首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ThxynA, an extracellular xylanase of T. halotolerans YIM 90462T, was purified to homogeneity from a fermentation broth by ultra-filtration, ammonium sulphate precipitation, hydrophobic chromatography and ion exchange chromatography. The purified xylanase has a molecular mass of 24 kDa and is optimally active at 80 °C and pH 6.0. The enzyme is stable over a broad pH range (pH 6.0–10.0) and shows good thermal stability when incubated at 70 °C for 1 h. The Km and Vmax values of the enzyme are 11.6 mg/mL and 434 μmol mg?1 min?1, respectively, using oat spelt xylan as a substrate. Moreover, the enzyme seemingly has both xylanase activity and cellulase activity. These unique properties suggest that it may be useful for industrial applications.  相似文献   

2.
A cellulase free thermostable xylanase from Streptomyces sp. CS428 was isolated from a Korean soil sample, purified by single-step chromatography, and biochemically characterized. The extracellular xylanase was purified 26 fold with a 55% yield by CM Trisacryl cation exchange chromatography. The molecular mass of the enzyme (Xyn428) was approximately 37 kDa. Xyn428 was found to be stable over a broad pH range (4 to ~13.6) and to 50 °C and have an optimum temperature of 80 °C. Xyn428 had Km and Vmax values of 102.3 ± 1.2 mg/mL and 3225.4 ± 15 mmol/min mg, respectively, when beechwood xylan was used as substrate. N-terminal sequence of Xyn428 was INRTDHNENSYLEIHNNEAR. CS428 was grown on different agro waste xylan and produced 4197.1 U/mL of xylanase activity in 36 h of cultivation in wheat bran without supplements. Xyn428 activity was inhibited by Tris salt at concentrations above 20 mM, and produced xylose and xylobiose as major products. It was found to degrade agro waste materials by small unit of enzyme (20 U/g) as shown by electron microscopy. As being simple in purification, thermo tolerant, pH stability in broad range and ability to produce xylooligosaccharides show that Xyn428 has potential applications in industries as a biobleaching agent and for xylooligosaccharides production.  相似文献   

3.
《Process Biochemistry》2010,45(10):1638-1644
An open reading frame (XylX) with 1131 nucleotides from Paenibacillus campinasensis BL11 was cloned and expressed in E. coli. It encodes a family 11 endoxylanase, designated as XylX, of 41 kDa. The homology of the amino acid sequence deduced from XylX is only 73% identical to the next closest sequence. XylX contains a family 11 catalytic domain of the glycoside hydrolase and a family 6 cellulose-binding module. The recombinant xylanase was fused to a His-tag for affinity purification. The XylX activity was 2392 IU/mg, with a Km of 6.78 mg/ml and a Vmax of 4953 mol/min/mg under optimal conditions (pH 7, 60 °C). At pH 11, 60 °C, the activity was still as high as 517 IU/mg. Xylanase activities at 60 °C under pH 5 to pH 9 remained at more than 69.4% of the initial activity level for 8 h. The addition of Hg2+ at 5 mM almost completely inhibited xylanase activity, whereas the addition of tris-(2-carboxyethyl)-phosphine (TCEP) and 2-mercaptoethanol stimulated xylanase activity. No relative activities for Avicel, CMC and d-(+)-cellobiose were found. Xylotriose constitutes the majority of the hydrolyzed products from oat spelt and birchwood xylan. Broad pH and temperature stability shows its application potentials for biomass conversion, food and pulp/paper industries.  相似文献   

4.
《Process Biochemistry》2010,45(1):88-93
A fibrinolytic protease (FP84) was purified from Streptomyces sp. CS684, with the aim of isolating economically viable enzyme from a microbial source. SDS-PAGE and fibrin zymography of the purified enzyme showed a single protein band of approximately 35 kDa. Maximal activity was at 45 °C and pH 7–8, and the enzyme was stable between pH 6 and 9 and below 40 °C. It exhibited fibrinolytic activity, which is stronger than that of plasmin. FP84 hydrolyzed Bβ-chains of fibrinogen, but did not cleave Aα- and γ-chains. Km, Vmax and Kcat values for azocasein were 4.2 mg ml−1, 305.8 μg min−1 mg−1 and 188.7 s−1, respectively. The activity was suppressed by Co2+, Zn2+, Cu2+ and Fe2+, but slightly enhanced by Ca2+ and Mg+2. Additionally, the activity was slightly inhibited by aprotinin and PMSF, but significantly inhibited by pefabloc, EDTA and EGTA. The first 15 amino acids of N-terminal sequence were GTQENPPSSGLDDID. They are highly similar to those of serine proteases from various Streptomyces strains, but different with known fibrinolytic enzymes. These results suggest that FP84 is a novel serine metalloprotease with potential application in thrombolytic therapy.  相似文献   

5.
Novel xylanase (EC 3.2.1.8) is in great demand due to its industrial significance. In this study, we have developed and characterized a novel xylanase-producing yeast strain. This mature xylanase gene xyn11A consists of 870 base pairs and belongs to GH11 family. The gene sequence was optimized and synthesized, and was then cloned into yeast vector pGAPZαA under the control of the constitutive GAP promoter. SDS-PAGE analysis indicates that Xyn11A is extracellularly expressed as a glycosylated protein in P. pastoris. Xyn11A is optimally active at 70 °C and pH 7.4. This xylanase retained more than 90% of its activity after incubation at 50 °C and 60 °C for up to 1 h. Xyn11A is also stable over a wide range of pH (2.0–11.0). Most metal ions tested such as copper (Cu2+) and lead (Pb2+) have little inhibitory effects on Xyn11A. It is also resistant to pepsin and proteinase K digestion, retaining 80% and 90% of its activity after digestion at 37 °C for 1 h, respectively. Those superior properties make Xyn11A a robust xylanase with great potential for industrial use. To the best of our knowledge, this is the first report of xylanase from the fungus Corynascus thermophilus.  相似文献   

6.
An l-ornithine high producing strain Bacillus thuringiensis SK20.001 was screened by our laboratory. An intracellular arginase used to biosynthesize l-ornithine from the strain was purified and characterized. The final specific arginase activity was 589.2 units/mg, with 70.1 fold enrichment and 22.4% recovery. The molecular weight of the enzyme was approximately 33,000 Da as evaluated by SDS-PAGE and 191,000 Da as determined by gel filtration. The enzyme had an optimum pH of 10.0 and an optimum temperature of 40 °C. It was stable from pH 8.0–12.0 and <50 °C without Mn2+. The presence of Mn2+ and Ni2+ had strong effects on the enzyme activity, and Mn2+ significantly increased the thermal stability of the enzyme. The arginase was slightly inhibited by Ca2+, Fe2+ and Zn2+. Trp, Asp, Glu, Tyr, and Arg residues were directly involved in the arginase activity evaluated by chemical modifications. The Km and Vmax for l-arginine were estimated to be 15.6 mM and 538.9 μmol/min/mg. The biosynthesis yield of l-ornithine was 72.7 g/L with the enzyme.  相似文献   

7.
《Process Biochemistry》2014,49(3):451-456
An extracellular and cellulase-free xylanase (EX624) was produced by Streptomyces sp. CS624 using an agricultural residue (wheat bran) as a growth substrate. EX624 was purified from culture supernatant using ammonium sulfate precipitation, ion exchange and gel filtration chromatography. The SDS-PAGE and the zymogram analysis of the purified xylanase indicated molecular mass of 40 kDa. Biochemical characterization of the purified EX624 revealed its highest activity at a temperature of 60 °C and pH 6.0. The xylanase was adequately stable in the pH range 4.5–10.0 and at temperatures ≤50 °C. EX624 displayed enhanced activity in the presence of several metal ions including Fe2+, Co2+ and Ca2+. HPLC results showed that EX624 was not only able to hydrolyze commercially available pure beechwood xylan to xylose, xylobiose and xylotriose, but also abundantly available lignocellulosic agricultural residues in nature such as wheat bran to xylooligosaccharides.  相似文献   

8.
Pseudomonas aeruginosa PD100 capable of producing an extracellular protease was isolated from the soil collected from local area (garbage site) from Shivage market in Pune, India. The purified protease showed a single band on native and SDS-PAGE with a molecular weight of 36 kDa on SDS-PAGE. The optimum pH value and temperature range were found to be 8 and 55–60 °C, respectively. The enzyme exhibited broad range of substrate specificity with higher activity for collagen. The enzyme was inhibited with low concentration of Ag2+, Ni2+, and Cu2+. β-Mercaptoethanol was able to inactivate the enzyme at 2.5 mM, suggesting that disulfide bond(s) play a critical role in the enzyme activity. Studies with inhibitors showed that different classes of protease inhibitors, known to inhibit specific proteases, could not inhibit the activity of this protease. Amino acid modification studies data and pKa values showed that Cys, His and Trp were involved in the protease activity. P. aeruginosa PD100 produces one form of protease with some different properties as compared to other reported proteases from P. aeruginosa strains. With respect to properties of the purified protease such as pH optimum, temperature stability with capability to degrade different proteins, high stability in the presences of detergents and chemicals, and metal ions independency, suggesting that it has great potential for different applications.  相似文献   

9.
One mannanase and one of the three xylanases produced by Ceriporiopsis subvermispora grown on Pinus taeda wood chips were characterized. A combination of ion exchange chromatography and SDS-PAGE data revealed the existence of a high-molecular-weight mannanase of 150 kDa that was active against galactoglucomannan and xylan. Its activity was optimal at pH 4.5. The Km value with galactoglucomannan as substrate was 0.50 mg ml?1. One xylanase with molecular mass of 79 kDa was also purified and characterized. Its activity was optimal at 60 °C and pH 8.0. Its Km value with birchwood xylan as substrate was 1.65 mg ml?1. Both the mannanase and the 79 kDa xylanase displayed relatively high activity on carboxymethyl cellulose. The sensitivity of the xylanase and mannanase to various salts was evaluated. None of the tested salts inhibited the xylanase, but Mn+2, Fe+3, and Cu+2 were strong inhibitors for the mannanase.  相似文献   

10.
A Metarhizium anisopliae spore surface lipase (MASSL) strongly bound to the fungal spore surface has been purified by ion exchange chromatography on DEAE sepharose followed by ultrafiltration and hydrophobic interaction chromatography on phenyl sepharose. Electrophoretic analyses showed that the molecular weight of this lipase is ~66 kDa and pI is 5.6. Protein sequencing revealed that identified peptides in MASSL shared identity with several lipases or lipase-related sequences. The enzyme was able to hydrolyze triolein, the animal lipid cholesteryl stearate and all ρNP ester substrates tested with some preference for esters with a short acyl chain. The values of Km and Vmax for the substrates ρNP palmitate and ρNP laurate were respectively 0.474 mM and 1.093 mMol min?1 mg?1 and 0.712 mM and 5.696 mMol min?1 mg?1. The optimum temperature of the purified lipase was 30 °C and the enzyme was most stable within the most acid pH range (pH 3–6). Triton X-100 increased and SDS reduced enzyme lipolytic activity. MASSL activity was stimulated by Ca2+, Mg2+ and Co2+ and inhibited by Mn2+. The inhibitory effect on activity exerted by EDTA and EGTA was limited, while the lipase inhibitor Ebelactone B completely inhibited MASSL activity as well as PMSF. Methanol 0.5% apparently did not affect MASSL activity while β-mercaptoethanol activated the enzyme.  相似文献   

11.
A xylanase gene (xyl11B) was cloned from Bispora sp. MEY-1 and expressed in Pichia pastoris. xyl11B, with a 66-bp intron, encodes a mature protein of 219 residues with highest identity (57.1%) to the Trichoderma reesei xylanase of glycoside hydrolase family 11. The purified recombinant XYL11B was acidophilic, exhibiting maximum activity at pH 2.6 and 65 °C. The enzyme was also thermostable, pH stable, and was highly resistant to both pepsin and trypsin, suggesting good performance in the digestive tract as a feed supplement to improve animal nutrition. The activity of XYL11B was enhanced by most metal ions but was inhibited weakly by Hg2+, Pb2+and Cu2+, which strongly inhibit many other xylanases. The specific activity of XYL11B for oat spelt xylan substrate was 2049 U mg?1. The main hydrolysis products of xylan were xylose and xylobiose.  相似文献   

12.
This work is a report of the characterization of an alkaline lipolytic enzyme isolated from Bacillus subtilis DR8806. The extracellular extract was concentrated using ammonium sulfate, and ultrafiltration. The active enzyme was purified by Q-sepharose ion exchange chromatography. The molecular mass of the enzyme was estimated to be 60.25 kDa based on SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis). The optimum pH and temperature of this enzyme were observed to be 8.0 and 50 °C, respectively. The enzyme exhibited a half-life of 72 min at its optimum temperature. It was stable in the presence of metal ions (10 mM) such as Ca2+, K+ and Na+, whereas Cu2+, Fe2+, Zn2+, Mn2+, Co2+, Mg2+ and Hg2+ were found to have inhibitory effects. However, the enzyme activity was not affected significantly by 1% Triton X-100. The study of substrate specificity showed that the purified enzyme has a preferential specificity for small ester of p-nitrophenyl acetate (C2), and it was the most efficiently hydrolyzed substrate as compared to the other esters. The kinetic parameters showed that the enzyme has Km of 4.2 mM and Vmax of 151 μmol min−1 mg−1 for p-nitrophenyl acetate. The hydrolysis rates of the fluorescence substrates were increased in the presence of the purified enzyme. Regarding the features of the enzyme, it may be utilized as a novel candidate for industrial applications.  相似文献   

13.
《Process Biochemistry》2010,45(7):1052-1056
A new enzyme was isolated from the fungus combs in the nest of Odontotermes formosanus and identified as a laccase. The single laccase was purified with a purification factor of 16.83 by ammonium sulphate precipitation and anion exchange chromatography, to a specific activity of 211.11 U mg−1. Its molecular mass was 65 kDa. The optimum pH value and temperature were 4.0 °C and 10 °C with ABTS as the substrate, respectively. The enzyme activity stabilized at temperatures between 10 °C and 30 °C and decreased rapidly when the temperature was above 30 °C. The Vmax and Km values were 3.62 μmol min−1 mg−1 and 119.52 μM, respectively. Ethanol concentration affected laccase activity, inhibiting 60% of enzyme activity at a concentration of 70%. Metal ions of Mg2+, Ba2+ and Fe2+ showed inhibition on enzyme activity of 17.2%, 5.3% and 9.4%, respectively, with the increase of metal ions concentration from 1 mM to 5 mM. Especially Fe2+ strongly inhibited enzyme activity up to 89% inhibition at a concentration of 1 mM.  相似文献   

14.
A thermophilic Bacillus sp. strain AN-7, isolated from a soil in India, produced an extracellular pullulanase upon growth on starch–peptone medium. The enzyme was purified to homogeneity by ammonium sulfate precipitation, anion exchange and gel filtration chromatography. The optimum temperature and pH for activity was 90 °C and 6.0. With half-life time longer than one day at 80 °C the enzyme proves to be thermostable in the pH range 4.5–7.0. The pullulanase from Bacillus strain lost activity rapidly when incubated at temperature higher than 105 °C or at pH lower than 4.5. Pullulanase was completely inhibited by the Hg2+ ions. Ca2+, dithiothreitol, and Mn2+ stimulated the pullulanase activity. Kinetic experiments at 80 °C and pH 6.0 gave Vmax and Km values of 154 U mg−1 and 1.3 mg ml−1. The products of pullulan were maltotriose and maltose. This proved that the purified pullulanase (pullulan-6-glucanohydrolase, EC 3.2.1.41) from Bacillus sp. AN-7 is classified under pullulanase type I. To our knowledge, this Bacillus pullulanase is the most highly thermostable type I pullulanase known to date.  相似文献   

15.
A new laccase from Shiraia sp.SUPER-H168 was purified by ion exchange column chromatography and gel permeation chromatography and the apparent molecular mass of this enzyme was 70.78 kDa, as determined by MALDI/TOF-MS. The optimum pH value of the purified laccase was 4, 6, 5.5 and 3 with 2,6-dimethoxyphenol (DMP), syringaldazine, guaiacol and 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) as substrates, respectively. The optimum temperature of the purified laccase was 50 °C using DMP, syringaldazine and guaiacol as substrates, but 60 °C for ABTS. Inhibitors and metal ions of SDS, NaN3, Ag+ and Fe3+ showed inhibition on enzyme activity of 10.22%, 7.86%, 8.13% and 67.50%, respectively. Fe2+ completely inhibited the purified laccase. The Kcat/Km values of the purified laccase toward DMP, ABTS guaiacol and syringaldazine were 3.99 × 106, 3.74 × 107, 8.01 × 104 and 2.35 × 107 mol?1 L S?1, respectively. The N-terminal amino acid sequence of the purified laccase showed 36.4% similarity to Pleurotus ostrestus. Approximately 66% of the Acid Blue 129 (100 mg L?1) was decolorized by 2.5 U of the purified laccase after a 120 min incubation at 50 °C. Acid Red 1 (20 mg L?1) and Reactive Black 5 (50 mg L?1) were decolorized by the purified laccase after the addition of Acid Blue 129 (100 mg L?1).  相似文献   

16.
A newly isolated Rhodococcus sp. LKE-028 (MTCC 5562) from soil samples of Gangotri region of Uttarakhand Himalayan produced a thermostable esterase. The enzyme was purified to homogeneity with purification fold 62.8 and specific activity 861.2 U mg?1 proteins along with 26.7% recovery. Molecular mass of the purified enzyme was 38 kDa and values of Km and Vmax were 525 nM and 1666.7 U mg?1 proteins, respectively. The esterase was active over a broad range of temperature (40–100 °C) and pH (7.0–12.0). The esterase was most active at pH 11.0. The optimum temperature of enzyme activity was 70 °C and the enzyme was completely stable after 3 h pre-incubation at 60 °C. Metal ions like Ca2+, Mg2+ and Co2+ stimulated enzyme activities. Purified esterase remarkably retained its activity with 10 M NaCl. Enzyme activity was slightly increased in presence of non-polar detergents (Tween 20, Tween 80 and Triton X 100), and compatible with oxidizing agents (H2O2) and reducing agents (β-mercaptoethanol). Activities of the enzyme was stimulated in presence of organic solvents like DMSO, benzene, toluene, methanol, ethyl alcohol, acetone, isoamyl alcohol after 10 days long incubation. The enzyme retained over 75% activity in presence of proteinase K. Besides hyperthermostability and halotolerancy the novelty of this enzyme is its resistance against protease.  相似文献   

17.
Sinorhizobium meliloti CE52G strain produces a periplasmic laccase that has been purified by a two-step procedure involving heat treatment and immobilized metal affinity chromatography (IMAC). The fraction with laccase activity retained its original activity after 24 h of incubation at pH between 4.0 and 8.0 and after 3 h of incubation at 70 °C, pH 7.2 and supplemented with 1.3 M (NH4)2SO4. It proved to be a homodimeric protein with an apparent molecular mass of 45 kDa each subunit and an isoelectric point of 6.2. CE52G laccase was inhibited by halides (NaF and NaCl), ions (Fe3+, Mn2+, and Cu2+), sulfhydryl organic compounds (β-mercaptoethanol and reduced glutathione), and electron flow inhibitors (NaCN and NaF). Laccase activity was strongly enhanced by (NH4)2SO4, Na2SO4, and K2SO4. The effects of all these agents, as well as the probability of a partially unfolding polypeptide chain to enhance the interaction between the substrate and the active site, are discussed. CE52G laccase is a pH- and thermo-stable protein with promising biotechnological applications.  相似文献   

18.
Aminopeptidase B was purified from goat brain with a purification fold of ~280 and a yield of 2.7%. The enzyme revealed a single band on both native acrylamide gel and SDS-PAGE thereby confirming apparent homogeneous preparation and its monomeric nature. The enzyme exhibited a molecular mass of 80.2 kDa and 79.7 kDa on Sephadex G-200 and SDS-PAGE respectively. The pH optimum was 7.4 and the enzyme was stable between pH 6.0 and 9.0. l-Arg-βNA was the most rapidly hydrolyzed substrate followed by Lys-βNA. The Km value with Arg-βNA was found to be 0.1 mM. Metal chelating and –SH reactive agents strongly inhibited the enzyme activity. 1,10-Phenanthroline exhibited mixed type of inhibition with a Ki of 5 × 10?5 M. The enzyme was highly sensitive to urea. Metal ions like Ni2+, Cd2+, Fe2+and Hg2+ inhibited the enzyme, whereas Co2+, Zn2+, Mn2+and Sn2+ slightly activated the enzyme.  相似文献   

19.
《Process Biochemistry》2014,49(12):2114-2121
The codon-optimized carbonic anhydrase gene of Persephonella marina EX-H1 (PMCA) was expressed and characterized. The gene with the signal peptide removed, PMCA(sp−), resulted in the production of approximately five times more purified protein than from the intact gene PMCA using an Escherichia coli expression system. PMCA(sp−) is formed as homo-dimer complex. PMCA(sp−) has a wide pH tolerance (optimum pH 7.5) and a high thermostability even at 100 °C (88 min of thermal deactivation half-life). The melting temperature for PMCA(sp−) was 84.5 °C. The apparent kcat and Km values for CO2 hydration were 3.2 × 105 s−1 and 10.8 mM. The activity of the PMCA(sp−) enzyme was enhanced by Zn2+, Co2+, and Mg2+, but was strongly inhibited by Cu2+, Fe3+, Al3+, Pb2+, Ag+, and Hg2+. PMCA(sp−) readily catalyzed the hydration of CO2, precipitating CaCO3 as calcite in the presence of Ca2+.  相似文献   

20.
《Process Biochemistry》2007,42(12):1571-1578
A Bacillus sp. isolated from the Sundarbans region of the Bay of Bengal (NCBI GenBank Accession no. AY723697) which can tolerate 10% (w/v) NaCl, produces esterase optimally in Marine Broth 2216 medium containing 1% (w/v) NaCl. The enzyme was purified 42.7-fold with 6.4% recovery, (specific activity 569.2 U/mg protein) by ammonium sulphate precipitation followed by anion and cation exchange chromatography. The serine type esterolytic enzyme has a molecular weight of 35.0 kDa and is denatured into polypeptides of molecular weights 20 kDa and 15 kDa. The esterase was most active at pH 8.0, the pH of the seawater at the site of collection and is stable in the pH range 6.0–9.0. The optimum temperature of activity of this esterase is 45 °C and the enzyme is very stable after 1 h pre-incubation at 50 °C. Our esterase shows about 100% activity when incubated with 1 M NaCl, the activity drops to about 50% when incubated with 2.5 M sodium chloride and the enzyme is completely inactivated when 4 M NaCl is present during reaction. The esterase is almost inactivated by Ca2+, Hg2+ and Fe3+ ions, reducing agents and detergent. Interestingly, Co2+, a known inhibitor of many enzymes, preserved 70% of the activity of this esterase. Specific activity of the esterase increases more than twofold in the presence of water-miscible organic solvents as compared to that in aqueous buffer. When incubated for a period of 10 days in the presence of 30–70% dimethylsufoxide (DMSO), the specific activity increased by approximately two–threefold compared to the enzyme in aqueous buffer throughout the period of study. Specific activity between 1283 and 525 U/mg was maintained by our enzyme when incubated with 50% DMSO for 10 days. The enzyme was most active on p-nitrophenyl acetate, ethyl acetate, alpha isomer of naphthyl acetate but shows relatively lesser activity towards triglycerides of fatty acids. Certain characteristics, such as molecular weight, effects of NaCl, metal ions (Zn2+ and Mg2+) and reactivity towards para-nitrophenyl and aliphatic esters were strikingly similar to already described marine bacterial derived esterases. Extreme stability in DMSO could make this enzyme a potential immobilized biocatalyst for application in non-aqueous based continuous bioprocesses. Higher specific activity and purification factor, better thermo tolerance and solvent stability would make our enzyme more attractive for biotechnological applications than the marine microbial derived esterases described so far.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号