study also showed increased p38 MAP kinase and ERK activity; however, interestingly, t-BHP showed no influence on JNK. Pretreatment with the p38 MAP kinase inhibitor, SB203580 and the ERK1/2 inhibitor, PD98059, prevented t-BHP-induced increases in p65 translocation, NF-kappaB luciferase activity, and phospho-IKKalpha/beta. Data suggested that t-BHP induces NF-kappaB activation through the IKK pathway, which involves p38 MAPK and ERK activation. This study illustrates a role of t-BHP in NF-kappaB activation and MAPK related-signaling pathways. The t-BHP-induced activation of NF-kappaB and MAPK could be a major player in vascular dysfunctions, as seen in oxidative stressed responses and the vascular inflammatory process.  相似文献   

19.
20.
The enzymatic activity of caspases is implicated in the execution of apoptosis and inflammation. Here we demonstrate a novel nonenzymatic function for caspase-2 other than its reported proteolytic role in apoptosis. Caspase-2, unlike caspase-3, -6, -7, -9, -11, -12, and -14, is a potent inducer of NF-kappaB and p38 MAPK activation in a TRAF2-mediated way. Caspase-2 interacts with TRAF1, TRAF2, and RIP1. Furthermore, we demonstrate that endogenous caspase-2 is recruited into a large and inducible protein complex, together with TRAF2 and RIP1. Structure-function analysis shows that NF-kappaB activation occurs independent of enzymatic activity of the protease and that the caspase recruitment domain of caspase-2 is sufficient for the activation of NF-kappaB and p38 MAPK. These results demonstrate the inducible assembly of a novel protein complex consisting of caspase-2, TRAF2, and RIP1 that activates NF-kappaB and p38 MAPK through the caspase recruitment domain of caspase-2 independently of its proteolytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号