首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arginyl-tRNA synthetase has been purified approximately 550 fold from crude extract of human placenta by the following purification steps: Ammonium sulfate fractionation, chromatographies of DEAE-cellulose and CM-Sephadex and Sephadex G-100 gel filtration. Final preparation of this enzyme has specific activity of 123 nmole of arginyl-tRNA formed per mg of protein and was free from other aminoacyl-tRNA synthetase activities. Recognition of various arginine tRNAs with this enzyme was studied using kinetic analysis of arginylation of arginine tRNA and also arginine tRNA dependent ATP-PPi exchange reaction. Affinity of this enzyme with arginine tRNA was determine from Vmas/Km values and it was in the order of rabbit, Chum salmon, B. subtilis, E. coli and yeast in both systems.  相似文献   

2.
A kinetic analysis of the arginyl-tRNA synthetase (ArgRS) from Escherichia coli was accomplished with the goal of improving the rate equations so that they correspond more closely to the experimental results. 22 different steady-state kinetic two-ligand experiments were statistically analysed simultaneously. A mechanism and values for the ArgRS constants were found where the average error was only 6.2% and ranged from 2.5 to 11.2% in the different experiments. The mechanism included not only the normal activation and transfer reactions but also an additional step which may be a conformational change after the transfer reaction but before the dissociation of the product Arg-tRNA from the enzyme. The forward rate constants in these four steps were low, 8.3-27 s(-1), but the reverse rate constants of the activation and transfer reactions were considerably higher (230 and 161 s(-1)). Therefore, in the presence of even low concentrations of PP(i) and AMP, the rate limitation occurs at the late steps of the total reaction. AMP increases the rate of the ATP-PP(i) exchange reaction due to the high reverse rate in the transfer reaction. The rate equation obtained was used to calculate the steady-state enzyme intermediate concentrations and rates between the intermediates. Three different Mg2+ binding sites were required to describe the Mg2+ dependence. One of them was the normal binding to ATP and the others to tRNA or enzyme. The measured Mg2+ dependence of the apparent equilibrium constant of the ArgRS reaction was consistent with the Mg2+ dependences of the reaction rates on the rate equation. Chloride inhibits the ArgRS reaction, 160 mM KCl caused a 50% inhibition if the ionic strength was kept constant with K-acetate. KCl strongly affected the K(m)(app) (tRNA) value. A difference was detected in the progress curves between the aminoacylation and ATP-PP(i) exchange rates. When all free tRNA(Arg) had been used from the reaction mixture, the aminoacylation reaction stopped, but the ATP-PP(i) exchange continued at a lowered rate.  相似文献   

3.
S X Lin  Q Wang  Y L Wang 《Biochemistry》1988,27(17):6348-6353
Interactions between Escherichia coli arginyl-tRNA synthetase and its substrates were extensively studied and distinctly demonstrated. Various approaches such as equilibrium dialysis, fluorescence titration, and substrate protection against heat inactivation of the enzyme were used for these studies. In the absence of other substrates, the equilibrium dissociation constants for arginine, ATP, and the cognate tRNA were about 70 microM, 0.85 mM, and 0.45 microM, respectively, at pH 7.5, in Tris buffer. The binding of arginine to the enzyme was affected neither by the presence of tRNA nor by the presence of ATP but was considerably enhanced when ATP and tRNA were both present at saturating concentrations. The dissociation constant in this case (about 16 microM) was very close to the Km (12 microM) for arginine during aminoacylation. The binding of ATP (the equilibrium dissociation constant KD approximately 0.85 mM) was not affected by the presence of arginine but was depressed in the presence of tRNA (KD became 3 mM). Arginyl-tRNA showed a dissociation constant of (4-5) X 10(-7) M which was not affected by the presence of a single other substrate. Possible explanations for the high Km for tRNA in the aminoacylation are discussed. Our results indicated pronounced interactions between substrates mediated by the enzyme under catalytic conditions. Periodate oxidation did not alter the tRNA binding to the enzyme. The oxidized tRNA still afforded protection against heat inactivation of the enzyme.  相似文献   

4.
The interferon-induced enzyme 2-5A synthetase is shown to adenylate tRNA. Yeast tRNAPhe was incubated with the enzyme in the presence of double stranded RNA (in this case polyI-polyC) and ATP or deoxyATP. The reaction products were analyzed by ribonuclease T1 digestion of the tRNA, polyacrylamide gel electrophoresis and autoradiography. Using ATP, the 2-5A synthetase adds one, two or three AMP residues to the 3'-end of the tRNA whereas when dATP is replacing ATP, only one nucleotide unit is added. It is concluded that one of the mechanisms of the interferon-induced antiviral effect may be an inhibition of the translation process caused by an inactivation of tRNA molecules by a 2-5A synthetase catalyzed 2'-adenylation of the 3'-end.  相似文献   

5.
Reaction rates for ATP-PPi isotope exchange (vex) and tryptophanyl-tRNA formation (vaa) catalysed concomitantly in one incubation mixture by beef pancreas tryptophanyl-tRNA synthetase (trsase) have been examined as a function of substrate concentrations. Comparison of the vex/vaa ratio found experimentally with the ratio predicted theoretically conforms the mechanism suggested earlier and permits to describe it in more detail. I. At least two reaction routes exist in which an ATP-PP: exchange is allowed. These routes are interconnected with each other via the stage at which tRNA binds to the enzyme. 2. In both these routes the low molecular weight substrates bind with enzyme in the order ATP first, tryptophan second. 3. Enzyme-aminoacyladenylate complex is an intermediate in the reaction of aminoacyl-tRNA formation. Pyrophosphate is detached from the enzyme prior to tRNA. 4. The enzyme releases AMP and tryptophanyl-tRNA in a random fashion. All the aformentioned properties are common both for trigger mechanism and Yarus-Berg mechanism which up to now were considered in literature independently.  相似文献   

6.
Identity determinants are essential for the accurate recognition of transfer RNAs by aminoacyl-tRNA synthetases. To date, arginine determinants in the yeast Saccharomyces cerevisiae have been identified exclusively in vitro and only on a limited number of tRNA Arginine isoacceptors. In the current study, we favor a full cellular approach and expand the investigation of arginine determinants to all four tRNA Arg isoacceptors. More precisely, this work scrutinizes the relevance of the tRNA nucleotides at position 20, 35 and 36 in the yeast arginylation reaction. We built 21 mutants by site-directed mutagenesis and tested their functionality in YAL5, a previously engineered yeast knockout deficient for the expression of tRNA Arg CCG. Arginylation levels were also monitored using Northern blot. Our data collected in vivo correlate with previous observations. C35 is the prominent arginine determinant followed by G36 or U36 (G/U36). In addition, although there is no major arginine determinant in the D loop, the recognition of tRNA Arg ICG relies to some extent on the nucleotide at position 20. This work refines the existing model for tRNA Arg recognition. Our observations indicate that yeast Arginyl-tRNA synthetase (yArgRS) relies on distinct mechanisms to aminoacylate the four isoacceptors. Finally, according to our refined model, yArgRS is able to accommodate tRNA Arg scaffolds presenting N34, C/G35 and G/A/U36 anticodons while maintaining specificity. We discuss the mechanistic and potential physiological implications of these findings.  相似文献   

7.
J Charlier  E Gerlo 《Biochemistry》1979,18(14):3171-3178
Arginyl-tRNA synthetase from Escherichia coli K12 has been purified more than 1000-fold with a recovery of 17%. The enzyme consists of a single polypeptide chain of about 60 000 molecular weight and has only one cysteine residue which is essential for enzymatic activity. Transfer ribonucleic acid completely protects the enzyme against inactivation by p-hydroxymercuriben zoate. The enzyme catalyzes the esterification of 5000 nmol of arginine to transfer ribonucleic acid in 1 min/mg of protein at 37 degrees C and pH 7.4. One mole of ATP is consumed for each mole of arginyl-tRNA formed. The sequence of substrate binding has been investigated by using initial velocity experiments and dead-end and product inhibition studies. The kinetic patterns are consistent with a random addition of substrates with all steps in rapid equilibrium except for the interconversion of the cental quaternary complexes. The dissociation constants of the different enzyme-substrate complexes and of the complexes with the dead-end inhibitors homoarginine and 8-azido-ATP have been calculated on this basis. Binding of ATP to the enzyme is influenced by tRNA and vice versa.  相似文献   

8.
The protein translation apparatus of Methanococcus jannaschii possesses the unusual enzyme prolyl-cysteinyl-tRNA synthetase (ProCysRS), a single enzyme that attaches two different amino acids, proline and cysteine, to their cognate tRNA species. Measurement of the ATP-PP(i) exchange reaction revealed that amino acid activation, the first reaction step, differs for the two amino acids. While Pro-AMP can be formed in the absence of tRNA, Cys-AMP synthesis is tRNA-dependent. Studies with purified tRNAs indicate that tRNA(Cys) promotes cysteine activation. The k(cat) values of wild-type ProCysRS for tRNA prolylation (0.09 s(-1)) and cysteinylation (0.02 s(-1)) demonstrate that both aminoacyl-tRNAs are synthesized with comparable rates, the cysteinyl-tRNA synthetase activity being only 4.5-fold lower than prolyl-tRNA synthetase activity. Kinetic analysis of ProCysRS mutant enzymes, generated by site-directed mutagenesis, shows glutamate at position 103 to be critical for proline binding, and proline at position 100 to be involved in cysteine binding. The proximity in ProCysRS of amino acid residues affecting binding of either cysteine or proline strongly suggests that structural elements of the two amino acid binding sites overlap.  相似文献   

9.
ATP consumption by arginyl-tRNA synthetases from Escherichia coli and Bacillus stearothermophilus has been investigated by the firefly luciferin--luciferase assay. Arginyl-tRNA synthetase from E. coli utilizes ATP only for aminocylation of tRNA with a 1:1 stoicheiometry. In contrast, we have shown an adenosine triphosphatase activity of arginyl-tRNA synthetase from B. stearothermophilus in the absence of tRNAArg. Dowex chromatography revealed the formation of ADP by the thermophile enzyme; under aminoacylation conditions, AMP was also formed in amounts stoicheiometric with arginyl-tRNA formation.  相似文献   

10.
Human cytosolic leucyl-tRNA synthetase is one component of a macromolecular aminoacyl-tRNA synthetase complex. This is unlike prokaryotic and lower eukaryotic LeuRSs that exist as free soluble enzymes. There is little known about it, since the purified enzyme has been unavailable. Herein, human cytosolic leucyl-tRNA synthetase was heterologously expressed in a baculovirus system and purified to homogeneity. The molecular mass (135 kDa) of the enzyme is close to the theoretical value derived from its cDNA. The kinetic constants of the enzyme for ATP, leucine, and tRNA(Leu) in the ATP-PP(i) exchange and tRNA leucylation reactions were determined, and the results showed that it is quite active as a free enzyme. Human cytosolic leucyl-tRNA synthetase expressed in human 293 T cells localizes predominantly to the cytosol. Additionally, it is found to have a long C-terminal extension that is absent from bacterial and yeast LeuRSs. A C-terminal 89-amino acid truncated human cytosolic leucyl-tRNA synthetase was constructed and purified, and the catalytic activities, thermal stability, and subcellular location were found to be almost identical to native enzyme. In vivo and in vitro experiments, however, show that the C-terminal extension of human cytosolic leucyl-tRNA synthetase is indispensable for its interaction with the N-terminal of human cytosolic arginyl-tRNA synthetase in the macromolecular complex. Our results also indicate that the two molecules interact with each other only through their appended domains.  相似文献   

11.
S X Lin  J P Shi  X D Cheng  Y L Wang 《Biochemistry》1988,27(17):6343-6348
A Blue Sephadex G-150 affinity column adsorbs the arginyl-tRNA synthetase of Escherichia coli K12 and purifies it with high efficiency. The relatively low enzyme content was conveniently purified by DEAE-cellulose chromatography, affinity chromatography, and fast protein liquid chromatography to a preparation with high activity capable of catalyzing the esterification of about 23,000 nmol of arginine to the cognate tRNA per milligram of enzyme within 1 min, at 37 degrees C, pH 7.4. The turnover number is about 27 s-1. The purification was about 1200-fold, and the overall yield was more than 30%. The enzyme has a single polypeptide chain of about Mr 70,000 and binds arginine and tRNA with 1:1 stoichiometry. For the aminoacylation reaction, the Km values at pH 7.4, 37 degrees C, for various substrates were determined: 12 microM, 0.9 mM, and 2.5 microM for arginine, ATP, and tRNA, respectively. The Km value for cognate tRNA is higher than those of most of the aminoacyl-tRNA synthetase systems so far reported. The ATP-PPi exchange reaction proceeds only in the presence of arginine-specific tRNA. The Km values of the exchange at pH 7.2, 37 degrees C, are 0.11 mM, 2.9 mM, and 0.5 mM for arginine, ATP, and PPi, respectively, with a turnover number of 40 s-1. The pH dependence shows that the reaction is favored toward slightly acidic conditions where the aminoacylation is relatively depressed.  相似文献   

12.
A preparative scale method for isolation of highly purified phenylalanyl-tRNA synthetase from E. coli MRE-600 was developed. It consists of cell destroying, nucleic acid precipitation with streptomycine sulfate, fractionation with ammonium sulfate followed by chromatography on different carriers (Sephadex G-200, DEAE-cellulose, DEAE-Sephadex A-50, and hydroxyapatite). The mode of cell destroying was found to affect the process of the further enzyme purification. The phenylalanyl-tRNA synthetase was purified 540-fold, with recovery being 20.6% and the specific activity - 540 units per mg protein. The enzyme content in the purified preparation was 80-90% judging by electrophoresis in PAAG. The molecular weights of the subunits determined by electrophoresis under denaturative conditions were found to be 102,000 +/- 4000 (beta) and 42,000 +/- 2000 (alpha). The molecular weight of the native enzyme determined by gel filtration through Sephadex G-200 and electrophoresis at varied concentrations of polyacrylamide was found to be 340,000 +/- 20,000. The Km values for tRNA, ATP and phenylalanine in the aminoacylation reaction are equal to 5.4 X 10(-7) M, 1,9 X 10(-4) M, and 3.7 X 10(-6) M, respectively.  相似文献   

13.
Rat liver cytoplasmic tyrosine:tRNA ligase (tyrosine:tRNA ligase, EC 6.1.1.1) was purified by ultracentrifugation, DEAE-cellulose chromatography and repeated phosphocellulose chromatography by more than 1500-fold. The molecular weight of the enzyme was approx. 150 000 as determined by Sephadex G-200 gel filtration. On the basis of sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the enzyme consisted of two subunits, each of 68 000 daltons. We found the following Km values for the enzyme: 13 micrometer for tyrosine and 1.7 mM for ATP in the ATP:PPi exchange reaction and 13 micrometer for tyrosine, 210 micrometer for ATP and 0.14 micrometer for tRNATyr in the aminoacylation reaction. The rate of tyrosyl-tRNA synthesis was 50-fold lower than that of ATP:PPi exchange. Addition of a saturating amount of tRNA did not affect the rate of ATP:PPi exchange.  相似文献   

14.
The effect of pH on the properties of the partial reactions of arginyl-tRNA synthetase of E. coli has been investigated. V max of pyrophosphorolysis of arginyl adenylate has a pH optimum at pH 6.1, whereas V max of the transfer of arginine to tRNA has a pH optimum of 8.2. These values correlate with the pH optima of the ATP:PPi exchange and the overall esterification reaction, respectively. Only the pyrophosphorolysis reaction requires a divalent cation; transfer proceeds in the presence of EDTA. Inorganic pyrophosphate inhibits the transfer reaction to an extent independent of the concentration of tRNA; the maximum inhibition is a function of pH, corresponding to the relative rate of pyrophosphorolysis of the common intermediate compared with the rate of transfer. These results show that different groups on the enzyme participate in the rate-limiting steps of the two partial reactions and that these partial reactions have properties consistent with their participation in the overall esterification of arginine with tRNA.  相似文献   

15.
1. Methionyl-t-RNA synthetase (where t-RNA denotes ;soluble' or transfer RNA) has been purified to apparent homogeneity from a ribonuclease I-free strain of Escherichia coli. Polyacrylamide-gel electrophoresis of the final product revealed a single band. The purified enzyme catalyses the exchange of 450mumoles of pyrophosphate into ATP/mg. in 15min. at 37 degrees . 2. Methionyl-t-RNA synthetase is specific for the l-isomer of methionine, but appears to catalyse the methionylation of two distinct species of t-RNA, both of which are specific for methionine, but only one of which may be subsequently formylated. 3. The Michaelis constant for l-methionine is 2x10(-4)m in the ATP-PP(i) exchange assay and 2x10(-5)m for the acylation of t-RNA. 4. Gel filtration of both crude and highly purified preparations of methionyl-t-RNA synthetase on Sephadex G-200 indicates that the active species of enzyme has a molecular weight of about 190000. The amino acid composition of the enzyme is similar to those reported for the isoleucine and tyrosine enzymes from E. coli.  相似文献   

16.
Arginyl-tRNA synthetase has a reaction mechanism not typical of most aminoacyl-tRNA synthetases. It does not catalyze an amino acid-dependent ATP-PP1 exchange in the absence of tRNA as do most enzymes of this class. In order to clarify the reaction mechanism by performing experiments with substrate levels of enzyme, we have modified the previous purification procedure. By the method presented, homogeneous enzyme can be prepared in approximately 10% yield. Pulse-labeling experiments indicate that no enzyme-bound arginyl-adenylate is formed in the absence of tRNA. Equilibrium experiments show that no arginyl-adenylate accumulates either in the presence or absence of tRNAarg. Two mechanisms compatible with these data are suggested.  相似文献   

17.
A highly conserved protein motif characteristic of Class II aminoacyl tRNA synthetases was found to align with a region of Escherichia coli asparagine synthetase A. The alignment was most striking for aspartyl tRNA synthetase, an enzyme with catalytic similarities to asparagine synthetase. To test whether this sequence reflects a conserved function, site-directed mutagenesis was used to replace the codon for Arg298 of asparagine synthetase A, which aligns with an invariant arginine in the Class II aminoacyl tRNA synthetases. The resulting genes were expressed in E. coli, and the gene products were assayed for asparagine synthetase activity in vitro. Every substitution of Arg298, even to a lysine, resulted in a loss of asparagine synthetase activity. Directed random mutagenesis was then used to create a variety of codon changes which resulted in amino acid substitutions within the conserved motif surrounding Arg298. Of the 15 mutant enzymes with amino acid substitutions yielding soluble enzyme, 13 with changes within the conserved region were found to have lost activity. These results are consistent with the possibility that asparagine synthetase A, one of the two unrelated asparagine synthetases in E. coli, evolved from an ancestral aminoacyl tRNA synthetase.  相似文献   

18.
The tRNA-dependent amino acid activation catalyzed by mammalian arginyl-tRNA synthetase has been characterized. A conditional lethal mutant of Chinese hamster ovary cells that exhibits reduced arginyl-tRNA synthetase activity (Arg-1), and two of its derived revertants (Arg-1R4 and Arg-1R5) were analyzed at the structural and functional levels. A single nucleotide change, resulting in a Cys to Tyr substitution at position 599 of arginyl-tRNA synthetase, is responsible for the defective phenotype of the thermosensitive and arginine hyper-auxotroph Arg-1 cell line. The two revertants have a single additional mutation resulting in a Met222 to Ile change for Arg-1R4 or a Tyr506 to Ser change for Arg-1R5. The corresponding mutant enzymes were expressed in yeast and purified. The Cys599 to Tyr mutation affects both the thermal stability of arginyl-tRNA synthetase and the kinetic parameters for arginine in the ATP-PP(i) exchange and tRNA aminoacylation reactions. This mutation is located underneath the floor of the Rossmann fold catalytic domain characteristic of class 1 aminoacyl-tRNA synthetases, near the end of a long helix belonging to the alpha-helix bundle C-terminal domain distinctive of class 1a synthetases. For the Met222 to Ile revertant, there is very little effect of the mutation on the interaction of arginyl-tRNA synthetase with either of its substrates. However, this mutation increases the thermal stability of arginyl-tRNA synthetase, thereby leading to reversion of the thermosensitive phenotype by increasing the steady-state level of the enzyme in vivo. In contrast, for the Arg-1R5 cell line, reversion of the phenotype is due to an increased catalytic efficiency of the C599Y/Y506S double mutant as compared to the initial C599Y enzyme. In light of the location of the mutations in the 3D structure of the enzyme modeled using the crystal structure of the closely related yeast arginyl-tRNA synthetase, the kinetic analysis of these mutants suggests that the obligatory tRNA-induced activation of the catalytic site of arginyl-tRNA synthetase involves interdomain signal transduction via the long helices that build the tRNA-binding domain of the enzyme and link the site of interaction of the anticodon domain of tRNA to the floor of the active site.  相似文献   

19.
20.
Novobiocic acid synthetase, a key enzyme in the biosynthesis of the antibiotic novobiocin, was cloned from the novobiocin producer Streptomyces spheroides NCIMB 11891. The enzyme is encoded by the gene novL, which codes for a protein of 527 amino acids with a calculated mass of 56,885 Da. The protein was overexpressed as a His(6) fusion protein in Escherichia coli and purified to apparent homogeneity by affinity chromatography and gel chromatography. The purified enzyme catalyzed the formation of an amide bond between 3-dimethylallyl-4-hydroxybenzoic acid (ring A of novobiocin) and 3-amino-4,7-dihydroxy-8-methyl coumarin (ring B of novobiocin) in an ATP-dependent reaction. NovL shows homology to the superfamily of adenylate-forming enzymes, and indeed the formation of an acyl adenylate from ring A and ATP was demonstrated by an ATP-PP(i) exchange assay. The purified enzyme exhibited both activation and transferase activity, i.e. it catalyzed both the activation of ring A as acyl adenylate and the subsequent transfer of the acyl group to the amino group of ring B. It is active as a monomer as determined by gel filtration chromatography. The reaction was specific for ATP as nucleotide triphosphate and dependent on the presence of Mg(2+) or Mn(2+). Apparent K(m) values for ring A and ring B were determined as 19 and 131 micrometer respectively. Of several analogues of ring A, only 3-geranyl-4-hydroxybenzoate and to a lesser extent 3-methyl-4-aminobenzoate were accepted as substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号