共查询到20条相似文献,搜索用时 9 毫秒
1.
Genetic Evidence of a Role for Lck in T-Cell Receptor Function Independent or Downstream of ZAP-70/Syk Protein Tyrosine Kinases 总被引:1,自引:1,他引:1 下载免费PDF全文
T-cell antigen receptor (TCR) engagement results in sequential activation of the Src protein tyrosine kinases (PTKs) Lck and Fyn and the Syk PTKs, ZAP-70 and Syk. While the Src PTKs mediate the phosphorylation of TCR-associated signaling subunits and the phosphorylation and activation of the Syk PTKs, the lack of a constitutively active Syk PTK has prohibited the analysis of Lck function downstream of these initiating signaling events. We describe here the generation of an activated Syk family PTK by substituting the kinase domain of Syk for the homologous region in ZAP-70 (designated as KS for kinase swap). Expression of the KS chimera resulted in its autophosphorylation, the phosphorylation of cellular proteins, the upregulation of T-cell activation markers, and the induction of interleukin-2 gene synthesis in a TCR-independent fashion. The KS chimera and downstream ZAP-70 or Syk substrates, such as SLP-76, were still phosphorylated when expressed in Lck-deficient JCaM1.6 T cells. However, expression of the KS chimera in JCaM1.6 cells failed to rescue downstream signaling events, demonstrating a functional role for Lck beyond the activation of the ZAP-70 and Syk PTKs. These results indicate that downstream TCR signaling pathways may be differentially regulated by ZAP-70 and Lck PTKs and provide a mechanism by which effector functions may be selectively activated in response to TCR stimulation. 相似文献
2.
Xuliang Jiang David Fischer Xiaoyan Chen Sean D. McKenna Heli Liu Venkataraman Sriraman Henry N. Yu Andreas Goutopoulos Steve Arkinstall Xiaolin He 《The Journal of biological chemistry》2014,289(20):14273-14282
Follicle-stimulating hormone receptor (FSHR), a G-protein coupled receptor, is an important drug target in the development of novel therapeutics for reproductive indications. The FSHR extracellular domains were observed in the crystal structure as a trimer, which enabled us to propose a novel model for the receptor activation mechanism. The model predicts that FSHR binds Asnα52-deglycosylated FSH at a 3-fold higher capacity than fully glycosylated FSH. It also predicts that, upon dissociation of the FSHR trimer into monomers, the binding of glycosylated FSH, but not deglycosylated FSH, would increase 3-fold, and that the dissociated monomers would in turn enhance FSHR binding and signaling activities by 3-fold. This study presents evidence confirming these predictions and provides crystallographic and mutagenesis data supporting the proposed model. The model also provides a mechanistic explanation to the agonist and antagonist activities of thyroid-stimulating hormone receptor autoantibodies. We conclude that FSHR exists as a functional trimer. 相似文献
3.
In Leucophaea maderae the female specific protein, or vitellogenin,is being synthesized and secreted exclusively by the adult femalefat bodies. This specific protein, which is induced by thejuvenilehormones makes up approximately 90% of the total yolk proteins.It is a lipophosphoprotein of low phosphorus (0.14) content.The female specific protein is synthesized on polysomes boundto membranes of the ergastoplasmic reticulum (ER). Microsomevesicles obtained from active tissues are heavily studded withribosomes and are considerably more dense than those from "inactive"tissues. The nascent polypeptide chains of the vitellogeninare secreted into the cisternae of the ER and can be releasedby Na deoxycholate digestion of the membranes. Similarly, thenon-specific serum proteins are also secreted into the cisternaeof the ER. All evidence points to the fact that microsomes maycarry mixed populations of polysomes, those associated withspecific and those associated with non-sex-specific proteinsynthesis. The significance of the polysomal association withmembranes for the synthesis of exportable sex-specific proteinis discussed. 相似文献
4.
Qianyu He Di Wen Qiangqiang Jia Chunlai Cui Jian Wang Subba R. Palli Sheng Li 《The Journal of biological chemistry》2014,289(40):27874-27885
Juvenile hormone (JH) receptors, methoprene-tolerant (Met) and Germ-cell expressed (Gce), transduce JH signals to induce Kr-h1 expression in Drosophila. Dual luciferase assay identified a 120-bp JH response region (JHRR) in the Kr-h1α promoter. Both in vitro and in vivo experiments revealed that Met and Gce transduce JH signals to induce Kr-h1 expression through the JHRR. DNA affinity purification identified chaperone protein Hsp83 as one of the proteins bound to the JHRR in the presence of JH. Interestingly, Hsp83 physically interacts with PAS-B and basic helix-loop-helix domains of Met, and JH induces Met-Hsp83 interaction. As determined by immunohistochemistry, Met is mainly distributed in the cytoplasm of fat body cells of the larval when the JH titer is low and JH induces Met nuclear import. Hsp83 was accumulated in the cytoplasm area adjunct to the nucleus in the presence of JH and Met/Gce. Loss-of-function of Hsp83 attenuated JH binding and JH-induced nuclear import of Met, resulting in a decrease in the JHRR-driven reporter activity leading to reduction of Kr-h1 expression. These data show that Hsp83 facilitates the JH-induced nuclear import of Met that induces Kr-h1 expression through the JHRR. 相似文献
5.
6.
Davide M. Ferraris Ermanno Gherardi Dirk W. Heinz Hartmut H. Niemann 《Journal of molecular biology》2010,395(3):522-15506
The Listeria monocytogenes surface protein InlB mediates bacterial invasion into host cells by activating the human receptor tyrosine kinase Met. So far, it is unknown how InlB or the physiological Met ligand hepatocyte growth factor/scatter factor causes Met dimerization, which is considered a prerequisite for receptor activation. We determined two new structures of InlB, revealing a recurring, antiparallel, dimeric arrangement, in which the two protomers interact through the convex face of the leucine-rich repeat domain. The same contact is found in one structure of the InlB-Met complex. Mutations disrupting the interprotomeric contact of InlB reduced its ability to activate Met and downstream signaling. Conversely, stabilization of this crystal contact by two intermolecular disulfide bonds generates a constitutively dimeric InlB variant with exceptionally high signaling activity, which can stimulate cell motility and cell division. These data demonstrate that the signaling-competent InlB-Met complex assembles with 2:2 stoichiometry around a back-to-back InlB dimer, enabling the direct contact between the stalk region of two Met molecules. 相似文献
7.
8.
Endosomal sorting complex required for transport (ESCRT) proteins are involved in a number of cellular processes, such as endosomal protein sorting, HIV budding, cytokinesis, plasma membrane repair, and resealing of the nuclear envelope during mitosis. Here we explored the function of a noncanonical member of the ESCRT-III protein family, the Saccharomyces cerevisiae ortholog of human CHMP7. Very little is known about this protein. In silico analysis predicted that Chm7 (yeast ORF YJL049w) is a fusion of an ESCRT-II and ESCRT-III-like domain, which would suggest a role in endosomal protein sorting. However, our data argue against a role of Chm7 in endosomal protein sorting. The turnover of the endocytic cargo protein Ste6 and the vacuolar protein sorting of carboxypeptidase S (CPS) were not affected by CHM7 deletion, and Chm7 also responded very differently to a loss in Vps4 function compared to a canonical ESCRT-III protein. Our data indicate that the Chm7 function could be connected to the endoplasmic reticulum (ER). In line with a function at the ER, we observed a strong negative genetic interaction between the deletion of a gene function (APQ12) implicated in nuclear pore complex assembly and messenger RNA (mRNA) export and the CHM7 deletion. The patterns of genetic interactions between the APQ12 deletion and deletions of ESCRT-III genes, two-hybrid interactions, and the specific localization of mCherry fusion proteins are consistent with the notion that Chm7 performs a novel function at the ER as part of an alternative ESCRT-III complex. 相似文献
9.
Tetsuo Takigawa Michiaki Tominaga Kenji Mori Masanao Matsui 《Bioscience, biotechnology, and biochemistry》2013,77(7):1591-1594
Methyl (2E,6E)-10,11-epithio-3,7,11-trimethyl-2,6-dodecadienoate (the thiirane analog of JH III), 6,7-epithiogeranyl 4-methylphenyl ether and 6,7-epithiogeranyl 3,4-methylenedioxyphenyl ether were synthesized. An infrared absorption band at ~1090 cm?1 was attributable to the thiirane group. The biological activity of these three sulfur-containing JH mimics was tested on Culex pipiens, Aedes aegypti and Spodoptera litura to reveal weak or no JH-like activity. 相似文献
10.
11.
12.
13.
Kexi Wang Brianne Sturt-Gillespie James C. Hittle Dawn Macdonald Gordon K. Chan Tim J. Yen Song-Tao Liu 《The Journal of biological chemistry》2014,289(34):23928-23937
The mitotic checkpoint (or spindle assembly checkpoint) is a fail-safe mechanism to prevent chromosome missegregation by delaying anaphase onset in the presence of defective kinetochore-microtubule attachment. The target of the checkpoint is the E3 ubiquitin ligase anaphase-promoting complex/cyclosome. Once all chromosomes are properly attached and bioriented at the metaphase plate, the checkpoint needs to be silenced. Previously, we and others have reported that TRIP13 AAA-ATPase binds to the mitotic checkpoint-silencing protein p31comet. Here we show that endogenous TRIP13 localizes to kinetochores. TRIP13 knockdown delays metaphase-to-anaphase transition. The delay is caused by prolonged presence of the effector for the checkpoint, the mitotic checkpoint complex, and its association and inhibition of the anaphase-promoting complex/cyclosome. These results suggest that TRIP13 is a novel mitotic checkpoint-silencing protein. The ATPase activity of TRIP13 is essential for its checkpoint function, and interference with TRIP13 abolished p31comet-mediated mitotic checkpoint silencing. TRIP13 overexpression is a hallmark of cancer cells showing chromosomal instability, particularly in certain breast cancers with poor prognosis. We suggest that premature mitotic checkpoint silencing triggered by TRIP13 overexpression may promote cancer development. 相似文献
14.
15.
16.
The Competitive Ability and Fitness Components of the Methoprene-Tolerant (Met) Drosophila Mutant Resistant to Juvenile Hormone Analog Insecticides 总被引:1,自引:0,他引:1 下载免费PDF全文
The Methoprene-tolerant (Met) mutation of Drosophila melanogaster results in a high (100-fold) level of resistance to the insecticide methoprene, a chemical analog of juvenile hormone. Pest species that are under control with methoprene may therefore have the potential to evolve resistance via a mutation homologous to Met. To evaluate the potential of such mutants to persist in wild populations, we must understand the fitness of flies carrying Met. In the absence of methoprene, Met flies were outcompeted by a wild-type strain both in a multigeneration population cage and in single-generation competition experiments. To determine which fitness component(s) is responsible for the competitive disadvantage, the survival, time of development, and fecundity of flies homozygous for each of five Met alleles were compared with wild type. Small but significant differences were found between the pooled Met alleles and wild type for pupal development time, pupal mortality, and early adult fecundity. These differences result in a large competitive disadvantage. Although Met flies were found to have reduced fitness by these measures, the phenotype is not as severe as might be expected from a knowledge of the disruption of juvenile hormone regulation seen in Met flies. It is concluded that (1) although Met flies have a large advantage under methoprene selection, they will quickly become outcompeted upon relaxation of methoprene usage, (2) even a seemingly severe disruption of juvenile hormone regulation has no drastic effect on the vital functions of the insect and (3) small differences in fitness components can translate into a large competitive disadvantage. 相似文献
17.
Rapid Detection of Subtype-Selective Nuclear Hormone Receptor Binding with Bacterial Genetic Selection 下载免费PDF全文
Subtype-selective nuclear hormone receptor modulators could potentially allow the development of valuable tissue-specific therapeutics. A simple biosensor that allows subtype-specific nuclear hormone receptor binding to be reflected by the growth phenotype of Escherichia coli cells has been constructed. This system will potentially enable the facile detection or evolution of subtype-selective hormone analogues. 相似文献
18.
Life history theory assumes that there are alleles with pleiotropic effects on fitness components. Although quantitative genetic data are often consistent with pleiotropy, there are few explicit examples of pleiotropic loci. The Drosophila melanogaster gene Methoprene-tolerant (Met) may be such a locus. The Met gene product, a putative juvenile hormone receptor, facilitates the action of juvenile hormone (JH) and JH analogs; JH affects many life history traits in arthropods. Here we use quantitative complementation to investigate effects of Met mutant and wildtype alleles on female developmental time, onset of reproduction, and fecundity. Whereas the alleles did not differ in their effects on developmental time, we detected allelic variation for the onset of reproduction and for age-specific fecundity. Alleles influenced phenotypic co-variances among traits (developmental time and onset of reproduction; onset of reproduction and both early and late fecundity; early and late fecundity), suggesting that alleles of Met vary in their pleiotropic effects upon life history. Furthermore, the genetic covariance between developmental time and early fecundity attributed to alleles of Met was negative, indicating consistent pleiotropic effects among alleles on these traits. The allelic effects of Met support genetic models where pleiotropy at genes associated with hormone regulation can contribute to the evolution of life history traits. 相似文献
19.
目的:克隆获得家蚕(Bombyx mori)Bmtol基因序列,并对其蛋白结构进行预测,分析其在组织和JHA处理后头部的表达差异,为该基因的功能研究提供参考。方法:以家蚕的全组织c DNA为模板利用RT-PCR技术扩增和克隆获得Bmtol基因c DNA全长序列,并提交至Gen Bank数据库;利用多种生物信息学软件预测分析其编码蛋白的理化特性和结构特征;采用MREGA5.0软件中的邻接法(neighbor-joining,NJ)构建Bm TOL及其它昆虫同源TO的进化树;通过q PCR技术分析Bmtol基因在5龄3天家蚕不同组织的表达情况,及JHA处理5龄蚕后在0 h、24 h、48 h、72 h和96 h家蚕头部的表达情况。结果:克隆获得了家蚕Bmtol基因的c DNA序列(Gen Bank登录号KY681053),Bmtol基因的开放阅读框(ORF)长度为759 bp,编码252个氨基酸,预测其蛋白分子量为27.72k Da,理论等电点为6.16,有信号肽,无跨膜结构,且第25~251位氨基酸之间存在一个保幼激素结合蛋白家族JHBP保守结构域;N端为疏水区域,可能与保幼激素结合蛋白的核心部位有关。亚细胞定位分析表明,Bm TOL属于分泌型蛋白,主要集中在内质网-高尔基体-质膜分泌途径上。Bm TOL蛋白具有3个α螺旋,第34位的Cys和第44位Cys形成一个二硫键链接在α1螺旋和N末端,构成Bm TOL蛋白与配体结合的核心部位。序列比对结果显示,家蚕Bm TOL序列与其他昆虫TO的氨基酸序列一致性差别较大。家蚕Bm TOL与果蝇Dm TO的相似性为25.10%,与烟草天蛾的相似性为19.69%,与冈比亚按蚊的相似性为25.78%,与埃及伊蚊的相似性为23.53%,与黑花蝇的相似性为28.17%,与意大利蜜蜂的相似性为23.05%,与苹浅褐卷蛾的相似性为21.18%。系统进化树分析表明,所有选用昆虫TO形成两个大的分支:苹浅褐卷蛾Ep TO1、烟草天蛾Ms TO、意大利蜜蜂Am TOL、果蝇Dm TO和黑花蝇Pr TOL聚为一个分支,埃及伊蚊Aa TO、冈比亚按蚊Ag TOL-2和家蚕Bm TOL聚为另一大分支。q PCR结果显示,Bmtol基因在家蚕头部、表皮和精巢有较高表达,其他组织表达量很低或没有。在JHA处理的5龄家蚕的头部,Bmtol基因在处理后0 h、24 h、48 h、72 h和96 h的表达量差异不明显。结论:Bm TOL蛋白属于JHBP家族,具有JHBP家族的典型结构;组织表达谱和JHA处理结果暗示,Bm TOL属保幼激素结合蛋白(JHBP),在家蚕中除保幼激素结合之外还参与其他多种生理功能。 相似文献
20.
Augen A. Pioszak Naomi R. Parker Thomas J. Gardella H. Eric Xu 《The Journal of biological chemistry》2009,284(41):28382-28391
Parathyroid hormone (PTH) and PTH-related protein (PTHrP) are two related peptides that control calcium/phosphate homeostasis and bone development, respectively, through activation of the PTH/PTHrP receptor (PTH1R), a class B G protein-coupled receptor. Both peptides hold clinical interest for their capacities to stimulate bone formation. PTH and PTHrP display different selectivity for two distinct PTH1R conformations, but how their binding to the receptor differs is unclear. The high resolution crystal structure of PTHrP bound to the extracellular domain (ECD) of PTH1R reveals that PTHrP binds as an amphipathic α-helix to the same hydrophobic groove in the ECD as occupied by PTH, but in contrast to a straight, continuous PTH helix, the PTHrP helix is gently curved and C-terminally “unwound.” The receptor accommodates the altered binding modes by shifting the side chain conformations of two residues within the binding groove: Leu-41 and Ile-115, the former acting as a rotamer toggle switch to accommodate PTH/PTHrP sequence divergence, and the latter adapting to the PTHrP curvature. Binding studies performed with PTH/PTHrP hybrid ligands having reciprocal exchanges of residues involved in different contacts confirmed functional consequences for the altered interactions and enabled the design of altered PTH and PTHrP peptides that adopt the ECD-binding mode of the opposite peptide. Hybrid peptides that bound the ECD poorly were selective for the G protein-coupled PTH1R conformation. These results establish a molecular model for better understanding of how two biologically distinct ligands can act through a single receptor and provide a template for designing better PTH/PTHrP therapeutics.The parathyroid hormone receptor (PTH1R)3 is a class B G protein-coupled receptor (GPCR) that transduces signals from two related signaling molecules that have distinct functions in biology: parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP) (Ref. 1; reviewed in Ref. 2). PTH is an 84-amino acid polypeptide endocrine hormone that is produced by the parathyroid glands and secreted into the circulation in response to low calcium levels (reviewed in Refs. 3–5), to act on bone and kidney cells and thus restore blood calcium to normal levels. In bone, PTH directly stimulates osteoblasts, resulting in bone formation (reviewed in Ref. 6), which in turn activate osteoclasts to induce bone resorption. In the kidney, PTH stimulates the reabsorption of filtered calcium, inhibits the reabsorption of phosphate, and stimulates the synthesis of 1,25-dihydroxyvitamin D3. The paradoxical anabolic/catabolic actions of PTH on bone can be modulated by exogenous PTH, and provide the molecular basis for the clinical use of PTH as an anabolic therapy for osteoporosis (7). Anabolic PTH therapy requires intermittent administration to minimize bone-resorptive effects, which predominate with sustained administration of PTH. PTHrP is a 141-amino acid polypeptide that was originally isolated as the factor responsible for humoral hypercalcemia of malignancy (8–11) and was subsequently shown to be a critical developmental paracrine factor that controls endochondral bone formation (Refs. 12, 13; reviewed in Ref. 14). PTHrP can also mediate bone-anabolic effects when administered to osteoporosis patients (15) and has been suggested to be more anabolic than PTH due to a differential effect on the coupled bone formation and resorptive responses (16).PTH and PTHrP are encoded by separate genes, each of which is found in vertebrate species ranging from fish to man. How PTH and PTHrP evolved to mediate distinct biological activities: calcium/phosphate homeostasis and tissue development, respectively, via actions upon a single receptor, remains unclear. Amino acid sequence homology is most apparent in the first 34-residue segments of the proteins, and N-terminal 34-residue peptide fragments of PTH and PTHrP are sufficient for high affinity binding to the PTH1R and are generally found to be equally potent for stimulating cAMP formation in PTH1R-expressing cells (1). The interaction of the (1–34)-length ligand with the PTH1R has been postulated to follow a “two-domain” model: residues within the approximate (1–14) segment interact with the 7-transmembrane (7-TM) helical domain embedded in the membrane, and residues within the approximate (15–34) segment interact with the N-terminal extracellular domain (ECD) of the receptor (17, 18). The 1–14 domains of PTH and PTHrP share eight amino acid sequence identities, reflecting a critical role in activating the receptor (18), while the 15–34 domains share only three amino acid identities, despite a critical role in imparting high affinity binding to the receptor.Recent studies suggest that PTH and PTHrP differ in their relative capacities to bind to two pharmacologically distinguishable high-affinity PTH1R conformations (19–22). One conformation, termed R0, is stable in the presence of GTPγS, but presumably in the absence of G protein coupling, correlates with prolonged signaling responses in vitro and in vivo, and is bound preferentially by PTH-(1–34). The other conformation, termed RG, is sensitive to GTPγS addition, promoted by the overexpression of a high affinity variant of Gαs, and bound preferentially by PTHrP-(1–36). A mechanistic basis for the differing capacities of PTH and PTHrP ligands to bind to these altered PTH1R conformations is not clear at present, although, both the (1–14) and (15–34) portions of PTH contribute importantly to the capacity to bind stably to the proposed R0 conformation (19, 21, 22).We previously developed a method that allowed us to determine the high resolution crystal structure of recombinant PTH1R ECD in complex with the 15–34 synthetic fragment of PTH (23). The PTH1R ECD adopts a tertiary fold that is conserved among class B GPCR ECDs (24–26), and the PTH(15–34)NH2 domain binds as a continuous and straight amphipathic α-helix to a hydrophobic groove in the ECD. Here we present the high resolution crystal structure of the PTHrP 12–34 fragment in complex with the PTH1R ECD, which reveals a distinct docking conformation toward the C terminus of the PTHrP peptide. Based on the structural differences, we designed hybrid PTH/PTHrP peptides exchanged for residues involved in altered ECD contacts; functional analyses of these peptides confirmed that the altered modes of binding indeed translate into functional consequences in terms of receptor affinity. These results provide critical insights into how PTH and PTHrP can act through a single receptor, and a structural model for designing better PTH/PTHrP analogs for treating osteoporosis. 相似文献