首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The expression of Mycoplasma pulmonis antigen in Escherichia coli was investigated by cloning genomic DNA derived from M. pulmonis m 53, and the DNA fragment participating in antigen expression was identified. When the DNA library of M. pulmonis was screened by colony immunoassay using anti-M. pulmonis serum, 10 recombinant clones expressing seroreactive antigens were obtained. The recombinant plasmids isolated from these clones included 3.7-6.5 kilobase pair (kbp) DNA inserts, while all clones contained a common 2.3-kbp DNA fragment. Subcloning of initial DNA inserts showed that the common 2.3-kbp fragment is essential for antigen expression. Moreover, antiserum against the recombinant antigen generated from the 2.3-kbp DNA fragment recognized a native M. pulmonis antigen. The reactivity of this antiserum was absorbed specifically with M. pulmonis. These results suggest that the cloned 2.3-kbp DNA fragment codes an antigen specific to M. pulmonis.  相似文献   

2.
A protein with a tetragonal pattern, defined as RS protein, was found on the wall surface of an alkaline phosphatase secretion-deficient mutant (NM 105) of Bacillus licheniformis 749/C. The protein was present on the wall surface of the exponential-growth-phase cells, but at the stationary growth phase it was overproduced and hypersecreted. This protein was precipitated to homogeneity from the culture fluid by 80% ammonium sulfate saturation and chilled acetone. The molecular mass of the protein was 98 kilodaltons, and it had a single subunit in a sodium dodecyl sulfate gel. Specific anti-RS antibody was generated in rabbits and used to immunolabel the RS protein on the cells at different growth phases. In early-exponential-growth-phase cells, the outside surface of the wall, the cytoplasm, and the inside surface of the cytoplasmic membrane were labeled. In stationary-growth-phase cells, the cytoplasm was poorly labeled, but the labeling on the outside surface of the wall was high. AB. licheniformis NM 105 gene library was made by using the lambda phage EMBL3. The RS protein expression from this gene library was detected by a modified autoradiographic procedure. One of the amplified RS protein-positive plaques (4213-1) containing recombinant DNA was chosen, and the restriction map of this DNA was prepared. The RS protein expressed in Escherichia coli NM 539 infected with 4213-1 recombinant phage had a lower molecular mass than the purified authentic RS protein. The 4.5-kilobase-pair (kbp) SalI-EcoRI fragment of the recombinant DNA was cloned in the shuttle plasmid pMK4 to construct pMK462, which was expressed in B. subtilis MI112 and produced the RS protein identical in molecular mass to the purified authentic RS protein. The RS protein expression was also demonstrated in cryosections of transformed E. coli and B. subtilis cells by immunoelectron microscopy. The 1.2-kbp SalI-HindIII and 1.8-kbp HindIII-HindIII recombinant DNA restriction enzyme fragments, respectively, from the right of the restriction map produced anti-RS antibody cross-reacting proteins. The expression of the 1.2-kbp SalI-HindIII DNA fragment cloned in pUC8 could be induced with isopropyl-beta-D-thiogalactopyranoside. The 1.8-kbp DNA restriction fragment hybridized with both the chromosomal DNA of strain NM 105 and the recombinant phage 4213-1 DNA. The RS gene expression was finally demonstrated in transformed E. coli 539 cells by in situ hybridization of frozen thin sections with the 1.8-kbp HindIII biotin-dATP probe and immunolabeling these with anti-biotin immunoglobulin G and protein A-gold.  相似文献   

3.
The nucleotide sequence (1579 bp) of tetracycline-resistance determinant and flanking regions of the cloned 5.1 kb DNA fragment from Bacillus subtilis GSY908 chromosome (Sakaguchi, R. and Shishido, K. (1988) Biochim. Biophys. Acta 949, 49-57) were determined and compared with those of the B. subtilis tetracycline-resistance plasmid pNS1981. The tetracycline-resistance structural (tet) genes of the B. subtilis GSY908 chromosome (tetBS908) and pNS1981 (tetpNS1981) were found to be highly homologous (80% identical). Both tet genes were composed of 1374 bp and 458 amino-acid residues initiating from a GTG codon preceded by a ribosome-binding site (RBS-2). Upstream from tetBS908 there exists a short open reading frame (20 amino acids) initiating from a ATG codon preceded by its own RBS (RBS-1). This leader sequence was also highly homologous to that of tetpNS1981 except for a deletion of one bp between the RBS-1 and the ATG codon.  相似文献   

4.
The replication region of a 28-kilobase-pair (kbp) cryptic plasmid from Lactococcus lactis subsp. lactis biovar diacetylactis SSD207 was cloned in L. lactis subsp. lactis MG1614 by using the chloramphenicol resistance gene from the streptococcal plasmid pGB301 as a selectable marker. The resulting 8.1-kbp plasmid, designated pVS34, was characterized further with respect to host range, potential cloning sites, and location of replication gene(s). In addition to lactococci, pVS34 transformed Lactobacillus plantarum and, at a very low frequency, Staphylococcus aureus but not Escherichia coli or Bacillus subtilis. The 4.1-kbp ClaI fragment representing lactococcal DNA in pVS34 contained unique restriction sites for HindIII, EcoRI, XhoII, and HpaII, of which the last three could be used for molecular cloning. A region necessary for replication was located within a 2.5-kbp fragment flanked by the EcoRI and ClaI restriction sites. A 3.8-kbp EcoRI fragment derived from a nisin resistance plasmid, pSF01, was cloned into the EcoRI site of pVS34 to obtain a nisin-chloramphenicol double-resistance plasmid, pVS39. From this plasmid, the streptococcal chloramphenicol resistance region was subsequently eliminated. The resulting plasmid, pVS40, contains only lactococcal DNA. Potential uses for this type of a nisin resistance plasmid are discussed.  相似文献   

5.
The replication region of a 28-kilobase-pair (kbp) cryptic plasmid from Lactococcus lactis subsp. lactis biovar diacetylactis SSD207 was cloned in L. lactis subsp. lactis MG1614 by using the chloramphenicol resistance gene from the streptococcal plasmid pGB301 as a selectable marker. The resulting 8.1-kbp plasmid, designated pVS34, was characterized further with respect to host range, potential cloning sites, and location of replication gene(s). In addition to lactococci, pVS34 transformed Lactobacillus plantarum and, at a very low frequency, Staphylococcus aureus but not Escherichia coli or Bacillus subtilis. The 4.1-kbp ClaI fragment representing lactococcal DNA in pVS34 contained unique restriction sites for HindIII, EcoRI, XhoII, and HpaII, of which the last three could be used for molecular cloning. A region necessary for replication was located within a 2.5-kbp fragment flanked by the EcoRI and ClaI restriction sites. A 3.8-kbp EcoRI fragment derived from a nisin resistance plasmid, pSF01, was cloned into the EcoRI site of pVS34 to obtain a nisin-chloramphenicol double-resistance plasmid, pVS39. From this plasmid, the streptococcal chloramphenicol resistance region was subsequently eliminated. The resulting plasmid, pVS40, contains only lactococcal DNA. Potential uses for this type of a nisin resistance plasmid are discussed.  相似文献   

6.
The gene for cellulase from Ruminococcus albus F-40 was cloned in Escherichia coli HB101 with pBR322. A 3.4-kilobase-pair HindIII fragment encoding cellulase hybridized with the chromosomal DNA of R. albus. The Ouchterlony double-fusion test gave a single precipitation line between the cloned enzyme and the cellulase from R. albus. The size of the cloned fragment was reduced by using HindIII and EcoRI. The resulting active fragment had a size of 1.9 kilobase pairs; and the restriction sites EcoRI, BamHI, PvuII, EcoRI, PvuII, and HindIII, in that order, were ligated into pUC19 at the EcoRI and HindIII sites (pURA1). Cellulase production by E. coli JM103(pURA1) in Luria-Bertani broth was remarkably enhanced, up to approximately 80 times, by controlling the pH at 6.5 and by reducing the concentration of NaCl in the broth to 80 mM.  相似文献   

7.
The gene for cellulase from Ruminococcus albus F-40 was cloned in Escherichia coli HB101 with pBR322. A 3.4-kilobase-pair HindIII fragment encoding cellulase hybridized with the chromosomal DNA of R. albus. The Ouchterlony double-fusion test gave a single precipitation line between the cloned enzyme and the cellulase from R. albus. The size of the cloned fragment was reduced by using HindIII and EcoRI. The resulting active fragment had a size of 1.9 kilobase pairs; and the restriction sites EcoRI, BamHI, PvuII, EcoRI, PvuII, and HindIII, in that order, were ligated into pUC19 at the EcoRI and HindIII sites (pURA1). Cellulase production by E. coli JM103(pURA1) in Luria-Bertani broth was remarkably enhanced, up to approximately 80 times, by controlling the pH at 6.5 and by reducing the concentration of NaCl in the broth to 80 mM.  相似文献   

8.
Two Lactococcus lactis subsp. lactis strains, NCK400 and LJH80, isolated from a commercial sauerkraut fermentation were shown to produce nisin. LJH80 was morphologically unstable and gave rise to two stable, nisin-producing (Nip+) derivatives, NCK318-2 and NCK318-3. NCK400 and derivatives of LJH80 exhibited identical morphological and metabolic characteristics, but could be distinguished on the basis of plasmid profiles and genomic hybridization patterns to a DNA probe specific for the iso-ISS1 element, IS946. NCK318-2 and NCK318-3 harbored two and three plasmids, respectively, which hybridized with IS946. Plasmid DNA was not detected in NCK400, and DNA from this strain failed to hybridize with IS946. Despite the absence of detectable plasmid DNA in NCK400, nisin-negative derivatives (NCK402 and NCK403) were isolated after repeated transfer in broth at 37 degrees C. Nisin-negative derivatives concurrently lost the ability to ferment sucrose and became sensitive to nisin. A 4-kbp HindIII fragment containing the structural gene for nisin (spaN), cloned from L. lactis subsp. lactis ATCC 11454, was used to probe genomic DNA of NCK318-2, NCK318-3, NCK400, and NCK402 digested with EcoRI or HindIII. The spaN probe hybridized to an 8.8-kbp EcoRI fragment and a 10-kbp HindIII fragment in the Nip+ sauerkraut isolates, but did not hybridize to the Nip- derivative, NCK402. A different hybridization pattern was observed when the same probe was used against Nip+ L. lactis subsp. lactis ATCC 11454 and ATCC 7962. These phenotypic and genetic data confirmed that unique Nip+ L. lactis subsp. lactis strains were isolated from fermenting sauerkraut.  相似文献   

9.
Two Lactococcus lactis subsp. lactis strains, NCK400 and LJH80, isolated from a commercial sauerkraut fermentation were shown to produce nisin. LJH80 was morphologically unstable and gave rise to two stable, nisin-producing (Nip+) derivatives, NCK318-2 and NCK318-3. NCK400 and derivatives of LJH80 exhibited identical morphological and metabolic characteristics, but could be distinguished on the basis of plasmid profiles and genomic hybridization patterns to a DNA probe specific for the iso-ISS1 element, IS946. NCK318-2 and NCK318-3 harbored two and three plasmids, respectively, which hybridized with IS946. Plasmid DNA was not detected in NCK400, and DNA from this strain failed to hybridize with IS946. Despite the absence of detectable plasmid DNA in NCK400, nisin-negative derivatives (NCK402 and NCK403) were isolated after repeated transfer in broth at 37 degrees C. Nisin-negative derivatives concurrently lost the ability to ferment sucrose and became sensitive to nisin. A 4-kbp HindIII fragment containing the structural gene for nisin (spaN), cloned from L. lactis subsp. lactis ATCC 11454, was used to probe genomic DNA of NCK318-2, NCK318-3, NCK400, and NCK402 digested with EcoRI or HindIII. The spaN probe hybridized to an 8.8-kbp EcoRI fragment and a 10-kbp HindIII fragment in the Nip+ sauerkraut isolates, but did not hybridize to the Nip- derivative, NCK402. A different hybridization pattern was observed when the same probe was used against Nip+ L. lactis subsp. lactis ATCC 11454 and ATCC 7962. These phenotypic and genetic data confirmed that unique Nip+ L. lactis subsp. lactis strains were isolated from fermenting sauerkraut.  相似文献   

10.
Catechol 1,2-dioxygenase (EC 1.13.1.1), the product of the catA gene, catalyzes the first step in catechol utilization via the beta-ketoadipate pathway. Enzymes mediating subsequent steps in the pathway are encoded by the catBCDE genes which are carried on a 5-kilobase-pair (kbp) EcoRI restriction fragment isolated from Acinetobacter calcoaceticus. This DNA was used as a probe to identify Escherichia coli colonies carrying recombinant pUC19 plasmids with overlapping sequences. Repetition of the procedure yielded an A. calcoaceticus 6.7-kbp EcoRI restriction fragment which contained the catA gene and bordered the original 5-kbp EcoRI restriction fragment. When the catA-containing fragment was placed under the control of the lac promoter on pUC19 and induced with isopropylthiogalactopyranoside, catechol dioxygenase was formed in E. coli at twice the level found in fully induced cultures of A. calcoaceticus. A. calcoaceticus strains with mutations in the catA gene were transformed to wild type by DNA from lysates of E. coli strains carrying the catA gene on recombinant plasmids. Thus, A. calcoaceticus strains with a mutated gene can be used in a transformation assay to identify E. coli clones in which at least part of the wild-type gene is present but not necessarily expressed.  相似文献   

11.
A 5.0-kilobase-pair HindIII fragment of Bradyrhizobium japonicum DNA containing the cya gene which encodes adenylate cyclase was isolated as an insert in pBR322, using marker rescue of the maltose-negative phenotype of an Escherichia coli cya mutant for identification. The isolated B. japonicum DNA fragment was capable of reversing the pleiotropic phenotype of cya mutations when inserted in either orientation in the HindIII site of pBR322. The complemented E. coli strains produced high levels of cyclic AMP. No sequence homology between the B. japonicum cya gene and that of E. coli was detected by hybridization analysis.  相似文献   

12.
13.
Several strains of Bacillus subtilis, e.g., 168 derivatives and R, were found to carry a single copy of a tetracycline-resistance (TcR) determinant (named tetBS908) at a site close to the origin of replication on the chromosome. This gene is highly homologous (80% identical) to the TcR determinant of plasmids widely dispersed among aerobic spore-forming bacilli. B. subtilis RM125 (168 strain) transformants which carry a varying number of tetBS908 sequences in a tandem array on the chromosome were constructed and examined for their TcR level. A nearly proportional relationship between the TcR level and copy number of tetBS908 existed.  相似文献   

14.
This report describes the isolation and preliminary characterization of a 5.0-kilobase-pair (kbp) EcoRI DNA restriction fragment carrying the catBCDE genes from Acinetobacter calcoaceticus. The respective genes encode enzymes that catalyze four consecutive reactions in the catechol branch of the beta-ketoadipate pathway: catB, muconate lactonizing enzyme (EC 5.5.1.1); catC, muconolactone isomerase (EC 5.3.3.4); catD, beta-ketoadipate enol-lactone hydrolase (EC 3.1.1.24); and catE, beta-ketoadipate succinyl-coenzyme A transferase (EC 2.8.3.6). In A. calcoaceticus, pcaDE genes encode products with the same enzyme activities as those encoded by the respective catDE genes. In Pseudomonas putida, the requirements for both catDE and pcaDE genes are met by a single set of genes, designated pcaDE. A P. putida mutant with a dysfunctional pcaE gene was used to select a recombinant pKT230 plasmid carrying the 5.0-kbp EcoRI restriction fragment containing the A. calcoaceticus catE structural gene. The recombinant plasmid, pAN1, complemented P. putida mutants with lesions in catB, catC, pcaD, and pcaE genes; the complemented activities were expressed constitutively in the recombinant P. putida strains. After introduction into Escherichia coli, the pAN1 plasmid expressed the activities constitutively but at much lower levels that those found in the P. putida transformants or in fully induced cultures of A. calcoaceticus or P. putida. When placed under the control of a lac promoter on a recombinant pUC13 plasmid in E. coli, the A. calcoaceticus restriction fragment expressed catBCDE activities at levels severalfold higher than those found in fully induced cultures of A. calcoaceticus. Thus there is no translational barrier to expression of the A. calcoaceticus genes at high levels in E. coli. The genetic origin of the cloned catBCDE genes was demonstrated by the fact that the 5.0-kbp EcoRI restriction fragment hybridized with a corresponding fragment from wild-type A. calcoaceticus DNA. This fragment was missing in DNA from an A. calcoaceticus mutant in which the cat genes had been removed by deletion. The properties of the cloned fragment demonstrate physical linkage of the catBCDE genes and suggest that they are coordinately transcribed.  相似文献   

15.
苏云金芽孢杆菌以色列亚种130kd杀蚊蛋白基因的...   总被引:2,自引:2,他引:0  
The location of 130kd mosquitocidal protein gene of Bti 4Q5 strain on its 75Md plasmid was confirmed by southern hybridization using a 18-base oligonucleotide probe. The crystal protein containing the component of 130kd toxic protein was purified. The crystal protein exhibiting the mosquitocidal activity against larvae of Aedes aegypti was shown by bioassay. The purified 75Md plasmid DNA of Bti 4Q5 strain was completely digested with HindIII restriction enzyme, ligated with the vector pUC18 and transformed into the recipient cells of E. coli TG1. From Apr transformants, four clones with HindIII restriction fragment inserts highly homologous to the 18-base oligonucleotide probe were obtained by in situ hybridization and southern hybridization. The 5.2kb HindIII restriction fragment insert was obtained in clone pFH2 and clone pFH4, and 2.3kb HindIII restriction fragment insert in clone pFH1 and pFH3. For pFH2 and pFH4, the 5.2kb fragment was inserted in pUC18 in opposite orientation. It contained 130kd mosquitocidal protein gene (type I) identified by restriction enzyme map analysis. The 2.3kb HindIII fragment insert in other two clones (pFH1 and pFH3) harbored a part of the type II mosquitocidal protein gene which can be used as a probe for cloning of the type II mosquitocidal protein gene.  相似文献   

16.
A Ahmed 《Gene》1984,28(1):37-43
Insertion of a HindIII-EcoRI fragment carrying part of the gal operon from lambda gal+ into pBR322 yields a plasmid (pAA3) which confers strong galactose sensitivity on E. coli strains deleted for the gal operon. Sensitivity to galactose is caused by the expression of kinase and transferase (but not epimerase) genes from a promoter located in the tet gene of pBR322. Insertion of a DNA fragment carrying Tn9 at the HindIII junction blocks gal expression and produces a galactose-resistant phenotype. Hence, galactose resistance can be used to select DNA fragments cloned at the HindIII site. The system was used efficiently for cloning lambda, yeast, and human DNA. The cloned fragments can be screened directly for the presence of promoters by testing for tetracycline resistance. Alternatively, these plasmids can be used as cosmids for cloning large fragments of DNA at a number of sites. Construction of several related vectors is described.  相似文献   

17.
Phosphoglycerate mutase is an essential glycolytic enzyme for Zymomonas mobilis, catalyzing the reversible interconversion of 3-phosphoglycerate and 2-phosphoglycerate. The pgm gene encoding this enzyme was cloned on a 5.2-kbp DNA fragment and expressed in Escherichia coli. Recombinants were identified by using antibodies directed against purified Z. mobilis phosphoglycerate mutase. The pgm gene contains a canonical ribosome-binding site, a biased pattern of codon usage, a long upstream untranslated region, and four promoters which share sequence homology. Interestingly, adhA and a D-specific 2-hydroxyacid dehydrogenase were found on the same DNA fragment and appear to form a cluster of genes which function in central metabolism. The translated sequence for Z. mobilis pgm was in full agreement with the 40 N-terminal amino acid residues determined by protein sequencing. The primary structure of the translated sequence is highly conserved (52 to 60% identity with other phosphoglycerate mutases) and also shares extensive homology with bisphosphoglycerate mutases (51 to 59% identity). Since Southern blots indicated the presence of only a single copy of pgm in the Z. mobilis chromosome, it is likely that the cloned pgm gene functions to provide both activities. Z. mobilis phosphoglycerate mutase is unusual in that it lacks the flexible tail and lysines at the carboxy terminus which are present in the enzyme isolated from all other organisms examined.  相似文献   

18.
The gene for carboxymethyl cellulose-degrading enzyme (endoglucanase) from Clostridium josui (FERM P-9684) was cloned in Escherichia coli HB101 with pBR322. A 5.6-kilobase-pair HindIII fragment encoding an endoglucanase was hybridized with C. josui chromosomal DNA. The size of the cloned DNA fragment was reduced with PvuII, and the resulting active fragment (2 kilobase pairs, with restriction sites of EcoRI and PstI) was ligated into pUC118 at the SmaI sites (pUCJ1). The endoglucanase production by E. coli JM103(pUCJ1) in Luria-Bertani broth was enhanced up to approximately three times by maintaining the pH at 6.5 and using 80 mM NaCl.  相似文献   

19.
The gene for carboxymethyl cellulose-degrading enzyme (endoglucanase) from Clostridium josui (FERM P-9684) was cloned in Escherichia coli HB101 with pBR322. A 5.6-kilobase-pair HindIII fragment encoding an endoglucanase was hybridized with C. josui chromosomal DNA. The size of the cloned DNA fragment was reduced with PvuII, and the resulting active fragment (2 kilobase pairs, with restriction sites of EcoRI and PstI) was ligated into pUC118 at the SmaI sites (pUCJ1). The endoglucanase production by E. coli JM103(pUCJ1) in Luria-Bertani broth was enhanced up to approximately three times by maintaining the pH at 6.5 and using 80 mM NaCl.  相似文献   

20.
The sucrose operon from pUR400, a 78-kbp conjugative Salmonella plasmid, was cloned in Escherichia coli K12. The operon was located in a 5.7-kbp SalI restriction fragment and was subcloned, in each of two possible orientations, using the expression vector pUC18. The insert DNA was restriction mapped and duplicate restriction sites in the insert and in the polylinker of the vector were used to create various deletions promoter distal in the operon sequence. Additional deletions were made with the restriction exonuclease Bal31. Cells containing hybrid plasmids with specified deletions lacked the ability to transport sucrose or were constitutive for hydrolase and/or uptake activities. The scrA (enzyme IIScr) and scrR (regulatory) genes resided within 2900-bp SmaI-SalI DNA fragment and were assigned the order scrB, scrA, scrR. An amplified sucrose-inducible gene product, Mr 68,000, was detected only in the membrane fraction from recombinant cells that contained plasmid with the intact operon sequence. This protein represented 11% of the total membrane protein and was resistant to extraction with 0.5 M sodium chloride, 2% Triton X-100, and 0.5% sodium deoxycholate. The protein did not appear to be the product of either the scrA, scrB, or scrR gene and may therefore represent a previously unidentified membrane-bound sucrose protein. A new gene, scrC, is proposed. In addition, the cloned 5.7-kbp SalI and 2.5-kbp SmaI-SalI DNA fragments failed to hybridize to chromosomal DNA from Bacillus subtilis, Streptococcus lactis, Streptococcus mutans, and Lactobacillus acidophilus as well as to DNA from a sucrose plasmid from Salmonella tennessee. However, the probes showed weak homology with a 20-kbp EcoRI restriction fragment from Klebsiella pneumoniae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号