首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Studies on the effect of 1-anilino-8-naphthalene sulfonate on uptake of transferrin and iron by rabbit reticulocytes show that the inhibitory action of ANS is localized at the membrane level. The intravesicular pH and cellular ATP level were not affected by this anionic probe. ANS shifted the transition temperature and reduced the enthalpy changes of iron uptake by rabbit reticulocytes. These suggested that the drug reduced the membrane fluidity. Hence, ANS disturbed the physicochemical environment of the receptor for transferrin resulting in the perturbation of receptor-mediated endocytosis.  相似文献   

2.
The mechanism of iron uptake from several iron-containing compounds by transferrin-depleted rabbit reticulocytes and mouse spleen erythroid cells was investigated. Iron complexes of DL-penicillamine, citrate and six different aroyl hydrazones may be utilized by immature erythroid cells for hemoglobin synthesis, although less efficiently than iron from transferrin. HTF-14, a monoclonal antibody against human transferrin, reacts with rabbit transferrin and inhibits iron uptake and heme synthesis by rabbit reticulocytes. HTF-14 had no significant effect on iron uptake and heme synthesis when non-transferrin donors of iron were examined. Ammonium chloride (NH4Cl) increases intracellular pH and blocks the release or utilization of iron from the internalized transferrin. NH4Cl only slightly affected iron incorporation and heme synthesis from non-transferrin donors of iron. Hemin inhibited transferrin iron uptake and heme synthesis, but had a much lesser effect on iron incorporation and heme synthesis from non-transferrin donors of iron. These results allow us to conclude that transferrin-depleted reticulocytes take up iron from all of the examined non-transferrin iron donors without the involvement of the transferrin/transferrin receptor pathway.  相似文献   

3.
The effect of concanavalin A on transferrin and iron uptake by reticulocytes was determined using rabbit reticulocytes and rabbit transferrin labelled with 59Fe and 125I and concanavalin A (ConA) labelled with 131I. In concentrations of 50–200 μg/ml ConA markedly inhibited iron uptake but did not inhibit transferrin uptake or release from the cells. ConA was itself taken up by rabbit blood cells in a manner similar to that of transferrin except that the uptake was not specific for reticulocytes but occurred also with mature erythrocytes. The inhibition of iron uptake by concanavalin and the uptake of concanavalin by the cells were both inhibited by α-methyl-d-mannoside. It is concluded that the effects observed were due to the binding of concanavalin to glycoproteins of the cell membrane, either by a direct interaction with transferrin receptors or by the production of a non-specific change in the structure of the membrane.  相似文献   

4.
The mechanism of transferrin uptake by reticulocytes was investigated using rabbit transferrin labelled with 125I and 59Fe and rabbit reticulocytes which had been treated with trypsin, Pronase or neuraminidase. Low concentrations of the proteolytic enzymes produced a small increase in transferrin and iron uptake by the cells. However, higher concentrations or incubation of the cells with the enzymes for longer periods caused a marked fall in transferrin and iron uptake. This fall was associated with a reduction in the proportion of cellular transferrin which was bound to a cell membrane component solubilized with the non-ionic detergent, Teric 12A9. The effect of trypsin and Pronase on transferrin release from the cells was investigated in the absence and in the presence of N-ethylmaleimide which inhibits the normal process of transferrin release. It was found that only a small proportion of transferrin which had been taken up by reticulocytes at 37 degrees C but nearly all that taken up 4 degrees C was released when the cells were subsequently incubated with trypsin plus N-ethylmaleimide, despite the fact that about 80% of the 59Fe in the cells was released in both instances. Neuraminidase produced no change in transferrin and iron uptake by the cells. These experiments provide evidence that transferrin uptake by reticulocytes requires interaction with a receptor which is protein in nature and that following uptake at 37 degrees C, most of the transferrin is located at a site unavailable to the action of proteolytic enzymes. The results support the hypothesis that transferrin enters reticulocytes by endocytosis.  相似文献   

5.
The effect of pH on the binding of apotransferrin and diferric transferrin to reticulocyte membrane receptors was investigated using rabbit transferrin and rabbit reticulocyte ghosts, intact cells and a detergent-solubilized extract of reticulocyte membranes. The studies were performed within the pH range 4.5–8.0. The binding of apotransferrin to ghosts and membrane extracts and its uptake by intact reticulocytes was high at pH levels below 6.5 but decreased to very low values as the pH was raised above 6.5. By contrast, diferric transferrin showed a high level of binding and uptake between pH 7.0 and 8.0 in addition to binding only slightly less than did apotransferrin at pH values below 6.5. It is proposed that the high affinity of apotransferrin for its receptor at lower pH values and low affinity at pH 7.0 or above allow transferrin to remain bound to the receptor when it is within acidic intracellular vesicles, even after loss of its iron, but also allow ready release from the cell membrane when it is exteriorized by exocytosis after iron uptake. The binding of transferrin to the receptor throughout the endocytosis-exocytosis cycle may protect it from proteolytic breakdown and aid in its recycling to the outer cell membrane  相似文献   

6.
Human diferric transferrin was partially labeled with 59Fe at low or neutral pH (chemically labeled) and by replacement of diferric iron previously donated to rabbit reticulocytes (biologically labeled). Reticulocyte 59Fe uptake experiments with chemically labeled preparations indicated that iron bound at near neutral pH was more readily incorporated by reticulocytes than iron bound at low pH. The pH-dependent iron dissociation studies of biologically labeled transferrin solutions indicated that Fe3+, bound at the site from which the metal was initially utilized by the cells, dissociated between pH 5.8 and 7.4. In contrast, lower pH (5.2--5.8) was required to effect dissociation of iron that has remained bound to the protein after incubation with reticulocytes. These findings suggest that each human transferrin iron-binding site has different acid-base iron-binding properties which could be related to the observed heterogenic rabbit reticulocyte iron-donating properties of human transferrin and identifies that the near neutral iron-binding site initially surrenders its iron to these cells.  相似文献   

7.
An increase in extracellular spermine concentration brought about a progressive rise in intralysosomal pH in rabbit reticulocytes. Since intracellular release of iron from transferrin is believed to involve the protonation of the iron-transferrin complex, the rise in intralysomal pH could account for the inhibitory effect of spermine on iron uptake. The inhibition could be reversed if spermine was removed by washing. As a result of spermine treatment, more acid-labile N-terminal monoferric transferrin and less apotransferrin were released from the cell. These results are consistant with the protonation theory of iron release.  相似文献   

8.
The aim of this investigation was to test the hypothesis that elevation of intracellular pH would inhibit iron uptake by reticulocytes. The experiments were performed with rabbit reticulocytes and iron bound to rabbit transferrin. Incubation of the cells with NH4Cl, (NH4)2CO3, CH3NH2 and (CH3)2NH was used in an attempt to increase intracellular pH. These substances were all found to inhibit iron uptake by reticulocytes. The mechanism of action of NH4Cl and CH3NH2 was investigated in detail. Similar results were found with both reagents. They inhibited iron uptake in a concentration-dependent manner, but produced a small increase in the cellular uptake of transferrin. The onset of action was rapid and the effect was reversible. There was no decrease in the number of transferrin-binding sites per cell and their apparent affinity for transferrin increased slightly, while the efficiency of iron removal from transferrin per binding site diminished greatly. The rate of transferrin release from reticulocytes was unaffected. NH4Cl did not affect the rate of iron release from transferrin in a cell-free system. Incubation of reticulocytes with 10 mM NH4Cl or CH3NH2 was found to produce an increase in intracellular pH of 0.05—0.15 pH units. The intracellular pH determined by used of the weak acid 5,5-dimethyl-oxazolidine-2,4-dione was significantly higher than that obtained with the weak base (CH3)2NH. By transmission electron microscopy it was shown that reticulocytes treated with NH4Cl or CH3NH2 have enlarged intracellular vesicles. The results are considered to support the hypothesis that iron release from transferrin in reticulocytes occurs as a result of protonation of the transferrin within intracellular vesicles. According to this hypothesis, weak bases such as NH3 and CH3NH2 inhibit iron release by neutralizing H+ within the vesicles.  相似文献   

9.
1. A comparative study was made of transferrin and iron uptake by rabbit, rat and human reticulocytes and chick embryo erythrocytes from rabbit, rat, human, chicken and porcine transferrins, human lactoferrin and chicken conalbumin. 2. Three methods were used, viz. direct and competitive uptake studies of transferrin and iron by the four species of cells, and competitive studies of transferrin binding by solubilized membrane receptors (rabbit reticulocytes only). 3. Methods were devised to analyse the data so as to obtain indices of relatedness or relative affinities of each type of heterologous transferrin in rates of iron uptake found with transferrin and cells from various species are largely due to variation in the affinity of cellular receptors for different transferrins. 5. It is concluded that the procedure used in this investigation allow the assessment of phylogenetic relationships and evolutionary trends obtained by structural studies of proteins.  相似文献   

10.
The effect of the known inhibitors of iron uptake, n-butylamine and NH4Cl, was examined at the molecular level to more precisely define the mechanisms by which these lysosomotropic agents block iron uptake by rabbit reticulocytes. Utilizing a rapid pulse-chase technique to follow the handling of a cohort of 59Fe, 125I-transferrin bound to rabbit reticulocytes, both amines were observed to have no effect on the cell-mediated release of 59Fe from internalized transferrin. The results indicated, however, that both agents acted to 1) retard the internalization of transferrin bound to transferrin receptors on the plasma membrane of reticulocytes, 2) retard the externalization of internalized transferrin, and 3) block the transport into the cytosol of iron released from transferrin.  相似文献   

11.
Human diferric transferrin was partially labeled with 59Fe at low or neutral pH (chemically labeled) and by replacement of diferric iron previously donated to rabbit reticulocytes (biologically labeled). Reticulocyte 59 uptake experiments with chemically labeled preparations indicated that iron bound at near neutral ph was more readily incorporated by reticulocytes than iron bound at low pH. The pH-dependent iron dissociation studies of biologically labeled transferrin solutions indicated that Fe3+, bound at the site from which the metal was initially utilized by the cells, dissociated between pH 5.8 and 7.4. In contrast, lower pH (5.2–5.8) was required to effect dissociation of iron that had remained bound to the protein after incubation with reticulocytes. These findings suggest that each human transferrin iron-binding site has different acid-base iron-binding properties which could be related to the observed heterogenic rabbit reticulocyte iron-binding properties of human transferrin and identifies that the near neutral iron-donating site initially surrenders its iron to these cells.  相似文献   

12.
The mechanism of transferrin uptake by reticulocytes was investigated using rabbit transferrin labelled with 125I and 59Fe and rabbit reticulocytes which had been treated with trypsin, Pronase or neuraminidase. Low concentrations of the proteolytic enzymes produced a small increase in transferrin and iron uptake by the cells. However, higher concentrations or incubation of the cells with the enzymes for longer periods caused a marked fall in transferrin and iron uptake. This fall was associated with a reduction in the proportion of cellular transferrin which was bound to a cell membrane component solubilized with the non-ionic detergent, Teric 12A9. The effect of trypsin and Pronase on transferrin release from the cells was investigated in the absence and in the presence of N-ethylmaleimide which inhibits the normal process of transferrin release. It was found that only a small proportion of transferrin which had been taken up by reticulocytes at 37°C but nearly all that taken up 4°C was released when the cells were subsequently incubated with trypsin plus N-ethylmaleimide, despite the fact that about 80% of the 59Fe in the cells was released in both instances. Neuraminidase produced no change in transferrin and iron uptake by the cells.These experiments provide evidence that transferrin uptake by reticulocytes requires interaction with a receptor which is protein in nature and that following uptake at 37°C, most of the transferrin is located at a site unavailable to the action of proteolytic enzymes. The results support the hypothesis that transferrin enters reticulocytes by endocytosis.  相似文献   

13.
The mechanism by which weak bases block iron uptake by immature erythroid cells was investigated using rabbit and rat reticulocytes and erythroblasts from the fetal rat liver. A large variety of bases was found to inhibit iron uptake but to have a much smaller or no effect on transferrin uptake by the cells. Quinacrine and chloroquine were active at the lowest concentrations. Dansylcadaverine, an inhibitor of transglutaminase, was also active at low concentration. However, the results do not indicate a role for transglutaminase in the iron uptake process. Instead they show that the major effect of the bases is to inhibit iron release from transferrin molecules on or within the cells. The possible mechanism of this effect was investigated by measurement of intracellular ATP levels, intracellular pH and by morphological studies utilizing fluorescent and electron microscopy. The bases caused little change in ATP levels, but elevated intracellular pH, probably due to accumulation within intracellular vesicles, which were shown to accumulate fluorescent weak bases, to swell under the action of the bases and to be the site of intracellular localization of transferrin. It is concluded that the bases tested in this work inhibit iron release from transferrin in intracellular vesicles by increasing their pH rather than by blocking transglutaminase and thereby restricting endocytosis. Reduction of transferrin uptake by the cells when it occurs is probably due to inhibition of recycling of transferrin receptors to the outer cell membrane.  相似文献   

14.
Membrane transport of non-transferrin-bound iron by reticulocytes   总被引:8,自引:0,他引:8  
The transport of non-transferrin-bound iron into rabbit reticulocytes was investigated by incubating the cells in 0.27 M sucrose with iron labelled with 59Fe. In most experiments the iron was maintained in the reduced state, Fe(II), with mercaptoethanol. The iron was taken up by cytosolic, haem and stromal fractions of the cells in greater amounts than transferrin-iron. The uptake was saturable, with a Km value of approx. 0.2 microM and was competitively inhibited by Co2+, Mn2+, Ni2+ and Zn2+. It ceased when the reticulocytes matured into erythrocytes. The uptake was pH and temperature sensitive, the pH optimum being 6.5 and the activation energy for iron transport into the cytosol being approx. 80 kJ/mol. Ferric iron and Fe(II) prepared in the absence of reducing agents could also be transported into the cytosol. Sodium chloride inhibited Fe(II) uptake in a non-competitive manner. Similar degrees of inhibition was found with other salts, suggesting that this effect was due to the ionic strength of the solution. Iron chelators inhibited Fe(II) uptake by the reticulocytes, but varied in their ability to release 59Fe from the cells after it had been taken up. Several lines of evidence showed that the uptake of Fe(II) was not being mediated by transferrin. It is concluded that the reticulocyte can transport non-transferrin-bound iron into the cytosol by a carrier-mediated process and the question is raised whether the same carrier is utilized by transferrin-iron after its release from the protein.  相似文献   

15.
T T Loh 《Life sciences》1983,32(8):915-920
Measurement of the distribution of the four species of transferrin, viz, apotransferrin, diferric transferrin and the two monoferric transferrin, before and after incubation of iron-rich rabbit transferrin with rabbit reticulocytes showed that not all transferrin released from the cells were in the form of apotransferrin. Instead, a mixture of all four species of the protein was released with apotransferrin and C-terminal monoferric transferrin being the major fractions. The buffer solution containing 125I-labelled transferrin showed a continuous gain in percentages in apotransferrin and C-terminal monoferric transferrin after each incubation with reticulocytes. The N-terminal monoferric transferrin, however, remained unchanged suggesting that in the process of transferrin uptake by cells, the diferric transferrin releases its iron from the acid-labile site at N-domain first before the other iron from the acid-stable site.  相似文献   

16.
Iron uptake from 55Fe-labelled transferrin, ferric citrate and the two fungal sideramines, ferricrocin and fusigen was studied using four erythroid cell cultures: Friend virus-transformed erythroleukemic cells (mouse), transformed bone marrow cells, Detroit-98 (human), reticulocytes (bovine), bone marrow cells (rabbit). The present comparative study reveals pronounced differences in iron uptake behaviour. Compared to transferrin, ferric citrate and the sideramines are preferred in transformed erythroid cells. In reticulocytes transferrin and ferric citrate showed a better uptake as compared to the two sideramines. Primary bone marrow cells showed nearly equal iron uptake rates using transferrin or ferricrocin.  相似文献   

17.
To ascertain whether transferrin need enter the reticulocyte to deliver its iron after the association of transferrin with the cell membrane, {125I, 59Fe-}labeled transferrin was covalently bound to Sepharose beads. Iron uptake from Sepharose-bound transferrin into rabbit reticulocytes was about 9% that from free transferrin while heme synthesis was more efficient at nearly 19%. Similar results were obtained with murine transferrin and murine reticulocytes.These results indicate that the entrance of transferrin inside the cell is not an obligatory step in the process of iron uptake in rabbit and murine reticulocytes.  相似文献   

18.
Iron uptake from 55Fe-labelled transferrin, ferric citrate and the two fungal sideramines, ferricrocin and fusigen was studied using four erythroid cell cultures: Friend virus-transformed erythroleukemic cells (mouse), transformed bone marrow cells, Detroit-98 (human), reticulocytes (bovine), bone marrow cells (rabbit). The present comparative study reveals pronounced differences in iron uptake behaviour. Compared to transferrin, ferric citrate and the sideramines are preferred in transformed erythroid cells. In reticulocytes transferrin and ferric citrate showed a better uptake as compared to the two sideramines. Primary bone marrow cells showed nearly equal iron uptake rates using transferrin or ferricrocin.  相似文献   

19.
59Fe uptake by rabbit reticulocytes from human transferrin-bound iron was studied by using transferrin solutions (35, 50, 65, 80 and 100% saturated with iron) whose only common characteristic was their content of diferric transferrin. During the early incubation period, 59Fe uptake from each preparation by reticulocytes was identical despite wide variations in amounts of total transferrin, total iron, monoferric transferrin and apotransferrin in solution. During the later phase of incubation, rate of uptake declined and was proportional to each solution's monoferric transferrin content. Uptake was also studied in a comparative experiment which used two identical, partially saturated transferrin preparations, one uniformly 59Fe-labelled and the other tracer-labelled with [59Fe]diferric transferrin. In both experiments, iron uptake by reticulocytes corresponded to utilization of a ferric ion from diferric transferrin before utilization of iron from monoferric transferrin.  相似文献   

20.
The uptake of iron from transferrin by isolated rat hepatocytes and rat reticulocytes has been compared. The results show the following. 1) Reticulocytes and hepatocytes express plasma membrane NADH:ferricyanide oxidoreductase activity. The activity, expressed per 10(6) cells, is approximately 60-fold higher in the hepatocyte than in the reticulocyte. 2) Hepatocyte plasma membrane NADH:ferricyanide oxidoreductase activity and uptake of iron from transferrin are stimulated by low oxygen concentration and inhibited by iodoacetate. In reticulocytes, similar changes are seen in NADH:ferricyanide oxidoreductase activity, but not on iron uptake. 3) Ferricyanide inhibits the uptake of iron from transferrin by hepatocytes, but has no effect on iron uptake by reticulocytes. 4) Perturbants of endocytosis and endosomal acidification have no inhibitory effect on hepatocyte iron uptake, but inhibit reticulocyte iron uptake. 5) Hydrophilic iron chelators effectively inhibit hepatocyte iron uptake, but have no effect on reticulocyte iron uptake. Hydrophobic iron chelators generally inhibit both hepatocyte and reticulocyte iron uptake. 6) Divalent metal cations with ionic radii similar to or less than the ferrous iron ion are effective inhibitors of hepatocyte iron uptake with no effect on reticulocyte iron uptake. The results are compatible with hepatocyte uptake of iron from transferrin by a reductive process at the cell surface and reticulocyte iron uptake by receptor-mediated endocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号