首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 165 毫秒
1.
A branched α-cyclodextrin is a derivative of an α-cyclodextrin with a branch consisting of an extra glucose unit. Its water solubility is considerably higher than that of the unbranched one. We have studied the high solubility of the molecule in aqueous solution by molecular dynamics simulations. Trajectories of the molecule at 293 K were calculated using GROMOS programs in three different environments, i.e., in vacuo, in the crystalline state, and in aqueous solution. A simulation in vacuo was carried out to explore stable conformations of the molecule in the isolated system. The quality of the simulations were examined by comparing the X-ray and the simulated crystal structures.The results of the simulations show three remarkable structural features of the molecule: self-inclusion with its branched portion, twist-boat conformation of a glucose ring, and wobbling of its macrocycle. Among these, the last feature is closely related to the water solubility of the molecule. The solubility of cyclodextrin appears to be mainly governed by its intramolecular interglucose hydrogen bonds, which inhibit hydration by solvent water molecules. The results of our simulations indicate that the capability to form hydrogen bonds in branched α-cyclodextrin decreased as the macrocycle of the molecule lost its regular circular shape. Such wobbling of the macrocycle was observed on a relatively short time scale (several picoseconds). An extra glucose unit introduced to α-cyclodextrin may cause the improved water solubility of the molecule through the greater wobbling motion of its macrocycle.  相似文献   

2.
The structure of crystalline -cyclodextrin (-CD) hexahydrate, form I (C36H60O30·6H2O, space group P212121) is experimentally so well determined by X-ray and by neutron diffraction analyses that the positions of all the hydrogen atoms are available. This provides an opportunity for testing an empirical force field that is currently used in simulations of protein and nucleic acid structures by performing molecular dynamics studies employing the GROMOS program package on a system of 4 unit cells containing 16 -CD molecules and 96 water molecules.A detailed comparison of the simulated and experimentally determined crystal structures shows that the experimental positions of the -CD atoms are reproduced within 0.025 nm, well within the overall experimental accuracy of 0.036 nm; that the water molecules are on average within 0.072 nm from their experimental sites, with two thirds reproduced within experimental accuracy by the calculations; that high correlation is produced, between the occurrence of simulated and experimentally observed hydrogen bonds.The good agreement between simulated and experimental results suggests that the tested force field is reliable.  相似文献   

3.
A new series of amphiphilic α-cyclodextrins were synthesized by grafting N-acylated amino acids [valine, leucine, phenylalanine, methionine, and tryptophan (3a-e)] to the primary hydroxyl groups via ester bond formation. The synthetic pathway involves selective hexa-bromination of the primary hydroxyls followed by per-substitution with the carboxylate moiety of the N-acetyl residues in the presence of DBU (1,8-diazabicyclo[5,4,0]undec-7-ene). The ability of the synthetic compounds for the extraction of dopamine was studied. The results showed a considerable ability of some of the amphiphilic compounds for the extraction of dopamine into octanol phase from water. To complete the study, the binding affinity of dopamine toward the synthetic host molecules was calculated by using of the molecular docking technique.  相似文献   

4.
A simple and specific recovery method for α-cyclodextrin (α-CD) was developed by employing co-digestion of CD reaction mixtures with CGTase fromBacillus ohbensis and α-glucosidase. The combination of CGTase fromB. ohbensis and α-glucosidase, such as α-amylase, β-amylase, or glucoamylase was examined for the selective degradation of β-and γ-CD in the CD reaction mixture formed by CGTase fromB. macerans. The co-digestion of the CD mixture with Taka-amylase and the CGTase resulted in α-CD and maltodextrins, the combination with β-amylase resulted in α-CD and maltose, and that with glucoamylase resulted in α-CD and glucose. The conditions of selective degradation of β- and γ-CD by co-digestion with the CGTase and glucoamylase were optimized as follows: the incubation pH, 5.5; incubation temperature, 50°C; CGTase concentration, 15 u/g of substrate; glucoamylase, 10 u/g of substrate; substrate concentration, 10% (w/v); the incubation time was fixed for 18 hr from the stand point of operation convenience. Most part of the content was presented in poster session at the 7th International Cyclodextrin Symposium, Tokyo, April 1994.  相似文献   

5.
The chaperone action of α-cyclodextrin (α-CyD), based on providing beneficial microenvironment of hydrophobic nanocavity to form molecular complex with alcohol dehydrogenase (ADH) was examined by experimental and computational techniques. The results of UV-vis and dynamic light scattering (DLS) indicated that the chaperone-like activity of α-CyD depends on molecular complex formation between α-CyD and ADH, which caused to decrease the amount and size of polymerized molecules. Computational calculations of molecular dynamic (MD) simulations and blind docking (BD) demonstrated that α-CyD acts as an artificial chaperone because of its high affinity to the region of ADH’s two chains interface. The hydrophobic nanocavity of α-CyD has the ability to form inclusion complex due to the presence of phenyl ring of aromatic phenylalanine (Phe) residue in the dimeric intersection area. Delocalization of ADH subunits, which causes the exposure of Phe110, takes part in the enzyme polymerization and has proven to be beneficial for aggregation inhibition and solubility enhancement within the host α-CyD-nanocavity.  相似文献   

6.
On the basis of X-ray and neutron data for several α-cyclodextrin·substrate complexes it is shown that basically two different structures for α-cyclodextrin exist, one “tense”, the other “relaxed”. An “induced-fit”-like mechanism for α-cyclodextrin complex formation is proposed.  相似文献   

7.
Crystals of the hydrated n-propanol inclusion complex of γ-cyclodextrin (γ-CD; cyclo-octaamylose) have space group P4, a = b = 23.759(7), c = 23.069(7)Å and six quarter γ-CD per asymmetric unit. The structure was solved by YZARC and refined to R = 14% using 6300 X-ray counter data. The γ-CD are stacked, n-propanol (not located) occupies the channel-type cavity and 27 water sites populate interstices between stacks. Within the stacks γ-CD are arranged head-to-head as well as head-to-tail and H-bonded with O(2), O(3), O(6) hydroxyls. In the series α-,β-,γ-CD, angles C(1′)-O(4)-C(4) reduce from 119°-117.7°-112.6°, virtual O(4′)?O(4) distances increase 4.23-4.39-4.48 Å. intramolecular H-bonding distances O(2)?O(3) between adjacent glucoses, 3.00 Å in α-CD are wider than ~2.83 Å in β- and γ-CD, indicating a greater flexibility of the former.  相似文献   

8.
Semi-empirical quantum mechanics calculations using AM1 (Austin Method 1) were carried out for various host-guest combinations of α-cyclodextrin and mono-halogen benzoic acids. The energetically favorable inclusion structures were identified. The AM1 results show that α-cyclodextrin complexes with mono-halogen benzoic acid acids (where the halogen is chlorine, bromide, iodine) as guest compounds are more stable in the “head first” position than in the “tail-first” position for meta and para isomers while ortho mono-halogen benzoic acids complexes with α-cyclodextrin are more stable in “tail-first” position. The calculated structures were found to be in good agreement with those obtained from crystalographic databases.   相似文献   

9.
α-Cyclodextrin was transformed in a cationic unit after per substitution with histidine (His-α-CD) and lysine (Lys-α-CD) molecules on the primary face. His-α-CD and Lys-α-CD were used to form electrostatic complexes (CDplexes) with a plasmid DNA encoding luciferase gene, and the ability of CDplexes to transfect mammalian cells was examined using HEK293-T7 cells. The luciferase activity in cells transfected with His-α-CDplexes was 8-fold higher than that obtained Lys-α-CDplexes. When the transfection was carried out in the presence of chloroquine, the luciferase activity with His-α-CDplexes and Lys-α-CDplexes increased 6 and 25 times, respectively. The lower enhancement with His-α-CDplexes confirmed that histidine induced a proton sponge effect inside endosomes upon imidazole protonation, favoring DNA delivery in the cytosol. At the same time, we found that the condensation of DNA with His-α-CD was unexpectedly stronger than that obtained with the lysyl-α-CD counterpart. Moreover, it was as strong as that observed with high molecular weight polylysine. NMR (ROESY and DOSY) investigations in the absence of DNA showed that an inclusion complex is formed between the imidazole ring of histidine and the hydrophobic cavity of CD but no His-α-CD polymers can be formed by intermolecular interactions. These results suggest that intermolecular interactions between imidazole and His-α-CD cavity could be involved to form supramolecular assemblies in the presence of a DNA scaffold leading to DNA condensation into low diameter particles.  相似文献   

10.
11.
The targeting of recombinant proteins for secretion to the culture medium of Escherichia coli presents significant advantages over cytoplasmic or periplasmic expression. However, a major barrier is inadequate secretion across two cell membranes. In the present study, we attempted to circumvent this secretion problem of the recombinant α-cyclodextrin glycosyltransferase (α-CGTase) from Paenibacillus macerans strain JFB05-01. It was found that glycine could promote extracellular secretion of the recombinant α-CGTase for which one potential mechanism might be the increase in membrane permeability. However, further analysis indicated that glycine supplementation resulted in impaired cell growth, which adversely affected overall recombinant protein production. Significantly, delayed supplementation of glycine could control cell growth impairment exerted by glycine. As a result, if the supplementation of 1% glycine was optimally carried out at the middle of the exponential growth phase, the α-CGTase activity in the culture medium reached 28.5 U/ml at 44 h of culture, which was 11-fold higher than that of the culture in regular terrific broth medium and 1.2-fold higher than that of the culture supplemented with 1% glycine at the beginning of culture.  相似文献   

12.
The cgt gene encoding α-cyclodextrin glycosyltransferase (α-CGTase) from Paenibacillus macerans strain JFB05-01 was expressed in Escherichia coli as a C-terminal His-tagged protein. After 90 h of induction, the activity of α-CGTase in the culture medium reached 22.5 U/mL, which was approximately 42-fold higher than that from the parent strain. The recombinant α-CGTase was purified to homogeneity through either nickel affinity chromatography or a combination of ion-exchange and hydrophobic interaction chromatography. Then, the purified enzyme was characterized in detail with respect to its cyclization activity. It is a monomer in solution. Its optimum reaction temperature is 45 °C, and half-lives are approximately 8 h at 40 °C, 1.25 h at 45 °C and 0.5 h at 50 °C. The recombinant α-CGTase has an optimum pH of 5.5 with broad pH stability between pH 6 and 9.5. It is activated by Ca2+, Ba2+, and Zn2+ in a concentration-dependent manner, while it is dramatically inhibited by Hg2+. The kinetics of the α-CGTase-catalyzed cyclization reaction could be fairly well described by the Hill equation.  相似文献   

13.
Enhancing the production of α-cyclodextrin glycosyltransferase (α-CGTase) is a key aim in α-CGTase industries. Here, the mature α-cgt gene from Paenibacillus macerans JFB05-01 was redesigned with systematic codon optimization to preferentially match codon frequencies of Escherichia coli without altering the amino acid sequence. Following synthesis, codon-optimized α-cgt (coα-cgt) and wild-type α-cgt (wtα-cgt) genes were cloned into pET-20b(+) and expressed in E.?coli BL21(DE3). The total protein yield of the synthetic gene was greater than wtα-cgt expression (1,710?mg?L?1) by 2,520?mg?L?1, with the extracellular enzyme activity being improved to 55.3?U?mL?1 in flask fermentation. ΔG values at -3 to +50 of the pelB site of both genes were ?19.10?kcal?mol?1. Functionally, coα-CGTase was equally as effective as wtα-CGTase in forming α-cyclodextrin (α-CD). These findings suggest that preferred codon usage is advantageous for translational efficiency to increase protein expression. Finally, batch fermentation was applied, and the extracellular coα-CGTase enzyme activity was 326?% that of wtα-CGTase. The results suggest that codon optimization is a reasonable strategy to improve the yield of α-CGTase for industrial application.  相似文献   

14.
《Process Biochemistry》2010,45(6):880-886
The purpose of this study was to investigate the effect of medium additives on the secretion of recombinant α-cyclodextrin glucosyltransferase (α-CGTase) into the culture media of Escherichia coli. It is found that supplementation of the E. coli culture with SDS, glycine, Ca2+ or Na+, individually, facilitated the secretion of α-CGTase. Orthogonal experiment showed that the optimal condition to achieve maximal secretion of α-CGTase was the supplementation with 0.03% SDS, 400 mM Na+, 0.3% glycine and 10 mM Ca2+ together. Under this condition, extracellular enzyme activity reached 12.89 U/ml, which is 15 times higher than that of the culture without any additives. Further analysis showed that the permeability, fluidity and phosphatidylglycerol content of the E. coli cell membrane under the optimized condition were significantly increased in comparison to those under the control condition. These might be the potential mechanisms for the increased secretion of α-CGTase from the periplasmic compartment into the culture medium.  相似文献   

15.
β-cyclodextrin (βCD) and methyl-β-cyclodextrin (MβCD) complexes with sulfamethazine (SMT) were prepared and characterized by different experimental techniques, and the effects of βCD and MβCD on drug solubility were assessed via phase-solubility analysis. The phase-solubility diagram for the drug showed an increase in water solubility, with the following affinity constants calculated: 40.4 ± 0.4 (pH 2.0) and 29.4 ± 0.4 (pH 8.0) M−1 with βCD and 56 ± 1 (water), 39 ± 3 (pH 2.0) and 39 ± 5 (pH 8.0) M−1 with MβCD. According to 1H NMR and 2D NMR spectroscopy, the complexation mode involved the aromatic ring of SMT included in the MβCD cavity. The complexes obtained in solid state by freeze drying were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and thermal analysis. The amorphous complexes obtained in this study may be useful in the preparation of pharmaceutical dosage forms of SMT.  相似文献   

16.
α‐Cyclodextrin (α‐CD) is a soluble fiber derived from corn. It has previously been reported that early intervention with Mirafit fbcx, a trademarked name for α‐CD, has beneficial effects on weight management in obese individuals with type 2 diabetes, and that it preferentially reduces blood levels of saturated and trans fats in the LDL receptor knockout mice. The current investigation involves overweight but not obese nondiabetic individuals and was intended to confirm the effects of α‐CD on both weight management and improving blood lipid levels. Forty‐one healthy adults (age: 41.4 ± 13.6 years) participated in this 2‐month, double‐blinded, crossover study. In 28 compliant participants (8 males and 20 females), when the active phase was compared to the control phase, there were significant decreases in body weight (?0.4 ± 0.2 kg, P < 0.05), serum total cholesterol (mean ± s.e.m., ?0.295 ± 0.10 mmol/l, 5.3%, P < 0.02) and low‐density lipoprotein (LDL) cholesterol (?0.23 ± 0.11 mmol/l, ?6.7%, P < 0.05). Apolipoprotein B (Apo B) (?0.0404 ± 0.02 g/l, ?5.6%, P = 0.06) and insulin levels also decreased by 9.5% (?0.16 ± 0.08 pmol/l, P = 0.06) while blood glucose and leptin levels did not change. These results suggest that α‐CD exerts its beneficial health effects on body weight and blood lipid profile in healthy nonobese individuals, as previously reported in obese individuals with type 2 diabetes.  相似文献   

17.
Dodecyl glucooligosides, a class of interesting non ionic surfactant molecules were synthesized by cyclodextrin glucanotransferase from Bacillus macerans using either α-cyclodextrin (α-CD) or soluble starch as glycosyl donor and dodecyl β-d-glucoside (C12G1) or dodecyl β-d-maltoside (C12G2) as acceptor substrates. The primary coupling products obtained in the respective reactions were identified as dodecyl glucoheptaoside and dodecyl maltooctaoside by mass spectrometry. Higher yields of coupling products were obtained using α-CD as donor, while more dispoportionation occurred with starch. Nearly 78% conversion of the acceptor substrate C12G1 into dodecyl glucooligosides could be achieved at 132 μg/ml of CGTase in 20 min, while 93% of C12G2 could be transformed into products at 17.6 μg/ml of enzyme in 120 min using soluble starch as donor substrate. For applications requiring pure compounds like C12G7, synthesis using α-CD is advantageous. However, for applications in which a mixture of elongated alkyl glycosides is needed, reactions employing starch are clearly competitive.  相似文献   

18.
The production of γ-cyclodextrin usually includes the utilization of organic complexants. However, the non-complexant production of γ-cyclodextrin is always being explored due to the defects of organic complexants. However, in non-complexant production, the separation of γ-cyclodextrin from α- and β-cyclodextrin is still a challenge. Here, the selective hydrolysis ability of a cyclodextrinase designated PpCD (cyclodextrinase from Palaeococcus pacificus) on α-cyclodextrin, β-cyclodextrin, and γ-cyclodextrin was proved. The kcat/Km values of PpCD for α-cyclodextrin and β-cyclodextrin were roughly 12-fold and 5-fold higher than that of γ-cyclodextrin. It was proved that PpCD had selective hydrolysis ability and its γ-cyclodextrin purification performance was apparent on various simulated cyclodextrin mixtures with reported proportions derived from different CGTases. Besides, the hydrolysis temperature was optimized and it could be seen that 85°C was appropriate for the production of γ-cyclodextrin. In addition, the production of γ-cyclodextrin was achieved by using PpCD in the γ-CGTase reaction products.  相似文献   

19.
A novel green synthesis process about methyl-β-cyclodextrin has been investigated through the reaction between β-cyclodextrin and dimethyl carbonate by anhydrous potassium carbonate as catalyst in DMF. The influence of experimental factors including the molar ratio of dimethyl carbonate to β-cyclodextrin, reaction temperature, and reaction time on the average degree of substitution of methyl-β-cyclodextrin was studied. The results show that the average degree of substitution of methyl-β-cyclodextrin can be dependent on the reaction temperature and the molar ratio of raw material primarily. The structures of methyl-β-cyclodextrin were characterized by TLC, IR, MS, 1H NMR, and 13C NMR.  相似文献   

20.
Summary Several amylolytic yeasts from the genera Candida, Cryptococcus, Filobasidium, Lipomyces, Saccharomycopsis, Schwanniomyces, and Trichosporon can utilize -cyclodextrin as a sole carbon source. For most species significantly higher yields of both -amylase and glucoamylase are obtained as compared to with starch. This novel inducer of yeast amylases should therefore be useful in the characterization of these amylolytic enzymes and their regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号