首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vascular endothelial growth factor (VEGF, VEGF-A) is a major regulator of physiological and pathological angiogenesis. One feature of VEGF is the existence of multiple isoforms arising from alternative exon splicing. Our initial biochemical and biological studies indicated that such isoforms are uniquely suited to generate angiogenic gradients by virtue of their differential ability to interact with the extracellular matrix (ECM). Although ECM-bound VEGF was bioactive, processing by physiologically relevant proteases such as plasmin was identified as a key mechanism to convert ECM-bound VEGF into freely diffusible forms. This retrospective article examines the early studies and also emphasizes the subsequent progress in our understanding of these processes in health and disease.  相似文献   

2.
We propose a mathematical model that describes the formation of gradients of different isoforms of vascular endothelial growth factor (VEGF). VEGF is crucial in the process of tumor-induced angiogenesis, and recent experiments strongly suggest that the molecule is most potent when bound to the extracellular matrix (ECM). Using a system of reaction-diffusion equations, we study diffusion of VEGF, binding of VEGF to the ECM, and cleavage of VEGF from the ECM by matrix metalloproteases (MMPs). We find that spontaneous gradients of matrix-bound VEGF are possible for an isoform that binds weakly to the ECM (i.e. VEGF165), but cleavage by MMPs is required to form long-range gradients of isoforms that bind rapidly to the ECM (i.e. VEGF189). We also find that gradient strengths and ranges are regulated by MMPs. Finally, we find that VEGF molecules cleaved from the ECM may be distributed in patterns that are not conducive to chemotactic migration toward a tumor, depending on the spatial distribution of MMP molecules. Our model elegantly explains a number of in vivo observations concerning the significance of different VEGF isoforms, points to VEGF165 as an especially significant therapeutic target and indicator of a tumor's angiogenic potential, and enables predictions that are subject to testing with in vitro experiments.  相似文献   

3.
Y Sato 《Human cell》1998,11(4):207-214
  相似文献   

4.
Blood flow governs transport of oxygen and nutrients into tissues. Hypoxic tissues secrete VEGFs to promote angiogenesis during development and in tissue homeostasis. In contrast, tumors enhance pathologic angiogenesis during growth and metastasis, suggesting suppression of tumor angiogenesis could limit tumor growth. In line with these observations, various factors have been identified to control vessel formation in the last decades. However, their impacts on the vascular transport properties of oxygen remain elusive. Here, we take a computational approach to examine the effects of vascular branching on blood flow in the growing vasculature. First of all, we reconstruct a 3D vascular model from the 2D confocal images of the growing vasculature at postnatal day 5 (P5) mouse retina, then simulate blood flow in the vasculatures, which are obtained from the gene targeting mouse models causing hypo- or hyper-branching vascular formation. Interestingly, hyper-branching morphology attenuates effective blood flow at the angiogenic front, likely promoting tissue hypoxia. In contrast, vascular hypo-branching enhances blood supply at the angiogenic front of the growing vasculature. Oxygen supply by newly formed blood vessels improves local hypoxia and decreases VEGF expression at the angiogenic front during angiogenesis. Consistent with the simulation results indicating improved blood flow in the hypo-branching vasculature, VEGF expression around the angiogenic front is reduced in those mouse retinas. Conversely, VEGF expression is enhanced in the angiogenic front of hyper-branching vasculature. Our results indicate the importance of detailed flow analysis in evaluating the vascular transport properties of branching morphology of the blood vessels.  相似文献   

5.
Blood vessels are crucial for normal development and growth by providing oxygen and nutrients. As shown by genetic targeting studies in mice, zebrafish and Xenopus blood vessel formation (or angiogenesis) is a multistep process, which is highly dependent on angiogenic growth factors such as VEGF, the founding member of the VEGF family. VEGF binds to the tyrosine kinase receptors VEGFR-1 and VEGFR-2, and loss of VEGF or its receptors results in abnormal angiogenesis and lethality during development. In contrast, PlGF, another member of this family, binds only to VEGFR-1, and appears to be crucial exclusively for pathological angiogenesis in the adult. However, the expression of VEGFR-1 and VEGFR-2 on non-vascular cells suggests additional biological properties for these growth factors. Indeed, the VEGF family and its receptors determine development and homeostasis of many organs, including the respiratory, skeletal, hematopoietic, nervous, renal and reproductive system, independent of their vascular role. These new insights broaden the activity spectrum of these "angiogenic" growth factors, and may have therapeutic implications when using these growth factors for vascular and/or non-vascular purposes.  相似文献   

6.
VEGF is a key promoter of angiogenesis and a major target of proangiogenic therapy for peripheral arterial disease (PAD). Greater understanding of VEGF angiogenic signaling and guidance by gradients for new capillaries will aid in developing new proangiogenic therapies and improving existing treatments. However, in vivo measurements of VEGF concentration gradients at the cell scale are currently impossible. We have developed a computational model to quantify VEGF distribution in extensor digitorum longus skeletal muscle using measurements of VEGF, VEGF receptor (VEGFR), and neuropilin-1 (NRP1) expression in an experimental model of rat PAD. VEGF is secreted by myocytes, diffuses through and interacts with extracellular matrix and basement membranes, and binds VEGFRs and NRP1 on endothelial cell surfaces of blood vessels. We simulate the effects of increased NRP1 expression and of therapeutic exercise training on VEGF gradients, receptor signaling, and angiogenesis. Our study predicts that angiogenic therapy for PAD may be achieved not only through VEGF upregulation but also through modulation of VEGFRs and NRP1. We predict that expression of 10(4) NRP1/cell can increase VEGF binding to receptors by 1.7-fold (vs. no NRP1); in nonexercise-trained muscle with PAD, angiogenesis is hindered due to limited VEGF upregulation, signaling, and gradients; in exercise-trained muscle, VEGF signaling is enhanced by upregulation of VEGFRs and NRP1, and VEGF signaling is strongest within the first week of exercise therapy; and hypoxia-induced VEGF release is important to direct angiogenesis towards unperfused tissue.  相似文献   

7.
Experimental angiogenesis of arterial vasa vasorum   总被引:1,自引:0,他引:1  
  相似文献   

8.
9.
10.
Angiogenesis has an essential role in many important pathological and physiological settings. It has been shown that vascular permeability factor/vascular endothelial growth factor (VPF/VEGF), a potent cytokine expressed by most malignant tumors, has critical roles in vasculogenesis and both physiological and pathological angiogenesis. We report here that at non-toxic levels, the neurotransmitter dopamine strongly and selectively inhibited the vascular permeabilizing and angiogenic activities of VPF/VEGF. Dopamine acted through D2 dopamine receptors to induce endocytosis of VEGF receptor 2, which is critical for promoting angiogenesis, thereby preventing VPF/VEGF binding, receptor phosphorylation and subsequent signaling steps. The action of dopamine was specific for VPF/VEGF and did not affect other mediators of microvascular permeability or endothelial-cell proliferation or migration. These results reveal a new link between the nervous system and angiogenesis and indicate that dopamine and other D2 receptors, already in clinical use for other purposes, might have value in anti-angiogenesis therapy.  相似文献   

11.
Increased uterine vascular permeability and angiogenesis are hallmarks of implantation and placentation. These events are profoundly influenced by vascular endothelial growth factor (VEGF). We previously showed that VEGF isoforms and VEGF receptors are expressed in the uterus, suggesting the role of VEGF in uterine vascular permeability and angiogenesis required for implantation and decidualization. We have recently shown that estrogen promotes uterine vascular permeability but inhibits angiogenesis, whereas progesterone stimulates angiogenesis with little effect on vascular permeability. However, the mechanism of differential steroid hormonal regulation of uterine angiogenesis remains unresolved. Oxygen homeostasis is essential for cell survival and is primarily mediated by hypoxia-inducible factors (HIFs). These factors are intimately associated with vascular events and induce VEGF expression by binding to the hypoxia response element in the VEGF promoter. HIFalpha isoforms function by forming heterodimers with the aryl hydrocarbon nuclear translocator (ARNT) (HIF-beta) family members. There is very limited information on the relationship among HIFs, ARNTs, and VEGF in the uterus during early pregnancy, although the role of HIFs in regulating VEGF and angiogenesis in cancers is well documented. Using molecular and physiological approaches, we here show that uterine expression of HIFs and ARNTs does not correlate with VEGF expression during the preimplantation period (days 1-4) in mice. In contrast, their expression follows the localization of uterine VEGF expression with increasing angiogenesis during the postimplantation period (days 5-8). This disparate pattern of uterine HIFs, ARNTs, and VEGF expression on days 1-4 of pregnancy suggests HIFs have multiple roles in addition to the regulation of angiogenesis during the peri-implantation period. Using pharmacological, molecular, and genetic approaches, we also observed that although progesterone primarily up-regulates uterine HIF-1alpha expression, estrogen transiently stimulates that of HIF-2alpha.  相似文献   

12.
We demonstrate ensemble three-dimensional cell cultures and quantitative analysis of angiogenic growth from uniform endothelial monolayers. Our approach combines two key elements: a micro-fluidic assay that enables parallelized angiogenic growth instances subject to common extracellular conditions, and an automated image acquisition and processing scheme enabling high-throughput, unbiased quantification of angiogenic growth. Because of the increased throughput of the assay in comparison to existing three-dimensional morphogenic assays, statistical properties of angiogenic growth can be reliably estimated. We used the assay to evaluate the combined effects of vascular endothelial growth factor (VEGF) and the signaling lipid sphingoshine-1-phosphate (S1P). Our results show the importance of S1P in amplifying the angiogenic response in the presence of VEGF gradients. Furthermore, the application of S1P with VEGF gradients resulted in angiogenic sprouts with higher aspect ratio than S1P with background levels of VEGF, despite reduced total migratory activity. This implies a synergistic effect between the growth factors in promoting angiogenic activity. Finally, the variance in the computed angiogenic metrics (as measured by ensemble standard deviation) was found to increase linearly with the ensemble mean. This finding is consistent with stochastic agent-based mathematical models of angiogenesis that represent angiogenic growth as a series of independent stochastic cell-level decisions.  相似文献   

13.
The angiogenic process begins with the cell proliferation and migration into the primary vascular network, and leads to vascularization of previously avascular tissues and organs as well to growth and remodeling of the initially homogeneous capillary plexus to form a new microcirculation. Additionally, an increase in microvascular permeability is a crucial step in angiogenesis. Vascular endothelial growth factor (VEGF) plays a central role in angiogenesis. We have previously reported that albendazole suppresses VEGF levels and inhibits malignant ascites formation, suggesting a possible effect on angiogenesis. This study was therefore designed to investigate the antiangiogenic effect of albendazole in non-cancerous models of angiogenesis. In vitro, treatment of human umbilical vein endothelial cells (HUVECs) with albendazole led to inhibition of tube formation, migration, permeability and down-regulation of the VEGF type 2 receptor (VEGFR-2). In vivo albendazole profoundly inhibited hyperoxia-induced retinal angiogenesis in mice. These results provide new insights into the antiangiogenic effects of albendazole.  相似文献   

14.
The adult vasculature results from a network of vessels that is originally derived in the embryo by vasculogenesis, a process whereby vessels are formed de novo from endothelial cell (EC) precursors, known as angioblasts. During vasculogenesis, angioblasts proliferate and come together to form an initial network of vessels, also known as the primary capillary plexus. Sprouting and branching of new vessels from the preexisting vessels in the process of angiogenesis remodel the capillary plexus. Normal angiogenesis, a well-balanced process, is important in the embryo to promote primary vascular tree as well as an adequate vasculature from developing organs. On the other hand, pathological angiogenesis which frequently occurrs in tumors, rheumatoid arthritis, diabetic retinopathy and other circumstances can induce their own blood supply from the preexisting vasculature in a route that is close to normal angiogenesis. Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) is perhaps the most important of pro-angiogenic cytokine because of its ability to regulate most of the steps in the angiogenic cascade. The main goal of this review article is to discuss the complex nature of the mode of action of VPF/VEGF on vascular endothelium. To this end, we conclude that more research needs to be done for completely understanding the VPF/VEGF biology with relation to angiogenesis. (Mol Cell Biochem 264: 51–61, 2004)  相似文献   

15.
Proper regulation of angiogenesis and vascular permeability is essential for the physiological functioning of the female reproductive tract, and major health problems in women, such as dysfunctional uterine bleeding, endometriosis, and uterine cancer, involve a vascular component. There is a large body of literature that describes the effects of sex steroids on the vasculature of the reproductive tract, but far less is known about the molecular mechanisms that regulate these important actions. We hope that this minireview will help emphasize the need for mechanistic studies in this area to improve treatment and prevention of these major health problems in women. Specifically, we believe it will be important to 1) define the exact roles of FGF, VEGF, and other factors in physiological and pathological events in the reproductive tract and the cell types and receptors involved; 2) identify estrogen and progesterone receptor subtypes, the DNA elements, nuclear protein factors, and signaling pathways that mediate regulation of these genes by sex steroids; 3) elucidate any mechanisms of cross-talk between sex steroids and other regulatory factors in the overall regulation of FGF, VEGF, and other angiogenic/permeability factors; and 4) eventually understand how genetic polymorphisms of key regulatory elements affect angiogenesis and the regulation of vascular function in the female reproductive tract.  相似文献   

16.
Shibuya M 《BMB reports》2008,41(4):278-286
Angiogenesis, the formation of blood vessels, is essential for preparing a closed circulatory system in the body, and for supplying oxygen and nutrition to tissues. Major diseases such as cancer, rheumatoid arthritis, and atherosclerosis include pathological angiogenesis in their malignant processes, suggesting anti-angiogenic therapy to be a new strategy for suppression of diseases. However, until the 1970s, the molecular basis of angiogenesis was largely unknown. In recent decades, extensive studies have revealed a variety of angiogenic factors and their receptors, including vascular endothelial growth factor (VEGF)-VEGFRs, Angiopoietin-Tie, Ephrin-EphRs and Delta-Notch to be the major regulators of angiogenesis in vertebrates. VEGF and its receptors play a central role in physiological as well as pathological angiogenesis, and functional inhibitors of VEGF and VEGFRs such as anti-VEGF neutralizing antibody and small molecules that block the tyrosine kinase activity of VEGFRs have recently been approved for use to treat patients with colorectal, lung, renal and liver cancers. These drugs have opened a novel field of cancer therapy, i.e. anti-angiogenesis therapy. However, as yet they cannot completely cure patients, and cancer cells could become resistant to these drugs. Thus, it is important to understand further the molecular mechanisms underlying not only VEGF-VEGFR signaling but also the VEGF-independent regulation of angiogenesis, and to learn how to improve anti-angiogenesis therapy.  相似文献   

17.
18.
Kim JH  Park SW  Yu YS  Kim KW  Kim JH 《Biochimie》2012,94(3):734-740
In ocular development, retinal physiological hypoxia in response to the retinal metabolic activity controls retinal vascular development, which is regulated by variable angiogenic factors. Herein, we demonstrated that hypoxia-induced IGF-II could contribute to retinal vascularization in ocular development. In the developing retina, IGF-II expression appears to be predominant on retinal vessels, which was chronologically increased and peaked during active retinal angiogenesis similar to VEGF expression. Under hypoxic condition, IGF-II as well as VEGF was significantly up-regulated in retinal vascular endothelial cells. In addition, IGF-II treatment could also increase VEGF expression in retinal vascular endothelial cells. The VEGF expression induced by IGF-II was mediated by ERK-1/2 activation. Moreover, IGF-II strongly promoted angiogenic processes of migration and tube formation of retinal microvascular endothelial cells. In conclusion, our results provided that hypoxia-induced IGF-II may regulate retinal vascular development not only directly by IGF-II-mediated angiogenic activity, but also indirectly by IGF-II-induced VEGF expression. Therefore, the potential contribution of IGF-II to pathological retinal angiogenesis should be furthermore explored for the development of novel treatments to vaso-proliferative retinopathies.  相似文献   

19.
The adult vasculature results from a network of vessels that is originally derived in the embryo by vasculogenesis, a process whereby vessels are formed de novo from endothelial cell (EC) precursors, known as angioblasts. During vasculogenesis, angioblasts proliferate and come together to form an initial network of vessels, also known as the primary capillary plexus. Sprouting and branching of new vessels from the preexisting vessels in the process of angiogenesis remodel the capillary plexus. Normal angiogenesis, a well-balanced process, is important in the embryo to promote primary vascular tree as well as an adequate vasculature from developing organs. On the other hand, pathological angiogenesis which frequently occurs in tumors, rheumatoid arthritis, diabetic retinopathy and other circumstances can induce their own blood supply from the preexisting vasculature in a route that is close to normal angiogenesis. Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) is perhaps the most important of pro-angiogenic cytokine because of its ability to regulate most of the steps in the angiogenic cascade. The main goal of this review article is to discuss the complex nature of the mode of action of VPF/VEGF on vascular endothelium. To this end, we conclude that more research needs to be done for completely understanding the VPF/VEGF biology with relation to angiogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号